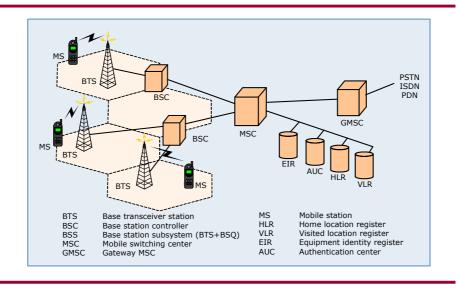


Ευφυή Κινητά Δίκτυα: Σύστημα Κινητής Τηλεφωνίας 2^{ης} γενεάς (2G): GSM και GPRS


Εαρινό Εξάμηνο 2024-25 Βασίλειος Σύρης

1

GSM frequency bands (common)

- GSM-900 and GSM-1800
 - Europe, Middle East, Africa, most of Asia
- GSM-850 and GSM-1900
 - USA, Canada, other countries in America
- GSM-400 and GSM-450 rarer

Network architecture

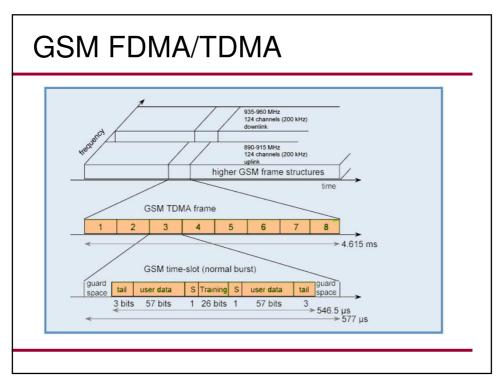
3

Network elements

- Mobile Station
 - Mobile Equipment
 - ◆Identified by the International Mobile Equipment Identity (IMEI)
 - Subscriber Identity Module (SIM)
 - ◆ Contains a unique identification number called IMSI
 - It is removable, thus irrespective of a specific terminal

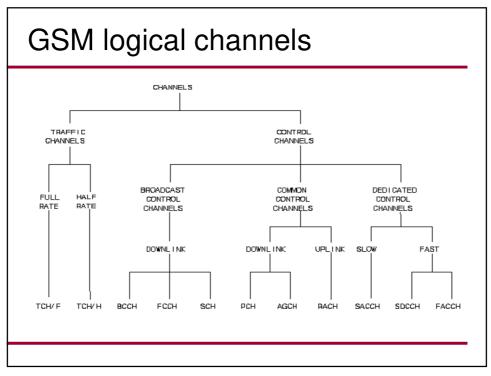
Base Station Subsystem (BSS)

- Base Transceiver Station (BTS)
 - ◆ A BTS is comprised of radio transceivers, antennas, the interface to the PCM facility
 - BTS is the entity that connects the mobiles to a cellular network
- Base Station Controller (BSC)
 - Its primary function is call maintenance, by deciding when to initiate a handover, changing the BTS transmitter power, etc.
 - ◆ A BSC is connected to a group of BTSs and manages the radio resources for them


5

Network Subsystem

- Mobile Switching Center (MSC)
 - MSC provides functions such as registration, authentication, location updating, handovers and call routing to a roaming subscriber
- Home Location Register (HLR)
 - The HLR contains all the administrative information and current location of each subscriber registered in the corresponding GSM network
- Visitor Location Register (VLR)
 - Contains subscription information needed for call control, for all mobiles in the area of the associated MSC
- Equipment Identity Register (EIR)
 - EIR is a database that contains a list of all valid mobile equipment on the network
- Authentication Center (AUC)
 - Stores the secret key held in each user's SIM card


- Application Service Centers are responsible for GSM network add-on services
 - Operation and Maintenance Center (OMC)
 - Monitoring and control the network
 - Usually connect with MSC, BSC, HLR, and other service centers
 - Short Message Service Center (SMSC)
 - provide short message services
 - usually connect to MSC
 - Unstructured Supplementary Service Data Center (USSDC)
 - ◆ provide USSD service in the form of *ID*ID*info#
 - usually connect to HLR

Protocol stack MSC MS Base Base Station Transceiver CM CM Station Controller MM (BTS) (BSC) MM DTAP BSSMAP/DTAP RR RR **BSSMAP** RR BTSM BTSM SCCP SCCP LAPD LAPDm LAPDm LAPD MTP MTP Layer 1 Layer 1 Layer 1 Layer 1 Um Abis A (air interface)

