# NEAR-NEIGHBOR SEARCH

Applications Shingling Minhashing Locality-Sensitive Hashing

# NEAR-NEIGHBOR SEARCH

Slides adapted from Rajaraman and Ullman, "Mining Massive Datasets" http://infolab.stanford.edu/~ullman/mmds.html

# Goals

- Many big-data mining problems can be expressed as finding "similar" items:
  - Pages/documents/emails with similar words, e.g., for classification, plagiarism detection.
  - Clustering of customers based on the products they buy
  - NetFlix users with similar tastes in movies, for recommendation systems.

# News Aggregator

#### 4















# **Recommendation Systems**

5

How can I cluster my users based on the movies they have watched?





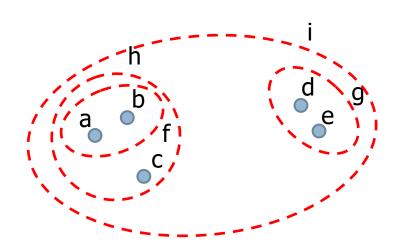
# **E-shop Comparison**

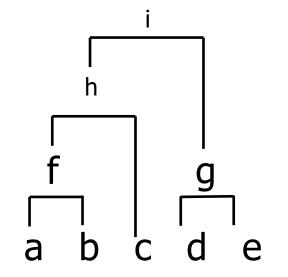


Καλάθι 🔿

89,00€

# **Hierarchical Clustering**





# Helpful abstraction

- 8
- □ Think of data as "Sets" of "Items"
  - News article/document/e-mail: set of tokens/strings
  - E-shop: set of products
  - Netflix user: set of movies she watched

#### Problems

- □ How to construct these sets?
- How is similarity between sets defined?
  - Already know the answer to this question!
- How to efficiently compute similarity between two sets?
  - Manage data volume, computation cost
- How to quickly locate similar sets on a datasets of thousands/million entries?
  - Avoid computation of similarity between sets that are not similar

# Running Example: Finding Similar Documents

- Given a body of documents, e.g., the Web, find pairs of docs that have a lot of text in common, e.g.:
  - Mirror sites, or approximate mirrors.

11

- Don't want to show both in a search.
- Plagiarism, including large quotations.
- Similar news articles at many news sites.
  - Reflects importance of the news item.

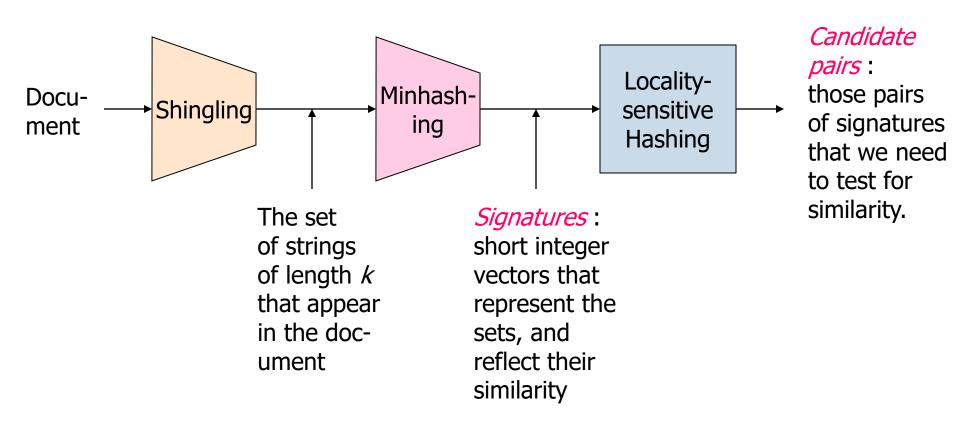
# Three Essential Techniques for Similarity Testing

□ Shingling : convert documents, emails, etc., to sets.

12

- Minhashing : convert large sets to short signatures, while preserving similarity.
  - Faster computation of similarity using signatures instead of the original docs
- Locality-sensitive hashing : focus on pairs of signatures likely to be similar.
  - Use as an index to locate (quickly) similar docs

# The Big Picture



# **Comparing Documents**

- **14**
- What makes documents "similar"?
- Special cases are easy, e.g., identical documents, or one document contained character-by-character in another.
- General case, where many small pieces of one doc appear out of order in another, is very hard.

# k-shingle: sequence of k characters in a document (q-gram)

Η χρησιμοποίηση δεδομένων στη λήψη σωστών, έγκυρων και έγκαιρων αποφάσεων έχει αναχθεί σε «εκ των ουκ άνευ» παράγοντα επιτυχίας για τις περισσότερες σύγχρονες επιχειρήσεις και οργανισμούς.....

Η\_Χρη

16

\_Χρησ

Χρησι

ρησιμ

ησιμο

σιμοπ

ιμοπο

μοποι

# Working Assumption

- 18
- Documents that have lots of shingles in common have similar text, even if the text appears in different order.
- □ How to select k?
  - If k is too small, most docs will seem similar
  - If k is too large, most docs will seem dissimilar
  - k = 5 is OK for short documents; k = 10 is better for long documents.

