
NEAR-NEIGHBOR SEARCH

Applications

Shingling

Minhashing

Locality-Sensitive Hashing

NEAR-NEIGHBOR SEARCH

Slides adapted from Rajaraman and Ullman,

“Mining Massive Datasets”

http://infolab.stanford.edu/~ullman/mmds.html

Goals
3

 Many big-data mining problems can be expressed

as finding “similar” items:

 Pages/documents/emails with similar words, e.g., for

classification, plagiarism detection.

 Clustering of customers based on the products they buy

 NetFlix users with similar tastes in movies, for

recommendation systems.

News Aggregator
4

News sites News feed

R
a
n
k
e
d
 n

e
w

s

Recommendation Systems
5

How can I cluster my users based on the
movies they have watched?

E-shop Comparison
6

How similar

are they?

Hierarchical Clustering

a
b

c

d
e

a b c d e

f
f

h

h

g
g

i

i

Helpful abstraction
8

 Think of data as “Sets” of “Items”

 News article/document/e-mail: set of tokens/strings

 E-shop: set of products

 Netflix user: set of movies she watched

Problems
9

 How to construct these sets?

 How is similarity between sets defined?

 Already know the answer to this question!

 How to efficiently compute similarity between two
sets?

 Manage data volume, computation cost

 How to quickly locate similar sets on a datasets of
thousands/million entries?

◼ Avoid computation of similarity between sets that are not
similar

Running Example: Finding Similar

Documents
11

 Given a body of documents, e.g., the Web, find

pairs of docs that have a lot of text in common, e.g.:

 Mirror sites, or approximate mirrors.

◼ Don’t want to show both in a search.

 Plagiarism, including large quotations.

 Similar news articles at many news sites.

◼ Reflects importance of the news item.

Three Essential Techniques for Similarity

Testing
12

 Shingling : convert documents, emails, etc., to sets.

 Minhashing : convert large sets to short signatures,
while preserving similarity.

 Faster computation of similarity using signatures instead
of the original docs

 Locality-sensitive hashing : focus on pairs of
signatures likely to be similar.

 Use as an index to locate (quickly) similar docs

The Big Picture
13

Docu-
ment

The set
of strings
of length k
that appear
in the doc-
ument

Signatures :
short integer
vectors that
represent the
sets, and
reflect their
similarity

Locality-
sensitive
Hashing

Candidate
pairs :
those pairs
of signatures
that we need
to test for
similarity.

Comparing Documents
14

 What makes documents “similar”?

 Special cases are easy, e.g., identical documents, or

one document contained character-by-character in

another.

 General case, where many small pieces of one doc

appear out of order in another, is very hard.

Η χρησιμοποίηση δεδομένων στη λήψη σωστών, έγκυρων και
έγκαιρων αποφάσεων έχει αναχθεί σε «εκ των ουκ άνευ»
παράγοντα επιτυχίας για τις περισσότερες σύγχρονες επιχειρήσεις
και οργανισμούς……

k-shingle: sequence of k characters in a

document (q-gram)
16

Η_Χρη

_Χρησ

Χρησι

ρησιμ

ησιμο

σιμοπ

ιμοπο

μοποι

Working Assumption
18

 Documents that have lots of shingles in common have

similar text, even if the text appears in different

order.

 How to select k?

 If k is too small, most docs will seem similar

 If k is too large, most docs will seem dissimilar

 k = 5 is OK for short documents; k = 10 is better for

long documents.

Shingles: Compression Option
19

 Each shingle is a string of k characters

 May be easier to convert/compress them into

integers via a hashing function h()

Η_Χρη,

_Χρησ,

Χρησι,

ρησιμ,

ησιμο,

σιμοπ,

ιμοπο,

μοποι,…

h(s) {175,2816,91771,174,5,1882,…}s =

Note
20

 The min-hashing scheme described next can do this

conversion to integers while also preserving

similarity among sets (as will be explained)

MINHASHING

Data as Sparse Matrices

Jaccard Similarity Measure

Constructing Signatures

Basic Data Model: Sets
23

 Many similarity problems can be couched as

finding subsets of some universal set that have

large intersection.

 Examples include:

1. Documents represented by their sets of shingles (or

hashes of those shingles).

