NEAR-NEIGHBOR SEARCH

Applications

Shingling
Minhashing
Locality-Sensitive Hashing

NEAR-NEIGHBOR SEARCH

Slides adapted from Rajaraman and Ullman,
"Mining Massive Datasets"
http://infolab.stanford.edu/~ullman/mmds.html

Goals

\square Many big-data mining problems can be expressed as finding "similar" items:
\square Pages/documents/emails with similar words, e.g., for classification, plagiarism detection.
\square Clustering of customers based on the products they buy
\square NetFlix users with similar tastes in movies, for recommendation systems.

News Aggregator

News sites

Recommendation Systems

How can I cluster my users based on the movies they have watched?

E-shop Comparison

Hierarchical Clustering

Helpful abstraction

\square Think of data as "Sets" of "Items"
\square News article/document/e-mail: set of tokens/strings
\square E-shop: set of products
\square Netflix user: set of movies she watched

Problems

\square How to construct these sets?
\square How is similarity between sets defined?
\square Already know the answer to this question!
\square How to efficiently compute similarity between two sets?
\square Manage data volume, computation cost
\square How to quickly locate similar sets on a datasets of thousands/million entries?

- Avoid computation of similarity between sets that are not similar

Running Example: Finding Similar Documents

\square Given a body of documents, e.g., the Web, find pairs of docs that have a lot of text in common, e.g.:
\square Mirror sites, or approximate mirrors.

- Don't want to show both in a search.
\square Plagiarism, including large quotations.
\square Similar news articles at many news sites.
- Reflects importance of the news item.

Three Essential Techniques for Similarity Testing

\square Shingling : convert documents, emails, etc., to sets.
\square Minhashing : convert large sets to short signatures, while preserving similarity.
\square Faster computation of similarity using signatures instead of the original docs
\square Locality-sensitive hashing : focus on pairs of signatures likely to be similar.
\square Use as an index to locate (quickly) similar docs

The Big Picture

Comparing Documents

\square What makes documents "similar"?
\square Special cases are easy, e.g., identical documents, or one document contained character-by-character in another.
\square General case, where many small pieces of one doc appear out of order in another, is very hard.

k-shingle: sequence of k characters in a document (q-gram)

 кaı opyavıбんoús......

$$
\begin{aligned}
& \text { H_X } \quad \text { п } \\
& \text { _Хрпб } \\
& \text { Хрпоı } \\
& \rho \eta \sigma ı \\
& \text { полио } \\
& \text { бוцоп } \\
& \text { ıропо } \\
& \text { нопоі }
\end{aligned}
$$

Working Assumption

\square Documents that have lots of shingles in common have similar text, even if the text appears in different order.

- How to select k?
\square If k is too small, most docs will seem similar
\square If k is too large, most docs will seem dissimilar
$\square k=5$ is OK for short documents; $k=10$ is better for long documents.

Shingles: Compression Option

\square Each shingle is a string of k characters
\square May be easier to convert/compress them into integers via a hashing function $h()$

$\{175,2816,91771,174,5,1882, \ldots\}$

Document is now a set of items (e.g. numbers)
\square The min-hashing scheme described next can do this conversion to integers while also preserving similarity among sets (as will be explained)

MINHASHING

Basic Data Model: Sets

Many similarity problems can be couched as finding subsets of some universal set that have large intersection.
\square Examples include:

1. Documents represented by their sets of shingles (or hashes of those shingles).
2. Similar customers or products.

From Sets to Boolean Matrices

\square Rows $=$ elements of the universal set.
\square Columns = sets.
$\square 1$ in the row for element e and the column for set S iff e is a member of S.