# Shingles: Compression Option

19

- Each shingle is a string of k characters
- May be easier to convert/compress them into integers via a hashing function h()



#### Note

The min-hashing scheme described next can do this conversion to integers while also preserving similarity among sets (as will be explained)

# MINHASHING

Data as Sparse Matrices

accard Similarity Measure

Constructing Signatures

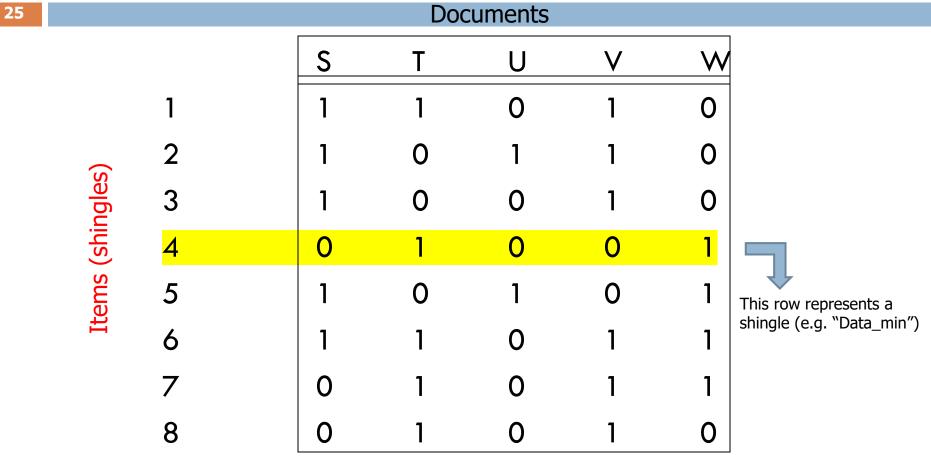
# **Basic Data Model: Sets**

- 23
- Many similarity problems can be couched as finding subsets of some universal set that have large intersection.
- Examples include:
  - Documents represented by their sets of shingles (or hashes of those shingles).
  - 2. Similar customers or products.

#### From Sets to Boolean Matrices

- $\square$  Rows = elements of the universal set.
- $\Box$  Columns = sets.
- 1 in the row for element e and the column for set S iff e is a member of S.

#### In Matrix Form (won't be used in practice)



# In Matrix Form

26

This column represents document T

Documents

|                  |   | S | Т | U | l l | $\checkmark$ | W |
|------------------|---|---|---|---|-----|--------------|---|
| Items (shingles) | 1 | 1 | 1 | 0 |     | 1            | 0 |
|                  | 2 | 1 | 0 | 1 |     | 1            | 0 |
|                  | 3 | 1 | 0 | 0 |     | 1            | 0 |
|                  | 4 | 0 | 1 | 0 | (   | C            | 1 |
|                  | 5 | 1 | 0 | 1 | (   | C            | 1 |
|                  | 6 | 1 | 1 | 0 | ,   | 1            | 1 |
|                  | 7 | 0 | 1 | 0 |     | 1            | 1 |
|                  | 8 | 0 | 1 | 0 |     | 1            | 0 |

# In Matrix Form

Items (shingles)

Documents S Т U V W  $\mathbf{O}$  $\mathbf{O}$ 4:Data\_min  $\mathbf{O}$  $\mathbf{O}$ 

> T contains shingle "Data\_min" (assume k=8)

# **Documents in Matrix Form**

- $\square$  Rows = shingles (or hashes of shingles).
- $\Box$  Columns = documents.
- $\square$  1 in row r, column c iff document c has shingle r.
- - Expect the matrix to be sparse.

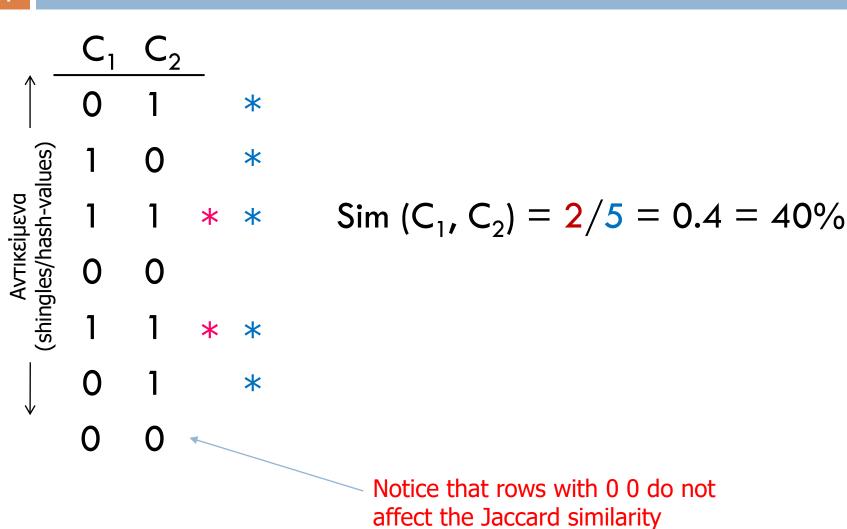
#### Aside

- We might not really represent the data by a boolean matrix.
- Sparse matrices are usually better represented by the list of places where there is a non-zero value.
  - E.g., movies rented by a customer, shingle-sets.
- □ But the matrix picture is conceptually useful.