2. Similar customers or products.

From Sets to Boolean Matrices
24

 Rows = elements of the universal set.

 Columns = sets.

 1 in the row for element e and the column for set S

iff e is a member of S.

In Matrix Form (won’t be used in practice)
25

S T U V W

1 1 1 0 1 0

2 1 0 1 1 0

3 1 0 0 1 0

4 0 1 0 0 1

5 1 0 1 0 1

6 1 1 0 1 1

7 0 1 0 1 1

8 0 1 0 1 0

Documents

It
e
m

s
(s

h
in

g
le

s)

This row represents a
shingle (e.g. “Data_min”)

In Matrix Form
26

S T U V W

1 1 1 0 1 0

2 1 0 1 1 0

3 1 0 0 1 0

4 0 1 0 0 1

5 1 0 1 0 1

6 1 1 0 1 1

7 0 1 0 1 1

8 0 1 0 1 0

Documents

It
e
m

s
(s

h
in

g
le

s)
This column represents document T

In Matrix Form
27

S T U V W

1 1 1 0 1 0

2 1 0 1 1 0

3 1 0 0 1 0

4:Data_min 0 1 0 0 1

5 1 0 1 0 1

6 1 1 0 1 1

7 0 1 0 1 1

8 0 1 0 1 0

Documents

It
e
m

s
(s

h
in

g
le

s)

T contains shingle “Data_min”
(assume k=8)

Documents in Matrix Form
30

 Rows = shingles (or hashes of shingles).

 Columns = documents.

 1 in row r, column c iff document c has shingle r.

 This matrix has a very very very very very very

very very very large number of rows

 Expect the matrix to be sparse.

Aside
31

 We might not really represent the data by a

boolean matrix.

 Sparse matrices are usually better represented

by the list of places where there is a non-zero

value.

 E.g., movies rented by a customer, shingle-sets.

 But the matrix picture is conceptually useful.

Jaccard Similarity
33

 Remember: a column is the set of rows in which it

has 1.

 The (Jaccard) similarity of columns C1 and C2 =

Sim (C1,C2) = the ratio of the sizes of the

intersection and union of C1 and C2.

 Sim (C1,C2) = |C1C2|/|C1C2|.

Example: Jaccard Similarity
34

C1 C2

0 1

1 0

1 1 Sim (C1, C2) = 2/5 = 0.4 = 40%

0 0

1 1

0 1

0 0

*

*

*

*

*

*

*

Α
ν
τι

κ
εί

μ
εν

α
(s

h
in

g
le

s/
h
a
sh

-v
a
lu

e
s)

Notice that rows with 0 0 do not
affect the Jaccard similarity

Outline: Finding Similar Columns
35

1. Compute signatures of columns = small summaries of

columns.

2. Examine pairs of signatures to find similar signatures.

 Essential: similarities of signatures and columns are

related.

3. Optional: check that columns with similar signatures

are really similar.

➢ These methods can produce false negatives, and even

false positives (if the optional check is not made).

Warnings
36

1. Comparing all pairs of signatures may take too

much time, even if not too much space.

2. Assume 10000 documents (signatures)

◼ #pairs = 10000 * 9999/2 = 49,995,000

◼ 1msec for each test

◼ All comparisons will take ~14hours

 A job for Locality-Sensitive Hashing.

Signatures
37

 Key idea: “hash” each column C to a small

signature Sig (C), such that:

1. Sig (C) is small enough that we can fit a signature

in main memory for each column.

2. Sim (C1, C2) is approximately the same as the

“similarity” of Sig (C1) and Sig (C2).

Sim (C1, C2) = Sim(Sig(C1),Sig(C2))
~

An idea that doesn’t work
38

 Pick 100 rows at random and let the signature of

column C be the 100 bits of C in those rows.

 Because the matrix is sparse, many columns would

have 00. . .0 as a signature, yet have Jaccard

similarity 0, because their 1’s are in different rows.

39

 Given columns C1 and C2, rows may be classified as:

C1 C2

type a: 1 1

type b: 1 0

type c: 0 1

type d: 0 0

 Notation used: a = # rows of type a , etc.

 Note Sim(C1, C2) = a /(a +b +c).