In Matrix Form (won't be used in practice)

Documents

		S	T	U	V	W	
	1	1	1	0	1	0	
	2	1	0	1	1	0	
$\frac{0}{0}$	3	1	0	0	1	0	
年	4	0	1	0	0	1	
$\stackrel{\varrho}{\underset{0}{0}}$	5	1	0	1	0	1	This row represents a
\square	6	1	1	0	1	1	
	7	0	1	0	1	1	
	8	0	1	0	1	0	

In Matrix Form

Documents

In Matrix Form

Documents

T contains shingle "Data_min" (assume $\mathrm{k}=8$)

Documents in Matrix Form

\square Rows $=$ shingles (or hashes of shingles).
\square Columns $=$ documents.
$\square 1$ in row r, column c iff document c has shingle r.
\square This matrix has a very very very very very very very very very large number of rows
\square Expect the matrix to be sparse.

Aside

\square We might not really represent the data by a boolean matrix.
\square Sparse matrices are usually better represented by the list of places where there is a non-zero value.
\square E.g., movies rented by a customer, shingle-sets.
\square But the matrix picture is conceptually useful.

Jaccard Similarity

\square Remember: a column is the set of rows in which it has 1.
\square The (Jaccard) similarity of columns C 1 and $\mathrm{C} 2=$ $\operatorname{Sim}(C 1, C 2)=$ the ratio of the sizes of the intersection and union of C 1 and C 2 .
$\square \operatorname{Sim}(C 1, C 2)=|C 1 \cap C 2| /|C 1 \cup C 2|$.

Example: Jaccard Similarity

	C_{1}	C_{2}			
	0	1		*	
§	1	0		*	
	1	1	*	*	$\operatorname{Sim}\left(C_{1}, C_{2}\right)=2 / 5=0.4=40 \%$
	0	0			
	1	1	*	*	
\downarrow	0	1		*	
	0	0			

Outline: Finding Similar Columns

Compute signatures of columns = small summaries of columns.
2. Examine pairs of signatures to find similar signatures.

- Essential: similarities of signatures and columns are related.

Optional: check that columns with similar signatures are really similar.

These methods can produce false negatives, and even false positives (if the optional check is not made).

Warnings

Comparing all pairs of signatures may take too much time, even if not too much space.
2. Assume 10000 documents (signatures)

- \#pairs = 10000 * 9999/2 = 49,995,000
- 1 msec for each test
- All comparisons will take ~ 1 hhours
\square A job for Locality-Sensitive Hashing.

Signatures

Key idea: "hash" each column C to a small signature Sig (C), such that:

1. $\operatorname{Sig}(\mathrm{C})$ is small enough that we can fit a signature in main memory for each column.
2. $\operatorname{Sim}\left(C_{1}, C_{2}\right)$ is approximately the same as the "similarity" of $\operatorname{Sig}\left(\mathrm{C}_{1}\right)$ and $\operatorname{Sig}\left(\mathrm{C}_{2}\right)$.

$\operatorname{Sim}\left(C_{1}, C_{2}\right) \cong \operatorname{Sim}\left(\operatorname{Sig}\left(C_{1}\right), \operatorname{Sig}\left(C_{2}\right)\right)$

An idea that doesn't work

\square Pick 100 rows at random and let the signature of column C be the 100 bits of C in those rows.
\square Because the matrix is sparse, many columns would have 00. . . 0 as a signature, yet have Jaccard similarity 0 , because their 1 's are in different rows.

Four types of rows for a pair of cols

\square Given columns C_{1} and C_{2}, rows may be classified as:

	C_{1}	C_{2}
type a:	1	1
type b:	1	0
type c:	0	1
type d:	0	0

\qquad
\square Notation used: $a=\#$ rows of type a, etc.
\square Note $\operatorname{Sim}\left(C_{1}, C_{2}\right)=a /(a+b+c)$.

Minhashing

\square Imagine the rows permuted randomly.
\square Define "minhash" function $h(C)=$ the number of the first (in the permuted order) row in which column C has 1.
\square Use several (e.g., 100) independent hash functions to create a signature.