# Jaccard Similarity

- Remember: a column is the set of rows in which it has 1.
- The (Jaccard) similarity of columns C1 and C2 = Sim (C1,C2) = the ratio of the sizes of the intersection and union of C1 and C2.
   Sim (C1,C2) = |C1∩C2|/|C1∪C2|.

# **Example:** Jaccard Similarity



# **Outline:** Finding Similar Columns

- Compute signatures of columns = small summaries of columns.
- 2. Examine pairs of signatures to find similar signatures.
  - Essential: similarities of signatures and columns are related.
- 3. Optional: check that columns with similar signatures are really similar.
- These methods can produce false negatives, and even false positives (if the optional check is not made).

# Warnings

- Comparing all pairs of signatures may take too much time, even if not too much space.
- 2. Assume 10000 documents (signatures)
  - #pairs = 10000 \* 9999/2 = 49,995,000
  - 1msec for each test
  - All comparisons will take ~14hours
  - A job for Locality-Sensitive Hashing.

### Signatures

- Key idea: "hash" each column C to a small signature Sig (C), such that:
  - 1. Sig (C) is small enough that we can fit a signature in main memory for each column.
  - 2. Sim  $(C_1, C_2)$  is approximately the same as the "similarity" of Sig  $(C_1)$  and Sig  $(C_2)$ .

Sim  $(C_1, C_2) \cong Sim(Sig(C_1), Sig(C_2))$ 

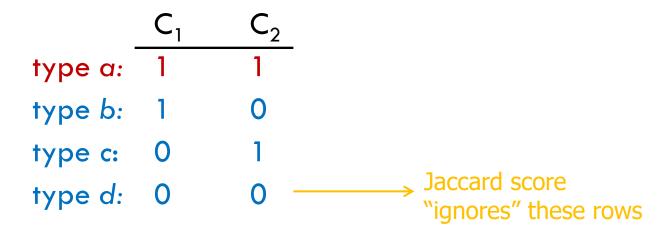
#### An idea that doesn't work

- Pick 100 rows at random and let the signature of column C be the 100 bits of C in those rows.
- Because the matrix is sparse, many columns would have 00...0 as a signature, yet have Jaccard similarity 0, because their 1's are in different rows.

#### Four types of rows for a pair of cols

39

 $\square$  Given columns C<sub>1</sub> and C<sub>2</sub>, rows may be classified as:



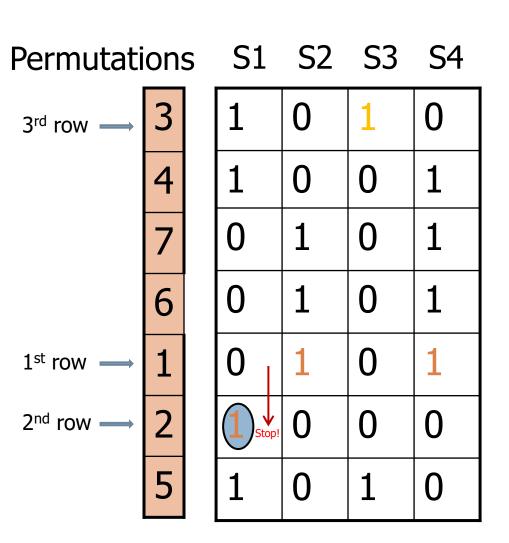
Notation used: a = # rows of type a , etc.
 Note Sim(C<sub>1</sub>, C<sub>2</sub>) = a /(a +b +c).

# Minhashing

- □ Imagine the rows permuted randomly.
- Define "minhash" function h (C) = the number of the first (in the permuted order) row in which column C has 1.
- Use several (e.g., 100) independent hash functions to create a signature.

# Minhashing Example

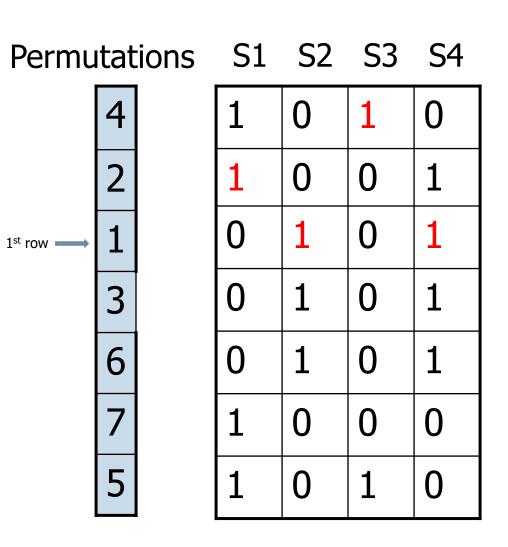




Signatures S1 S2 S3 S4 2 1 3 1

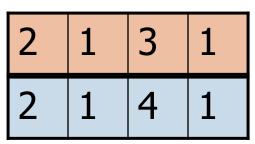
# Minhashing Example





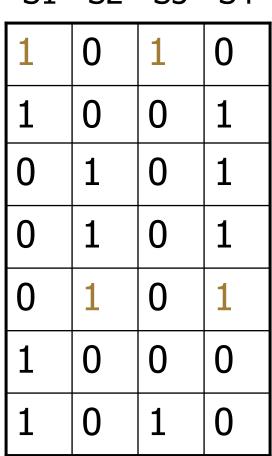
Signatures

S1 S2 S3 S4



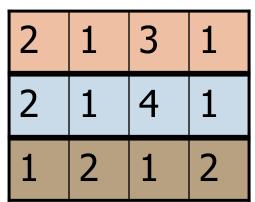
# Minhashing Example

Permutations S1 S2 S3 S4



Signatures

S1 S2 S3 S4



### Minhashing Example: All Signatures

 $\mathbf{O}$ 

()