GSM channels

- Physical channel: specific time slot and channel/carrier frequency
- Logical channels
 - run over physical channels (not necessarily in all time slots)
 - two types: traffic and control
 - managed: setup, maintenance, tear-down
- Control channels interspersed with traffic channels in well-defined ways

Traffic channels

Full rate: 22.8 kbps

speech data: 13 kbps voice data + FEC

packet data: 12,6,3.6 kbps + FEC

• Half rate: 11.4 kbps

 To achieve higher rates multiple logical channels have to be allocated (GPRS does this)

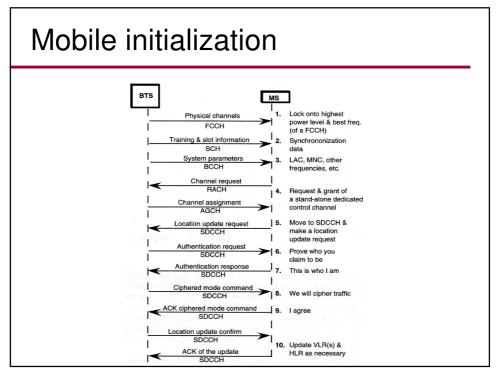
Control channels

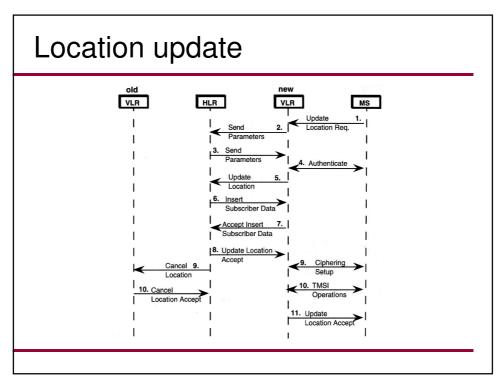
- Help MS locate control channels
- Provide information about
 - voice and control channel repetition cycle.
 - parameters in the cell
 - surrounding cells
 - paging
- Allow random access attempts by the MS

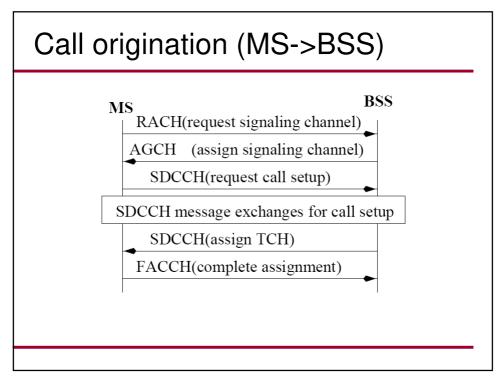
13

Broadcast Control Channels

- FCCH (Frequency Correction Channel)
 - carrier synchronization
 - base station "beacon" signal
- SCH (Synchronization Channel)
 - frame synchronization
- BCCH (Broadcast Control Channel)
 - cell ID, available services, etc

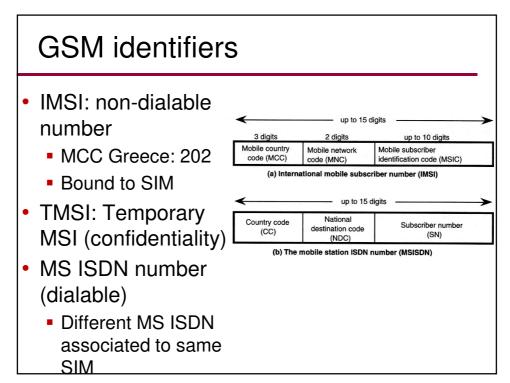

Common Control Channels

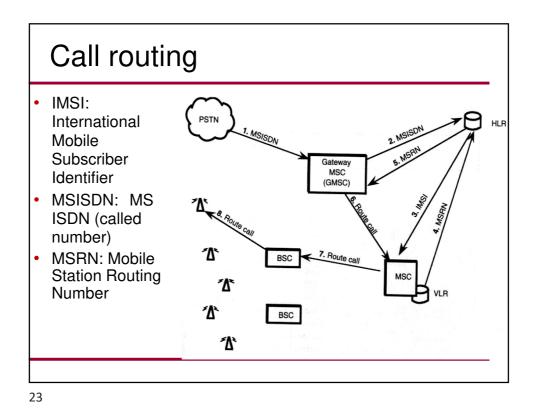

- PCH (Paging Channel) downlink
 - page a mobile
- AGCH (Access Grant Channel) downlink
 - reply to a random access request, assign dedicated control channel
- RACH (Random Access Channel) uplink
 - used by mobile to request dedicated control channel
 - messages from several mobiles can collide
 - Slotted Aloha used for contention resolution