Minhashing Example

Signatures

Permutations S1 S2 S3 S4

$\text { 3rd row } \rightarrow$	3	1	0	1	0
	4	1	0	0	1
	7	0	1	0	1
	6	0	1	0	1
${ }^{\text {stt row }}$ -	1	0	1	0	1
${ }^{2 n d}$ row \longrightarrow	2	\bigcirc	0	0	0
	5	1	0	1	0

S1 S2 S3 S4

2	1	3	1

Minhashing Example

Signatures
Permutations S1 S2 S3 S4

4			
2			
1			
3			
6			
7			
5			
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	0	0
1	0	1	0

2	1	3	1
2	1	4	1

Minhashing Example

Signatures
Permutations S1 S2 S3 S4

1
3
7
6
2
5
4
1
:---
1
0
0
0
1
1

S1 S2 S3 S4

2	1	3	1
2	1	4	1
1	2	1	2

Minhashing Example: All Signatures

Signatures
Permutations S1 S2 S3 S4

1	4	3	1	0	1	0
3	2	4	1	0	0	1
7	1	7	0	1	0	1
6	3	6	0	1	0	1
2	6	1	0	1	0	1
5	7	2	1	0	0	0
4	5	5	1	0	1	0

Surprising Property

\square The probability that $h\left(\mathrm{C}_{1}\right)=h\left(\mathrm{C}_{2}\right)$ is the same as $\operatorname{Sim}\left(C_{1}, C_{2}\right)$
\square Both are $\frac{a}{a+b+c}$
\square Why?
\square Look down columns C_{1} and C_{2} until we see a 1 .
\square If it's a type-a row, then $h\left(C_{1}\right)=h\left(C_{2}\right)$. If a type-b or type-c row, then not.
\square Thus, $\mathrm{P}\left[h\left(\mathrm{C}_{1}\right)=h\left(\mathrm{C}_{2}\right)\right]=\frac{a}{a+b+c}$

Estimating similarity from Signatures

The similarity of signatures is the fraction of the rows in which they agree.
\square Remember, each row corresponds to a permutation or "hash function."

Signatures
S1 S2 S3 S4

$\operatorname{Sim}(\mathrm{S} 1, \mathrm{~S} 3)$ is estimated as
$1 / 3$

Min Hashing - All estimates

Input matrix

1	4	3	1	0	1	0
3	2	4	1	0	0	1
7	1	7	0	1	0	1
6	3	6	0	1	0	1
2	6	1	0	1	0	1
5	7	2	1	0	0	0
4	5	5	1	0	1	0

Signature matrix M

Similarities:

	$1-3$	$2-4$	$1-2$	$3-4$
Col/Col	0.50	0.75	0	0
Sig/Sig	0.33	1.00	0	0

Minhash Signatures

\square Pick (say) 100 random permutations of the rows.
\square Think of $\operatorname{Sig}(C)$ as a column vector.
\square Let $\operatorname{Sig}(C)[i]=$
according to the i th permutation, the number of the first row that has a 1 in column C.

Implementation - (1)

\square Suppose 1 billion rows.
\square Hard to pick a random permutation from 1...billion.
\square Representing a random permutation requires 1 billion entries.
\square Accessing rows in permuted order leads to thrashing.

Implementation - (2)

A good approximation to permuting rows: pick " 100 " hash functions.

For each column c and each hash function h_{i}, keep a "slot" $M(i, c)$ for that minhash value.

Implementation - (3)

for each row r
for each column c
if c has 1 in row r
for each hash function h_{i} do
if $h_{i}(r)$ is a smaller value than
$M(i, c)$ then

$$
M(i, c):=h_{i}(r) ;
$$

Example

\square Assume 5 rows and $h_{1}(r)=(2 r+1) \bmod 5$
$\square h_{1}(r)$ implies a "random" permutation of the rows
$\square \operatorname{Sig}(\mathrm{Cl})=2$ (first " 1 " in the order implied by $h_{1}(r)$)
\square To compute $\operatorname{Sig}(\mathrm{Cl})$ we evaluate $h_{1}(r)$ for the rows that contain " 1 and keep the minimum value