Signatures

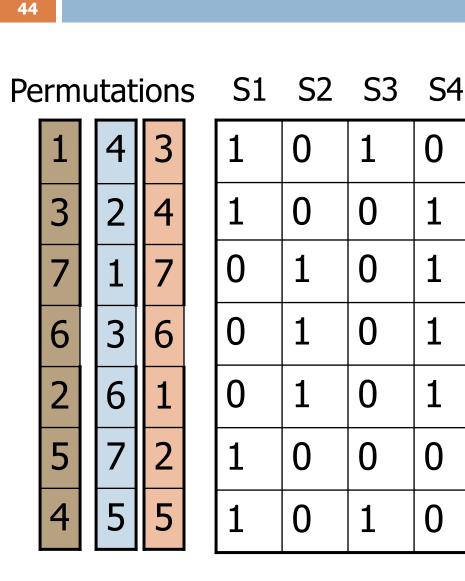
Note signature is a **list** of

minhashes (not a set)

<u>S</u>1

e.g. sig(S1) = [2, 2, 1]

S2 S3 S4



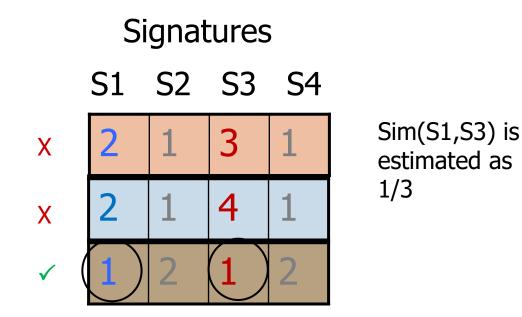
#### Surprising Property

- The probability that h(C<sub>1</sub>)=h(C<sub>2</sub>) is the same as Sim(C<sub>1</sub>, C<sub>2</sub>)
   Both are a/(a+b+c)
- □ Why?
  - **D** Look down columns  $C_1$  and  $C_2$  until we see a 1.
  - If it's a type-a row, then  $h(C_1) = h(C_2)$ . If a type-b or type-c row, then not.

$$\square \text{ Thus, } P[h(C_1) = h(C_2)] = \frac{a}{a+b+c}$$

# Estimating similarity from Signatures

- The similarity of signatures is the fraction of the rows in which they agree.
  - Remember, each row corresponds to a permutation or "hash function."



#### Min Hashing – All estimates

| 4 | 2 |  |
|---|---|--|
|   |   |  |
|   |   |  |

| Input matrix |   |   |  |   | Signature matrix M |   |   |                    |                    |    |           |                 |                 |
|--------------|---|---|--|---|--------------------|---|---|--------------------|--------------------|----|-----------|-----------------|-----------------|
| 1            | 4 | 3 |  | 1 | 0                  | 1 | 0 |                    | 2                  | 1  | 3         | 1               |                 |
| 3            | 2 | 4 |  | 1 | 0                  | 0 | 1 |                    | 2                  | 1  | 4         | 1               |                 |
| 7            | 1 | 7 |  | 0 | 1                  | 0 | 1 |                    | 1                  | 2  | 1         | 2               |                 |
| 6            | 3 | 6 |  | 0 | 1                  | 0 | 1 |                    |                    |    |           |                 |                 |
| 2            | 6 | 1 |  | 0 | 1                  | 0 | 1 | Similari           |                    |    |           |                 |                 |
| 5            | 7 | 2 |  | 1 | 0                  | 0 | 0 | <br>  Col/Col      | <u>1-3</u><br>0.50 |    | -4<br>.75 | <u>1-2</u><br>0 | <u>3-4</u><br>0 |
| 4            | 5 | 5 |  | 1 | 0                  | 1 | 0 | Col/Col<br>Sig/Sig | 0.33               | 1. | 00        | 0               | 0               |

# Minhash Signatures

- Pick (say) 100 random permutations of the rows.
- $\Box$  Think of Sig(C) as a column vector.
- Let Sig(C)[i] =
  - according to the *i* th permutation, the number of the first row that has a 1 in column C.

# Implementation -(1)

- Suppose 1 billion rows.
- Hard to pick a random permutation from 1...billion.
- Representing a random permutation requires 1 billion entries.
- Accessing rows in permuted order leads to thrashing.

# Implementation -(2)

- A good approximation to permuting rows: pick
   "100" hash functions.
- For each column c and each hash function  $h_i$ , keep a "slot" M(i, c) for that minhash value.