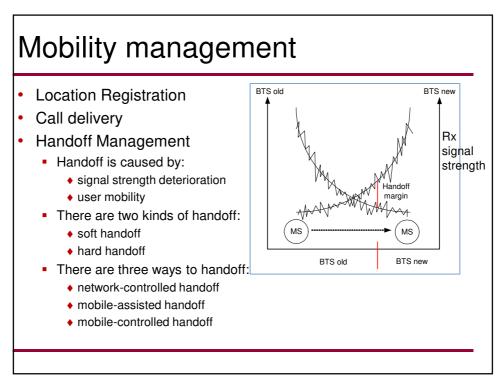

15


Dedicated and Control Channels

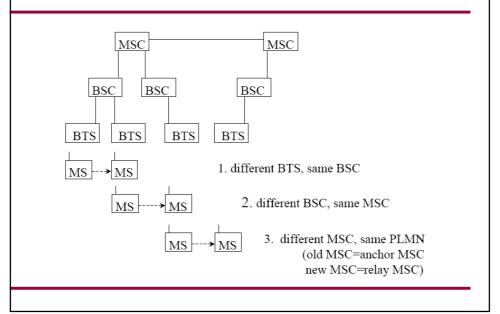
- SACCH (Slow Associated Control Channel)
 - in-band signaling
 - downlink: system info, power control
 - uplink: measurements
- FACCH (Fast Associated Control Channel)
 - in-band time-critical signaling
 - call establishment progress, authentication, handover signaling
- SDCCH (Stand-alone Dedicated Control Channel)
 - out-of-band signaling
 - call setup signaling, SMS, location update






Network elements

- Mobile Station
 - Mobile Equipment
 - ◆Identified by the International Mobile Equipment Identity (IMEI)
 - Subscriber Identity Module (SIM)
 - Contains a unique identification number called IMSI
 - It is removable, thus irrespective of a specific terminal

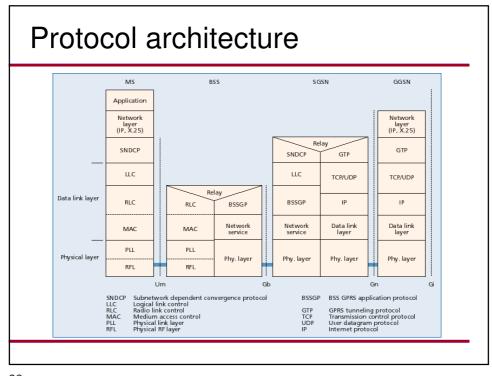

21

Three cases of handovers

25

Power control

- Operator-dependant
- Mobile:
 - Peak Tx power classes: GSM-900: 8,5,2,0.8 Watt (39,37,33,29 dBm), GSM-1800: 1,0.25,4 Watt (30,24,36 dBm)
 - minimum Tx power: GSM-900: 19mW, GSM-1800: 15mW
 - step: 2dBm
- Base station:
 - 8 classes: 320-2.5 Watt (55-34dBm)
- Base station controller decides power control changes for both
 - Mobile measures signal strength, quality (BER) and reports to Base station
 - Goal: operate at lowest power level while maintaining acceptable signal quality


GPRS (General Packet Radio Service)

- The major GSM Phase 2+ enhancement and an important step to 3G
 - considered 2.5G
- Aims at providing data services to mobile users with high bandwidth efficiency and "always on" connectivity
- Address shortcomings of GSM
 - Low data rates (up to 9.6 kbps)
 - Long connection setup
 - Expensive
 - Circuit-switched

27

GPRS features

- Data rates up to 172 kbps
- Fast call setup times
- "Always on" connectivity
- Integrates IP infrastructure into the GSM network
- Uses packet-switched mechanisms
 - more efficient for bursty traffic
 - allow volume-based charging

Channel coding & transmission rate

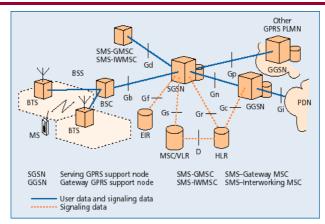
- · Coding used in every digital communication system to
 - increase channel capacity
 - protect against errors
- GPRS uses 4 different coding schemes, depending on channel conditions physical layer

