

Ευφυή Κινητά Δίκτυα: Επισκόπηση και Τάσεις

Εαρινό Εξάμηνο 2024-25 Βασίλειος Σύρης

1

Fixed versus mobile broadband

 Interplay between communication networks and device (handset) technology

Δ

M2M/IoT applications

- Connected home applications (home automation, home security and video surveillance, connected white goods, and tracking applications) 48% by 2023
- Connected car applications (fleet management, in-vehicle entertainment systems, emergency calling, Internet, vehicle diagnostics and navigation etc.) fastest-growing category, at a 30% growth

Source: Cisco Annual Internet Report, 2018-2023

The importance of slow and short

- Fast (high speed) & long distance important
- Slow & short equally important
 - Longer battery lifetime, lower device cost, higher security
- Recent technologies:
 - IEEE 802.11ad/ay (WiGig): 60GHz, single room
 - IEEE 802.11af (white Wi-Fi), 802.11ah (low power Wi-Fi): <900MHz, long distance
 - 4G/LTE-M Rel-12/13:1.4MHz, 0.2MHz (Broadband: 20MHz)

IoT (Internet of Things)

9

Moving to higher frequencies ...

- 5G in Greece: 700 MHz, 2 GHz, 3.4-3.8 GHz, 26 GHz
 - 3G/4G bands: 800 MHz, 1.8 GHz, 2.1 GHz, 2.6 GHz
- mm-wave: 26-300 GHz (802.11ad/ay,WiGig: 60 GHz)

Moving to higher frequencies ...

- 5G in Greece: 700 MHz, 2 GHz, 3.4-3.8 GHz, 26 GHz
 - 3G/4G bands: 800 MHz, 1.8 GHz, 2.1 GHz, 2.6 GHz
- mm-wave: 26-300 GHz (802.11ad/ay,WiGig: 60 GHz)

11

Uplink versus downlink

Mobile network evolution

- 1st Generation
 - Analogue mobile phone (e.g., AMPS, NMT)
 - Low quality speech, low speed data 2.4 kbps
- 2nd Generation
 - Digital mobile (e.g., GSM)
 - Digital voice, low speed data (9.6 kbps)
- Generation 2.5 [2.5G]
 - Packet switching data, Internet access
 - e.g., GPRS
 - higher data-rates
 - ◆ 10...171.2 kbps, in theory, ~40 kbps in practice

19

Mobile network evolution (cont)

- 3rd Generation [3G, 3G+]
 - (digital) multimedia (e.g., UMTS)
 - ◆ Higher data-rate (144 kb/s ... 2 Mb/s, in theory)
 - HSDPA, HSUPA, HSPA, LTE
 - Interoperation with 2G and national roaming
- 4th Generation [4G]
 - Seamless High-speed wireless Internet access (e.g., LTE-Advanced, IEEE 802.11n, mobile WiMAX, 802.16e)
 - IP based communication (11 ... 54 Mb/s)
 - Short range, high capacity Wireless Internet Access (1 Gb/s)
 - "virtual reality" connection to the Internet
- 5th Generation [5G]
 - Heterogeneous small cells
 - mmWave
 - Network slicing, Network Function Virtualization (NFV)

Wireless Evolution

- Unlicensed spectrum
- WLANs 802.11 (Wi-Fi):
 - 802.11b, 802.11g/a, 802.11n/Wi-Fi 4 (~150-300Mbps),
 - 802.11ac/Wi-Fi 5 (~300-900Mbps, max 5.4Gbps)
 - 802.11ax/Wi-Fi 6 (max 9.6Gbps) 2020
 - 802.11ad (WiGig, 60 GHz, up to 8Gbps)
 - 802.11ay (WiGig2, 60 GHz, up to 176 Gbps)
 - 802.11ah (700 MHz), 802.11af (TV white spaces), long range communication
- Metropolitan/community wireless networks, opportunistic device-to-device communication

21

Wired vs. wireless

- wired: very low attenuation, no interference, low bit error probability, high deployment cost (digging)
- wireless: high attenuation (variable), interference (variable), high bit error probability (variable), low deployment cost

Wireless architectures

- Cellular
 - hierarchical RAN (Radio Access Network)
 - moving towards flat, peer-to-peer, mesh
- WLAN
 - local connectivity (until now)
 - dense deployments
- Wireless multihop
 - Ad Hoc: infrastructure-less
 - Wireless Mesh Networks: GateWays connecting to fixed network
- Sensor networks

27

5G flexibility

- 'Softwarisation' of the network
- NFV and SDN enabling flexibility in where functions are deployed and scaled
- CP/UP split decoupling of user plane traffic from control plane functions
- C-RAN removal of functionality from cell sites to consolidation point in the network
- MEC pushing Core Network functions and content ingress to cell sites

31

From coverage to capacity deployments

- Installation/Maintenance/Interference optimization is important
- Centralization necessary => Cloud RANs
- Intelligent necessary

RRU-BBU separation

- RRU (Radio Remote Unit): sends/receives signals (EM waves) through antenna $\,$
- BBU (BaseBand Unit): conversion between analog and digital signals

33

BBU centralization and pooling: Cloud RAN

BBU centralization:

Virtualization gains

- HW and SW totally decoupled
- Operator can dynamically allocate processing resources within a centralized baseband pool to different virtualized base stations and different air interface standards
- simpler inter-vendor interoperability
- cost reduction to manage, maintain, expand and upgrade base station

MEC: Content optimization Subscriber ID. cell load. link quality... RAN aware app MEC server Content network optimizer Source: ETSI

41

From **small cells** to **no cells**: **device-to-device** communication

 Constrained IoT devices (Things): limited/no connectivity, insecure channel

From **small cells** to **no cells**: **device-to-device** communication

- Constrained IoT devices (Things): limited/no connectivity, insecure channel
- Secure and trusted communication between disconnected IoT devices
 - Trusted = perform actions according to owner defined policies