# Implementation – (3)

for each row r

for each column c
 if c has 1 in row r
 for each hash function h<sub>i</sub> do
 if h<sub>i</sub>(r) is a smaller value than
 M(i, c) then

$$M(i, c) := h_i(r);$$

#### Example

- □ Assume 5 rows and  $h_1(r)=(2r+1) \mod 5$ 
  - $\square$  h<sub>1</sub>(r) implies a "random" permutation of the rows
- □ Sig(C1)=2 (first "1" in the order implied by  $h_1(r)$ )
- To compute Sig(C1) we evaluate h<sub>1</sub>(r) for the rows that contain "1 and keep the minimum value

$$\begin{array}{c|ccccc} h_1(r) \ \text{Row} & \begin{array}{ccccc} C_1 & C_2 \\ \hline 3 & 1 & 1 & 0 \\ 0 & 2 & 0 & 1 \\ \hline 2 & 3 & 1 & 1 \\ \hline 4 & 4 & 1 & 0 \\ 1 & 5 & 0 & 1 \end{array}$$

Note that "row r" represents an item stored in the set, thus we are essentially hashing the set elements

#### Example

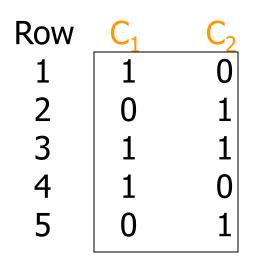
- □ Assume 5 rows and  $h_1(r) = (2r+1) \mod 5$ 
  - $\square$  h<sub>1</sub>(r) implies a "random" permutation of the rows
- □ Sig(C1)=2 (first "1" in the order implied by  $h_1(r)$ )
- To compute Sig(C1) we evaluate h<sub>1</sub>(r) for the rows that contain "1 and keep the minimum value

minimum hash value of rows with "1" denotes position of first "1"

$$Sig(C_1)=2$$
  
 $Sig(C_2)=0$ 

| Example with 3 hash                                                           |                      |      |      |  |  |  |  |  |  |
|-------------------------------------------------------------------------------|----------------------|------|------|--|--|--|--|--|--|
| functions                                                                     |                      | Sig1 | Sig2 |  |  |  |  |  |  |
|                                                                               | h(1) = 1             | 1    | -    |  |  |  |  |  |  |
|                                                                               | g(1) = 1<br>g(1) = 3 | 3    | -    |  |  |  |  |  |  |
| Row $C_1$ $C_2$                                                               | z(1) =4              | 4    | -    |  |  |  |  |  |  |
| $\begin{array}{c c} 1 & 1 & 0 \end{array}$                                    | h(2) = 2             | 1    | 2    |  |  |  |  |  |  |
| 2 0 1                                                                         | g(2) = 0             | 3    | 0    |  |  |  |  |  |  |
| $\begin{vmatrix} 2 \\ 3 \end{vmatrix}$ $\begin{vmatrix} 3 \\ 1 \end{vmatrix}$ | z(2) =2              | 4    | 2    |  |  |  |  |  |  |
| 4 1 0                                                                         | <i>h</i> (3) = 3     | 1    | 2    |  |  |  |  |  |  |
| 5 0 1                                                                         | <i>g</i> (3) = 2     | 2    | 0    |  |  |  |  |  |  |
|                                                                               | z(3) = 0             | 0    | 0    |  |  |  |  |  |  |
|                                                                               | $\dot{h}(4) = 4$     | 1    | 2    |  |  |  |  |  |  |
| $h(r) = r \mod 5$                                                             | <i>g</i> (4) = 4     | 2    | 0    |  |  |  |  |  |  |
| $g(r) = (2r+1) \mod 5$                                                        | z(4) = 3             | 0    | 0    |  |  |  |  |  |  |
| $z(r) = (3r+1) \mod 5$                                                        | h(5) = 0             | 1    | 0    |  |  |  |  |  |  |
|                                                                               | <i>g</i> (5) = 1     | 2    | 0    |  |  |  |  |  |  |
|                                                                               | z(5) = 1             | 0    | 0    |  |  |  |  |  |  |

#### **Final outcome**



Signatures:

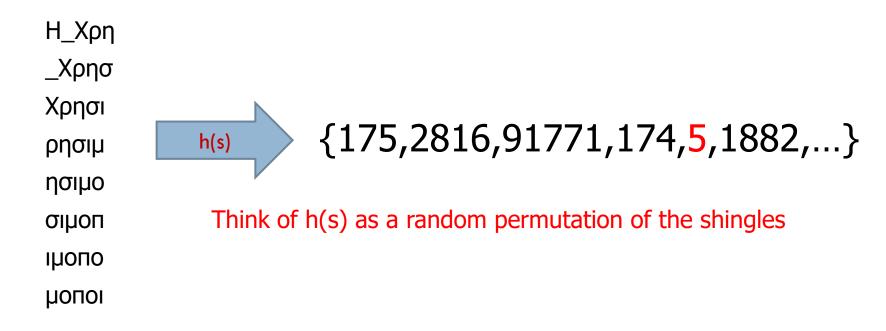
 $\begin{array}{cccc}
C_1 & C_2 \\
1 & 0 & X \\
2 & 0 & X
\end{array}$  $C_2$ 0  $\checkmark$ 

0

Our estimate: 1/3 Actual similarity: 1/5

### Minhash on Shingles

- Hash each shingle into an integer
- Keep minimum value
  - Done!