Jaccard score
“ignores” these rows

Four types of rows for a pair of cols

Minhashing
40

 Imagine the rows permuted randomly.

 Define “minhash” function h (C) = the number of the

first (in the permuted order) row in which column C

has 1.

 Use several (e.g., 100) independent hash functions

to create a signature.

Minhashing Example
41

S1 S2 S3 S4

0101

0001

1010

1010

1010

1001

0101 3

4

7

6

1

2

5

Signatures

1312

Permutations S1 S2 S3 S4

1st row

2nd row

3rd row

Stop!

Minhashing Example
42

S1 S2 S3 S4

0101

0001

1010

1010

1010

1001

0101

Signatures

1312

5

7

6

3

1

2

4

1412

Permutations S1 S2 S3 S4

1st row

Minhashing Example
43

S1 S2 S3 S4

0101

0001

1010

1010

1010

1001

0101

Signatures

1312

1412

4

5

2

6

7

3

1

2121

Permutations S1 S2 S3 S4

Minhashing Example: All Signatures
44

S1 S2 S3 S4

0101

0001

1010

1010

1010

1001

0101 3

4

7

6

1

2

5

Signatures

1312

5

7

6

3

1

2

4

1412

4

5

2

6

7

3

1

2121

Permutations S1 S2 S3 S4

e.g. sig(S1)=[2,2,1]

Note signature is a list of
minhashes (not a set)

Surprising Property
45

 The probability that h(C1)=h(C2) is the same as

Sim(C1, C2)

 Both are
𝑎

𝑎+𝑏+𝑐

 Why?

 Look down columns C1 and C2 until we see a 1.

 If it’s a type-a row, then h(C1) = h(C2). If a type-b

or type-c row, then not.

 Thus, P[h(C1) = h(C2)] =
𝑎

𝑎+𝑏+𝑐

Estimating similarity from Signatures
46

 The similarity of signatures is the fraction of the rows

in which they agree.

 Remember, each row corresponds to a permutation or

“hash function.”

Signatures

1312

S1 S2 S3 S4

1412

2121

Sim(S1,S3) is
estimated as
1/3

X

X

Min Hashing – All estimates
47

Input matrix

0101

0001

1010

1010

1010

1001

0101 3

4

7

6

1

2

5

Signature matrix M

1312

5

7

6

3

1

2

4

1412

4

5

2

6

7

3

1

2121

Similarities:
1-3 2-4 1-2 3-4

Col/Col 0.50 0.75 0 0
Sig/Sig 0.33 1.00 0 0

Minhash Signatures
48

 Pick (say) 100 random permutations of the rows.

 Think of Sig(C) as a column vector.

 Let Sig(C)[i] =

according to the i th permutation, the number of the

first row that has a 1 in column C.

Implementation – (1)
49

 Suppose 1 billion rows.

 Hard to pick a random permutation from

1…billion.

 Representing a random permutation requires 1

billion entries.

 Accessing rows in permuted order leads to

thrashing.

Implementation – (2)
50

 A good approximation to permuting rows: pick

“100” hash functions.

 For each column c and each hash function hi ,

keep a “slot” M (i, c) for that minhash value.

Implementation – (3)
51

for each row r

for each column c

if c has 1 in row r

for each hash function hi do

if hi (r) is a smaller value than

M (i, c) then

M (i, c) := hi (r);

Example
52

 Assume 5 rows and h1(r)=(2r+1) mod 5

 h1(r) implies a “random” permutation of the rows

 Sig(C1)=2 (first “1” in the order implied by h1(r))

 To compute Sig(C1) we evaluate h1(r) for the rows

that contain “1 and keep the minimum value

Row C1 C2

1 1 0
2 0 1
3 1 1
4 1 0
5 0 1

h1(r)
3
0
2
4
1

Example
54

 Assume 5 rows and h1(r)=(2r+1) mod 5

 h1(r) implies a “random” permutation of the rows

 Sig(C1)=2 (first “1” in the order implied by h1(r))

 To compute Sig(C1) we evaluate h1(r) for the rows

that contain “1 and keep the minimum value

Row C1 C2

1 1 0
2 0 1
3 1 1
4 1 0
5 0 1

h1(r)
3
0
2
4
1

Sig(C1)=2
Sig(C2)=0

minimum hash value of
rows with “1” denotes
position of first “1”