Note that "row r" represents an item stored in the set, thus we are essentially hashing the set elements

Example

\square Assume 5 rows and $h_{1}(r)=(2 r+1) \bmod 5$
$\square h_{1}(r)$ implies a "random" permutation of the rows
$\square \operatorname{Sig}(\mathrm{Cl})=2$ (first " 1 " in the order implied by $h_{1}(r)$)
\square To compute Sig(Cl) we evaluate $h_{1}(r)$ for the rows that contain "1 and keep the minimum value
minimum hash value of rows with " 1 " denotes position of first "1"

$\operatorname{Sig}\left(C_{1}\right)=2$ $\mathrm{Sig}\left(\mathrm{C}_{2}\right)=0$

Example with 3 hash

$h(1)=1$	1	-
$g(1)=3$	3	-
$z(1)=4$	4	-
$h(2)=2$	1	2
$g(2)=0$	3	0
$z(2)=2$	4	2
$h(3)=3$	1	2
$g(3)=2$	2	0
$z(3)=0$	0	0
$h(4)=4$	1	2
$g(4)=4$	2	0
$z(4)=3$	0	0
$h(5)=0$	1	0
$g(5)=1$	2	0
$z(5)=1$	0	0

$$
\begin{aligned}
& h(r)=r \bmod 5 \\
& g(r)=(2 r+1) \bmod 5 \\
& z(r)=(3 r+1) \bmod 5
\end{aligned}
$$

Final outcome

Our estimate: $1 / 3$
Actual similarity: $1 / 5$

Minhash on Shingles

\square Hash each shingle into an integer
\square Keep minimum value
\square Done!

H_Xp
_Хрпб
Хрпбו
рпбı

$\{175,2816,91771,174,5,1882, \ldots\}$
поэцо
бוノоп
Think of $\mathrm{h}(\mathrm{s})$ as a random permutation of the shingles
џОПП
нопоו

In other words....

\square Have two sets A, B.
\square Reorder items on both sets based on a hash function.
\square Keep the minimum value.
\square Recall that the hash function "randomly" shuffles the items in both sets.
\square Probability of the min hashes being equal $=$ probability of the random permutation imposed by the hash returns the same item at the top $=$ intersection over union = jaccard similarity.

Use multiple hash functions to obtain a signature

\square E.g. apply a family of (string) hash functions

Doc:

H_X $\rho \eta$
_Хрпб
Хрпоь
$\rho \eta \sigma ı$
Пбוцо
бוцоп
џОПО
цопоІ
$\{175,2816,91771,174,5,1882, \ldots\}$
$\{25,216,151,317,52,84, \ldots\}$
$\{6521,635,9002,412,884, \ldots\}$

Minhash(doc)=[5,25,412]

Implementation - (4)

\square If data is stored row-by-row, then only one pass is needed.
\square If data is stored column-by-column

- E.g., data is a sequence of documents represent it by (row-column) pairs and sort once by row.
\square Saves cost of computing $h_{i}(r)$ many times.

Additional Examples: Uses of Minhashing

\square Common pattern: looking for sets with a relatively large intersection.
\square Represent a customer, e.g., of Netflix, by the set of movies they rented.
\square Similar customers have a relatively large fraction of their choices in common.

LOCALITY-SENSITIVE HASHING

Focusing on Similar Minhash Signatures
Other Applications Will Follow

Finding Similar Pairs

\square Suppose we have, in main memory, data representing a large number of objects.
\square May be the objects themselves.
\square May be signatures as in minhashing.
\square We want to compare each to each, finding those pairs that are sufficiently similar.

Candidate Generation From Minhash Signatures

\square Pick a similarity threshold $s<1$
\square A pair of columns c and d is a candidate pair if their signatures agree in at least fraction s of the rows
\square l.e., $M(i, c)=M(i, d)$ for at least fraction s values of i

Signature matrix reminder

Checking All Pairs is Hard

\square While the signatures of all columns may fit in main memory, comparing the signatures of all pairs of columns is quadratic in the number of columns.
\square Example: 10^{6} columns implies $5^{*} 10^{11}$ comparisons.
\square At 1 microsecond/comparison: 6 days.