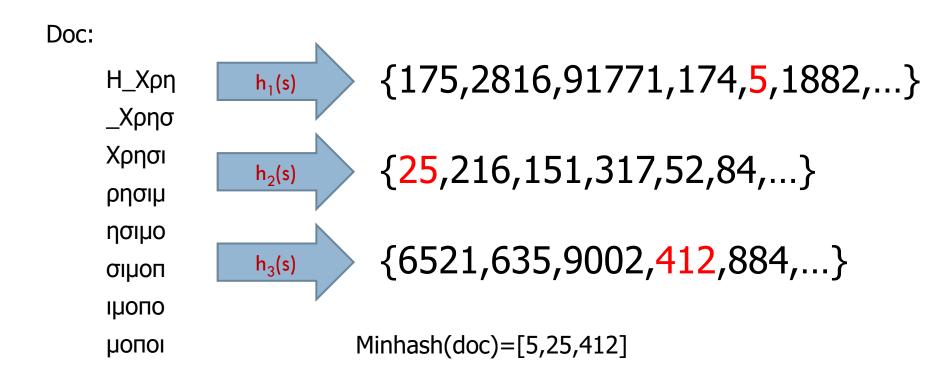


#### In other words....

- □ Have two sets A, B.
- Reorder items on both sets based on a hash function.
- $\square$  Keep the minimum value.
- Recall that the hash function "randomly" shuffles the items in both sets.
- Probability of the min hashes being equal = probability of the random permutation imposed by the hash returns the same item at the top = intersection over union = jaccard similarity.

# Use multiple hash functions to obtain a signature

E.g. apply a family of (string) hash functions



## Implementation -(4)

- If data is stored row-by-row, then only one pass is needed.
- □ If data is stored column-by-column
  - E.g., data is a sequence of documents represent it by (row-column) pairs and sort once by row.
  - Saves cost of computing  $h_i(r)$  many times.

# Additional Examples: Uses of Minhashing

- Common pattern: looking for sets with a relatively large intersection.
- Represent a customer, e.g., of Netflix, by the set of movies they rented.
- Similar customers have a relatively large fraction of their choices in common.

#### LOCALITY-SENSITIVE HASHING

Focusing on Similar Minhash Signatures Other Applications Will Follow

#### Finding Similar Pairs

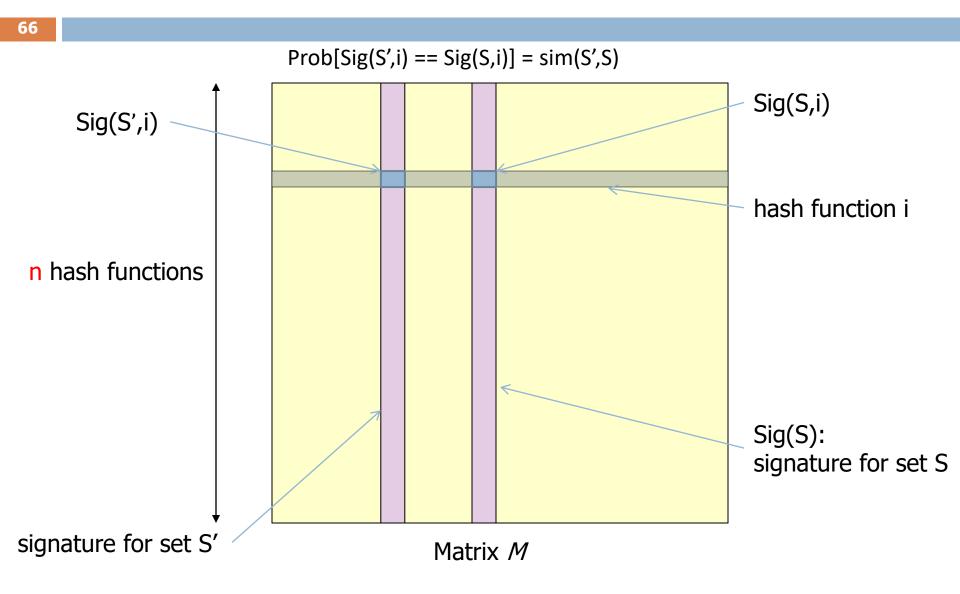
- Suppose we have, in main memory, data representing a large number of objects.
  - May be the objects themselves.
  - May be signatures as in minhashing.
- We want to compare each to each, finding those pairs that are sufficiently similar.