Note that “row r” represents an item stored in the set,
thus we are essentially hashing the set elements

Example with 3 hash

functions
55

Row C1 C2

1 1 0
2 0 1
3 1 1
4 1 0
5 0 1

h(r) = r mod 5
g(r) = (2r+1) mod 5
z(r) = (3r+1) mod 5

h(1) = 1 1 -
g(1) = 3 3 -
z(1) =4 4 -
h(2) = 2 1 2
g(2) = 0 3 0
z(2) =2 4 2
h(3) = 3 1 2
g(3) = 2 2 0
z(3) = 0 0 0
h(4) = 4 1 2
g(4) = 4 2 0
z(4) = 3 0 0
h(5) = 0 1 0
g(5) = 1 2 0
z(5) = 1 0 0

Sig1 Sig2

Final outcome
56

Row C1 C2

1 1 0
2 0 1
3 1 1
4 1 0
5 0 1

Signatures:

C1 C2

1 0
2 0
0 0

Our estimate: 1/3
Actual similarity: 1/5

X

X

Minhash on Shingles
57

 Hash each shingle into an integer

 Keep minimum value

 Done!

Η_Χρη

_Χρησ

Χρησι

ρησιμ

ησιμο

σιμοπ

ιμοπο

μοποι

h(s) {175,2816,91771,174,5,1882,…}

Think of h(s) as a random permutation of the shingles

In other words….
58

 Have two sets A, B.

 Reorder items on both sets based on a hash
function.

 Keep the minimum value.

 Recall that the hash function “randomly” shuffles
the items in both sets.

 Probability of the min hashes being equal =
probability of the random permutation imposed
by the hash returns the same item at the top =
intersection over union = jaccard similarity.

Use multiple hash functions to obtain a

signature
59

 E.g. apply a family of (string) hash functions

Η_Χρη

_Χρησ

Χρησι

ρησιμ

ησιμο

σιμοπ

ιμοπο

μοποι

h1(s) {175,2816,91771,174,5,1882,…}

h2(s) {25,216,151,317,52,84,…}

h3(s) {6521,635,9002,412,884,…}

Doc:

Minhash(doc)=[5,25,412]

Implementation – (4)
60

 If data is stored row-by-row, then only one pass is
needed.

 If data is stored column-by-column

 E.g., data is a sequence of documents

represent it by (row-column) pairs and sort once by
row.

 Saves cost of computing hi(r) many times.

Additional Examples: Uses of

Minhashing
61

 Common pattern: looking for sets with a relatively

large intersection.

 Represent a customer, e.g., of Netflix, by the set of

movies they rented.

 Similar customers have a relatively large fraction

of their choices in common.

LOCALITY-SENSITIVE HASHING

Focusing on Similar Minhash Signatures

Other Applications Will Follow

Finding Similar Pairs
64

 Suppose we have, in main memory, data

representing a large number of objects.

 May be the objects themselves.

 May be signatures as in minhashing.

 We want to compare each to each, finding those

pairs that are sufficiently similar.

Candidate Generation From Minhash

Signatures
65

 Pick a similarity threshold s < 1

 A pair of columns c and d is a candidate pair if

their signatures agree in at least fraction s of the

rows

 I.e., M (i, c) = M (i, d) for at least fraction s values

of i

66

Signature matrix reminder

Matrix M

n hash functions

Sig(S):
signature for set S

hash function i

Sig(S,i)

signature for set S’

Sig(S’,i)

Prob[Sig(S’,i) == Sig(S,i)] = sim(S’,S)

Checking All Pairs is Hard
67

 While the signatures of all columns may fit in main

memory, comparing the signatures of all pairs of

columns is quadratic in the number of columns.

 Example: 106 columns implies 5*1011 comparisons.

 At 1 microsecond/comparison: 6 days.

