

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής

Ευφυή Κινητά Δίκτυα: 3G UMTS, HSPA, LTE/4G, 5G

Χειμερινό Εξάμηνο 2022-23

Βασίλειος Σύρης

Generation	Requirements	Comments
1G	No official requirements.	Deployed in the 1980s.
2G	No official requirements.	First digital systems.
	Digital technology.	Deployed in the 1990s.
		New services such as SMS and low rate data.
		Primary technologies include IS-9 CDMA (cdmaOne) and GSM.
3G	ITU's IMT-2000 required 144 Kbps mobile, 384 Kbps pedestrian, 2 Mbps indoors	First deployment in 2000. Primary technologies include CDMA2000 1X/EV-DO and UMTS- HSPA.
		WIMAX.
4G (Initial Technical Designation)	ITU's IMT-Advanced requirements include ability to operate in up to 40 MHz radio channels and with very high spectral efficiency.	First deployment in 2010. IEEE 802.16m and LTE-Advanced meet the requirements.
4G (Current Marketing Designation)	Systems that significantly exceed the performance of initial 3G networks. No quantitative requirements.	Today's HSPA+, LTE, and WiMAX networks meet this requirement.
5G	ITU IMT-2020 requirements are in progress and may represent initial technical requirements for 5G.	Expected in 2020 timeframe. Term applied to generation of technology that follows LTE- Advanced.

)	uality	of Serv	rice		
	Traffic Class	Conversational Class	Streaming Class	Interactive Class	Background Class
	Fundamental Characteristics	Preserve time relation of (variation) between information entities of the stream Conversational pattern (stringent and low delay)	• Preserve time relation of (variation) between information entities of the stream	 Request response pattern Preserve payload content 	 Destination is not expecting the data within a certain time Preserve payload conten
	Example of application	voice	streaming video	web browsing	background download of emails

- Enhanced dedicated physical channel
- Fast scheduling with short TTI (2ms)
- Fast hybrid ARQ

LTE targets

- Increased data rates
 - Peak data rate: above 100 Mbps (downlink) and 50 Mbps (uplink)
 - Increase "cell edge bitrate" whilst maintaining same site locations as deployed today
- Improved spectrum efficiency
 2-4X Rel 6 HSPA
 - Reduced latencies:
 - network latency < 10 ms
 - inactive-to-active latency < 100 ms
- Designed for IP traffic
 - Efficient support packet services (e.g. Voice over IP, Presence)
- Enhanced IMS and core network
- Enhanced MBMS (broadcasting)

LTE features

- Downlink based on OFDMA
- Uplink based on SC-FDMA
- Only packet switched: no circuit switched connectivity
- LTE time slot (TTI): 1 ms
- MIMO: use more than one TX/RX antennas

LTE Configuration	Downlink (Mbps) Peak Data Rate	Uplink (Mbps) Peak Data Rate
Using 2X2 MIMO in the Downlink and 16 QAM in the Uplink, 10+10 MHz	70.0	22.0
Using 4X4 MIMO in the Downlink and 64 QAM in the Uplink, 20+20 MHz	300.0	71.0

Air interfa	nterface technologies	
Approach	Technologies Employing Approach	Comments
TDMA	GSM, GPRS, EDGE, Telecommunications Industry Association/Electronics Industry	First digital cellular approach. Hugely successful with GSM.
	Association (TIA/EIA)-136 TDMA	New enhancements being designed for GSM/EDGE.
CDMA	CDMA2000 1xRTT, CDMA2000 EV-DO, WCDMA, HSPA, Institute of Electrical and Electronic Engineers (IEEE) 802.11b	Basis for nearly all new 3G networks. Mature, efficient, and will dominate wide- area wireless systems for the remainder of this decade.
OFDM/OFDMA	802.16/WiMAX, Flarion Fast Low- Latency Access with Seamless Handoff OFDM (Flash OFDM), 3GPP LTE, IEEE 802.11a, IEEE 802.11g, IEEE 802.20, Third	Effective approach for broadcast systems, higher bandwidth radio systems, and high peak data rates in large blocks of spectrum.
	Generation Partnership Project 2 (3GPP2) UMB, 3GPP2 Enhanced Broadcast Multicast Services (EBCMCS), Digital Video Broadcasting-H (DVB-H), Forward Link Only (FLO)	Also provides flexibility in the amount of spectrum used. Well suited for systems planned for the next decade.

Small cell approaches

Small Cell Approach	Characteristics
Macro plus small cells in select areas.	Significant standards support. Femtocells or picocells can use same radio carriers as macro (less total spectrum needed) or can use different radio carriers (greater total capacity).
Macro plus LTE operation in unlicensed bands	Being considered for 3GPP Release 13 and available for deployment 2017 or 2018. Promising approach for augmenting LTE capacity in scenarios where operator is deploying LTE small cells.
Macro plus Wi-Fi	Extensively used today with increased use anticipated. Particularly attractive for expanding capacity in coverage areas where Wi-Fi infrastructure exists but small cells with LTE do not.
Wi-Fi only	Low-cost approach for high-capacity mobile broadband coverage, but impossible to provide large-area continuous coverage without cellular component.

Type of Cell	Characteristics
Macro cell	Wide area coverage. LTE supports cells up to 100 km of range, but typical distances are .5 to 5 km radius. Always installed outdoors.
Microcell	Covers a smaller area, such as a hotel or mall. Range to 2 km, 5-10W, 256-512 users. Usually installed outdoors.
Picocell	Indoor or outdoor. Outdoor cells also called "metrocells." Typical range 15 to 200 meters outdoors and 10 to 25 meters indoors, 1-2W, 64-128 users. Deployed by operators primarily to expand capacity.
Consumer Femtocell	Indoors. Range to 10 meters, less than 50 mW, 4 to 6 users. Capacity and coverage benefit. Usually deployed by end users using their own backhaul.
Enterprise Femtocell	Indoors. Range to 25 meters, 100-250 mW, 16-32 users. Capacity and coverage benefit. Deployed by operators.
Distributed antenna system.	Expands indoor coverage. Same hardware can support multiple operators (neutral host) since antenna can support broad frequency range and multiple technologies. Usually deployed in larger indoor spaces. Can also be used outdoors.
Remote radio head (RRH)	Uses baseband at existing macro site or centralized baseband equipment. If centralized, the system is called "Cloud RAN." Requires fiber connection.
Wi-Fi	Primarily provides capacity expansion. Neutral-host capability allows multiple operators to share infrastructure.
Super Wi-Fi"	Name used by some people for white-space technology. Not true Wi-Fi. Better suited for fixed wireless than mobile wireless

LTE Cat-1 LTE Cat-M1 LTE Cat-NB1 DL: ~30 kbps UL: ~60 kbps DL: 10 Mbps DL: 1 Mbps Peak data rate UL: 5 Mbps UL: 1 Mbps Bandwidth 20 MHz 1.4 MHz 200 kHz Rx antenna MIMO Single Rx Single Rx Full duplex Supports half duplex Half duplex Duplex mode FDD/TDD FDD/TDD FDD only Transmit power 23 dBm 20 dBm or 23 dBm 20 dBm or 23 dBm

Functional split between NG-RAN and 5GC gNB SMF AMF Inter Cell RRM UE IP address allocation NAS Security **RB** Control Idle State Mobility Handling PDU Session Control Connection Mobility Cont. Radio Admission Control UPF Measurement Configuration & Provision Mobility Anchoring Dynamic Resource Allocation (Scheduler) PDU Handling internet NG-RAN 5GC