# Candidate Generation From Minhash Signatures

- $\square$  Pick a similarity threshold s < 1
- A pair of columns c and d is a candidate pair if their signatures agree in at least fraction s of the rows

I.e., M (i, c) = M (i, d) for at least fraction s values of i

#### Signature matrix reminder



#### Checking All Pairs is Hard

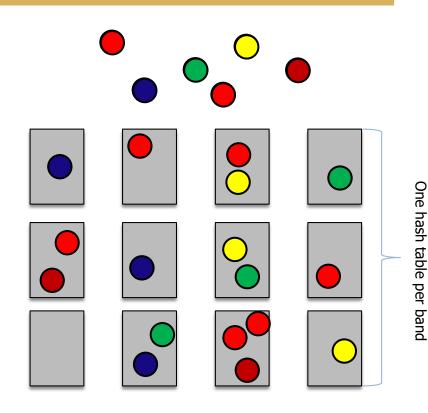
- 67
- While the signatures of all columns may fit in main memory, comparing the signatures of all pairs of columns is quadratic in the number of columns.
- $\square$  Example: 10<sup>6</sup> columns implies 5\*10<sup>11</sup> comparisons.
- □ At 1 microsecond/comparison: 6 days.

### Locality-Sensitive Hashing

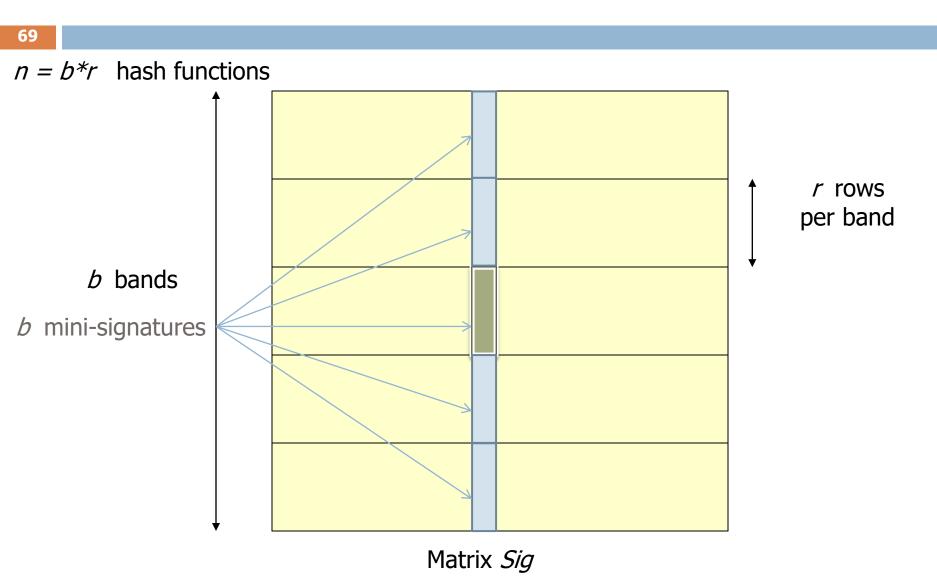
#### **Overview**

- Partition columns of signature matrix into bands (mini signatures)
- Arrange that (only) similar bands are likely to hash to the same bucket
- Candidate pairs are those that hash (at least once) to the same bucket

#### Visualization

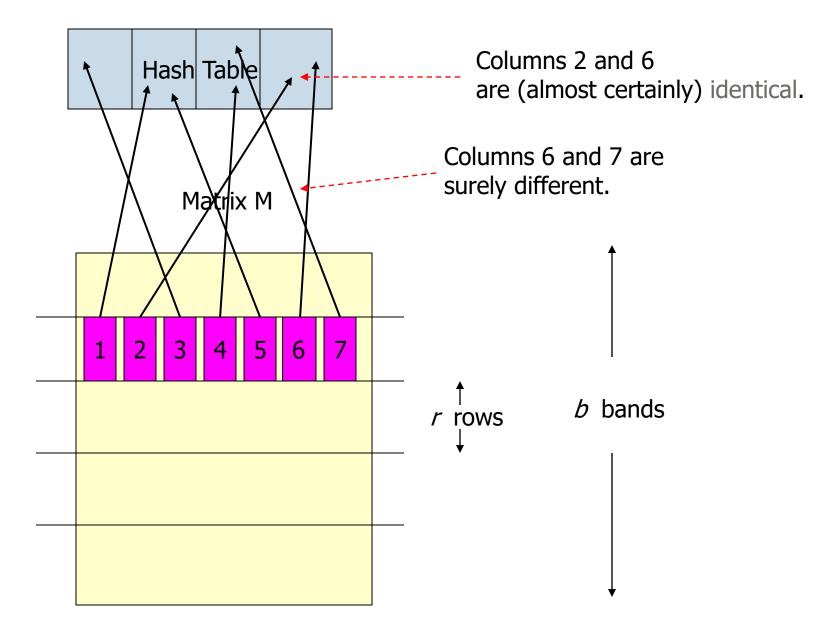


#### Partitioning into bands



# Partition into Bands – (2)

- Divide matrix *M* into *b* bands of *r* rows.
- For each band, hash its portion of each column to a hash table with k buckets.
- □ Candidate column pairs are those that hash to the same bucket for  $\geq$  1 band.
- Tune b and r to catch most similar pairs, but few nonsimilar pairs.



#### Simplifying Assumption

- There are enough buckets that columns are unlikely to hash to the same bucket unless they are identical in a particular band.
- Hereafter, we assume that "same bucket" means "identical in that band."

#### **Example:** Effect of Bands

- □ Suppose 100,000 columns.
- □ Signatures of 100 integers.
- $\square$  Therefore, signatures take 100000\*100  $\approx$  40Mb.
- Want all 80%-similar pairs.
- 4,999,950,000 pairs of signatures can take a while to compare.
- □ Choose b=20 bands of r=5 integers/band.