Locality-Sensitive Hashing

 Partition columns of
signature matrix into
bands (mini signatures)

 Arrange that (only)
similar bands are likely
to hash to the same
bucket

 Candidate pairs are
those that hash (at least
once) to the same bucket

68

Overview Visualization

O
n
e
 h

a
sh

 ta
b
le

 p
e
r b

a
n
d

69

Partitioning into bands

Matrix Sig

r rows
per band

b bands

n = b*r hash functions

b mini-signatures

Partition into Bands – (2)
71

 Divide matrix M into b bands of r rows.

 For each band, hash its portion of each column to a

hash table with k buckets.

 Candidate column pairs are those that hash to the

same bucket for ≥ 1 band.

 Tune b and r to catch most similar pairs, but few

nonsimilar pairs.

72

Matrix M

r rows b bands

321 5 64 7

Hash Table Columns 2 and 6
are (almost certainly) identical.

Columns 6 and 7 are
surely different.

Simplifying Assumption
74

 There are enough buckets that columns are unlikely

to hash to the same bucket unless they are identical

in a particular band.

 Hereafter, we assume that “same bucket” means

“identical in that band.”

Example: Effect of Bands
75

 Suppose 100,000 columns.

 Signatures of 100 integers.

 Therefore, signatures take 100000*100 ≈ 40Mb.

 Want all 80%-similar pairs.

 4,999,950,000 pairs of signatures can take a while

to compare.

 Choose b=20 bands of r=5 integers/band.

Suppose S1, S2 are 80% Similar

Prob[Sig(S,i) == Sig(S’,i)] = sim(S,S’)=0,8
76

 We want all 80%-similar pairs.

 Assume 20 bands of 5 integers/band.

 Probability S1, S2 identical in one particular band:

 (0.8)5 = 0.328 (mini-signatures agree in all 5 digits)

 Probability S1, S2 are not similar in any of the 20 bands:

 (1-0.328)20 = 0.00035

◼ i.e., about 1/3000-th of the 80%-similar column pairs are false negatives.

 Probability S1, S2 are similar in at least one of the 20 bands:

 1-0.00035 = 0.99965

 So with 99.965% probability we will get them!

Suppose S1, S2 Only 20% Similar

(we do not want them in the result)
77

 Probability S1, S2 identical in any one particular band:

(0.2)5 = 0.00032

 Probability S1, S2 identical in ≥ 1 of 20 bands:

≤ 1-(1-0.00032)20=0.6%

 So with probability 0.6% we will get them (false positives)

 But will can still discard them if we make the optional test in

the end using the real sets

 False positives much lower for similarities << 20%.

 It becomes very unlikely that we will retrieve really

dissimilar sets via LSH

LSH Involves a Tradeoff
78

 Pick the number of minhashes, the number of bands,
and the number of rows per band to balance false
positives/negatives.

 Recall that space required by minhashes is O(b*r)

 More bands (increase b)→ fewer false negatives

 Larger bands (increase r) → fewer false positives

 Example: if we had fewer than 20 bands (increased
size of mini signatures), the number of false positives
would go down, but the number of false negatives
would go up.

Analysis of LSH – What We Want
79

Similarity s of two sets

Probability
of sharing
a bucket

t

No chance
if s < t

Probability
= 1 if s > t

Our desired similarity threshold

What One Band of One Row Gives

You
80

Similarity s of two sets

Probability
of sharing
a bucket

t

Remember:
probability of
equal hash-values
= similarity

Single hash signature

Prob[Sig(S,i) == Sig(S’,i)] = sim(S,S’)

What b Bands of r Rows Gives You
81

Similarity s of two sets

Probability
of sharing
a bucket

t

s r

All rows
of a band
are equal

1 -

Some row
of a band
unequal

()b

No bands
identical

1 -

At least
one band
identical

t ~ (1/b)1/r

Example: b = 20; r = 5
82

s 1-(1-sr)b

.2 .006

.3 .047

.4 .186

.5 .470

.6 .802

.7 .975

.8 .9996

t ≈ 0.5

This part of the area
above the curve =
probability of false
negatives

This part of the area
bellow the curve =
probability of false
positives

LSH Summary (Document Similarity)
83

 Tune to get almost all pairs with similar signatures

but eliminate most pairs that do not have similar

signatures.

 Check in main memory that candidate pairs

really do have similar signatures.

 Optional: In another pass through the data, check

that the remaining candidate pairs really

represent similar sets.

 This way we avoid false positives