Coding Scheme	Data Rate kbit/s	Channel Conditions
CS-1	9.05	Tough
CS-2	13.4	Tough to Moderate
CS-3	15.6	Moderate
CS-4	21.4	Good

 Up to 8 slots can be combined

Coding	Number of Timeslots				
	1	2	3	8	
CS-1	9.05	18.1	27.15	72.4	
CS-2	13.4	26.8	40.2	107.2	
CS-3	15.6	31.2	46.8	124.8	
CS-4	21.4	42.8	64.2	171.2	

(Raw) Data Rate (Kb/s)


QoS

GPRS Release 99 specified 4 traffic classes

Traffic Class	Medium	Application	Data Rate (kbps)	One-way Delay	
Conversational	Audio	Telephony	4-25	<150 ms	
	Data	Telnet	<8	<250 ms	
Streaming	Audio	Streaming (HQ)	32-128	<10 s	
	Video	One-way	32-384	<10 s	
	Data	FTP	-	<10 s	
Interactive	Audio	Voice Messaging	4-25	<1 s	
	Data	Web-Browsing	<8	<4 s/page	
Backround	Only Bit Integrity Is Required				

31

GPRS architecture

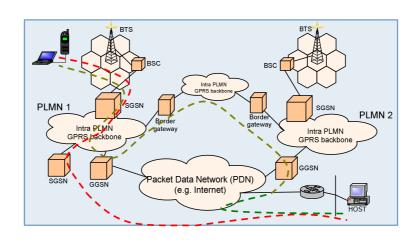
- 2 new nodes
 - Serving GPRS Support Node (SGSN)
 - Gateway GPRS Support Node (GGSN)

Serving GPRS Support Node (SGSN)

- Serving GPRS Support Node (SGSN) is responsible for:
 - Admission control
 - Routing, mobility management, location management, authentication, charging
 - Receiving and delivering data packets
 - Address translation and mapping
 - Encapsulation

33

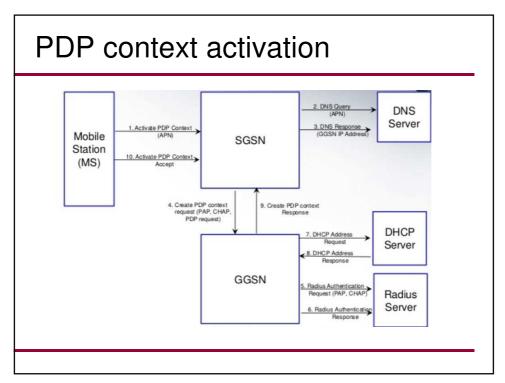
Gateway GPRS Support Node (GGSN)

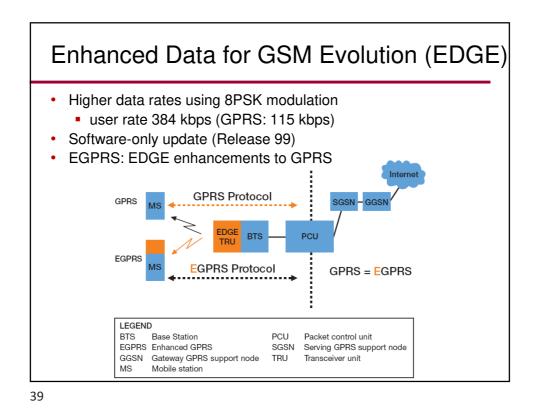

- Gateway GPRS Support Node (GGSN)
 - acts as interface between GPRS backbone and external Packet Data Networks (PDN) or other Public Mobile Land Networks
 - converts GPRS packets coming from SGSN into the appropriate packet data protocol (PDP) format (e.g. IP)
 - converts the PDP addresses of incoming data packets to the GSM address of the destination user, and sends the readdressed packet sto the responsible SGSN

Additional enhancements

- Base Station System (BSS): enhanced to recognize and send user data to the SGSN that is serving the area
- Home Location Register (HLR): enhanced to register GPRS user profiles and respond to queries originating from SGSNs

35


Routing Scenarios



GPRS processes

- Attach process
- Authentication process
- PDP (Packet Data Protocol) activation process
- Detach process

37

EDGE higher rates

• RLC data rate

**Body School School