Locality-Sensitive Hashing

Overview

\square Partition columns of signature matrix into bands (mini signatures)
\square Arrange that (only) similar bands are likely to hash to the same bucket
\square Candidate pairs are those that hash (at least once) to the same bucket

Visualization

Partitioning into bands

$n=b^{*} r$ hash functions

Partition into Bands - (2)

\square Divide matrix M into b bands of r rows.
\square For each band, hash its portion of each column to a hash table with k buckets.
\square Candidate column pairs are those that hash to the same bucket for ≥ 1 band.
\square Tune b and r to catch most similar pairs, but few nonsimilar pairs.

Simplifying Assumption

\square There are enough buckets that columns are unlikely to hash to the same bucket unless they are identical in a particular band.
\square Hereafter, we assume that "same bucket" means "identical in that band."

Example: Effect of Bands

\square Suppose 100,000 columns.
\square Signatures of 100 integers.
\square Therefore, signatures take 100000*100 $\approx 40 \mathrm{Mb}$.
\square Want all 80\%-similar pairs.
$\square 4,999,950,000$ pairs of signatures can take a while to compare.
\square Choose $b=20$ bands of $r=5$ integers/band.

Suppose S1, S2 are 80\% Similar
 $\operatorname{Prob}\left[\operatorname{Sig}(S, i)==\operatorname{Sig}\left(S^{\prime}, i\right)\right]=\operatorname{sim}\left(S, S^{\prime}\right)=0,8$

\square We want all 80\%-similar pairs.
\square Assume 20 bands of 5 integers/band.

- Probability S1, S2 identical in one particular band:
$\square(0.8)^{5}=0.328 \quad$ (mini-signatures agree in all 5 digits)
\square Probability S1, S2 are not similar in any of the 20 bands:
- ($1-0.328)^{20}=0.00035$
- i.e., about $1 / 3000-$ th of the 80%-similar column pairs are false negatives.
\square Probability S1, S2 are similar in at least one of the 20 bands:
- 1-0.00035 $=0.99965$
- So with 99.965% probability we will get them!

Suppose S 1, S2 Only 20\% Similar (we do not want them in the result)

\square Probability S1, S2 identical in any one particular band: $(0.2)^{5}=0.00032$
\square Probability S1, S2 identical in ≥ 1 of 20 bands: $\leq 1-(1-0.00032)^{20}=0.6 \%$
\square So with probability 0.6% we will get them (false positives)
\square But will can still discard them if we make the optional test in the end using the real sets
\square False positives much lower for similarities $\ll 20 \%$.

- It becomes very unlikely that we will retrieve really dissimilar sets via LSH

LSH Involves a Tradeoff

\square Pick the number of minhashes, the number of bands, and the number of rows per band to balance false positives/negatives.
\square Recall that space required by minhashes is $\mathrm{O}\left(\mathrm{b}^{*} r\right)$
\square More bands (increase b) \rightarrow fewer false negatives
\square Larger bands (increase r) \rightarrow fewer false positives
\square Example: if we had fewer than 20 bands (increased size of mini signatures), the number of false positives would go down, but the number of false negatives would go up.

Analysis of LSH - What We Want

Similarity s of two sets

What One Band of One Row Gives

You

Similarity s of two sets

What b Bands of r Rows Gives You

Similarity s of two sets

Example: b = 20; r = 5

LSH Summary (Document Similarity)

\square Tune to get almost all pairs with similar signatures but eliminate most pairs that do not have similar signatures.
\square Check in main memory that candidate pairs really do have similar signatures.
\square Optional: In another pass through the data, check that the remaining candidate pairs really represent similar sets.
\square This way we avoid false positives