#### Suppose S1, S2 are 80% Similar

Prob[Sig(S,i) == Sig(S',i)] = sim(S,S')=0,8

- 76
- We want all 80%-similar pairs.
- □ Assume 20 bands of 5 integers/band.
- Probability S1, S2 identical in one particular band:
  - $(0.8)^5 = 0.328$  (mini-signatures agree in all 5 digits)
- Probability S1, S2 are not similar in any of the 20 bands:
  - $\square (1-0.328)^{20} = 0.00035$ 
    - i.e., about 1/3000-th of the 80%-similar column pairs are false negatives.
- Probability S1, S2 are similar in at least one of the 20 bands:
  - $\square 1-0.00035 = 0.99965$
  - So with 99.965% probability we will get them!

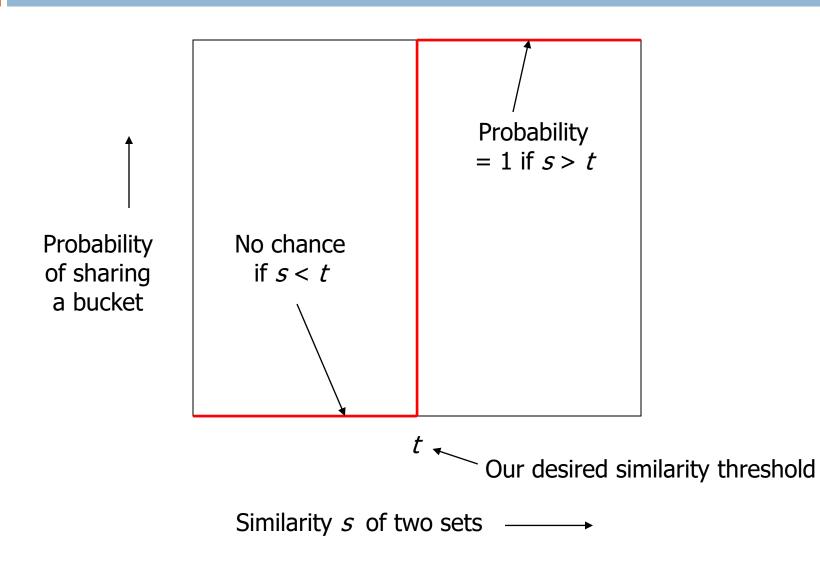
# Suppose S1, S2 Only 20% Similar (we do not want them in the result)

- Probability S1, S2 identical in any one particular band:
   (0.2)<sup>5</sup> = 0.00032
- □ Probability S1, S2 identical in  $\ge 1$  of 20 bands:  $\le 1 - (1 - 0.00032)^{20} = 0.6\%$ 
  - So with probability 0.6% we will get them (false positives)
  - But will can still discard them if we make the optional test in the end using the real sets
- $\Box$  False positives much lower for similarities << 20%.
  - It becomes very unlikely that we will retrieve really dissimilar sets via LSH

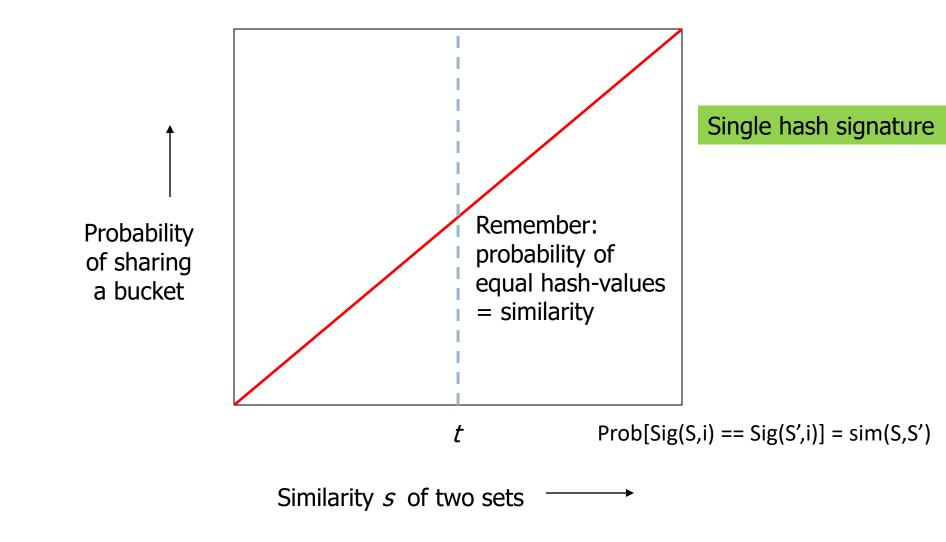
#### LSH Involves a Tradeoff

- Pick the number of minhashes, the number of bands, and the number of rows per band to balance false positives/negatives.
- Recall that space required by minhashes is O(b\*r)
   More bands (increase b) → fewer false negatives
   Larger bands (increase r) → fewer false positives
- Example: if we had fewer than 20 bands (increased size of mini signatures), the number of false positives would go down, but the number of false negatives would go up.

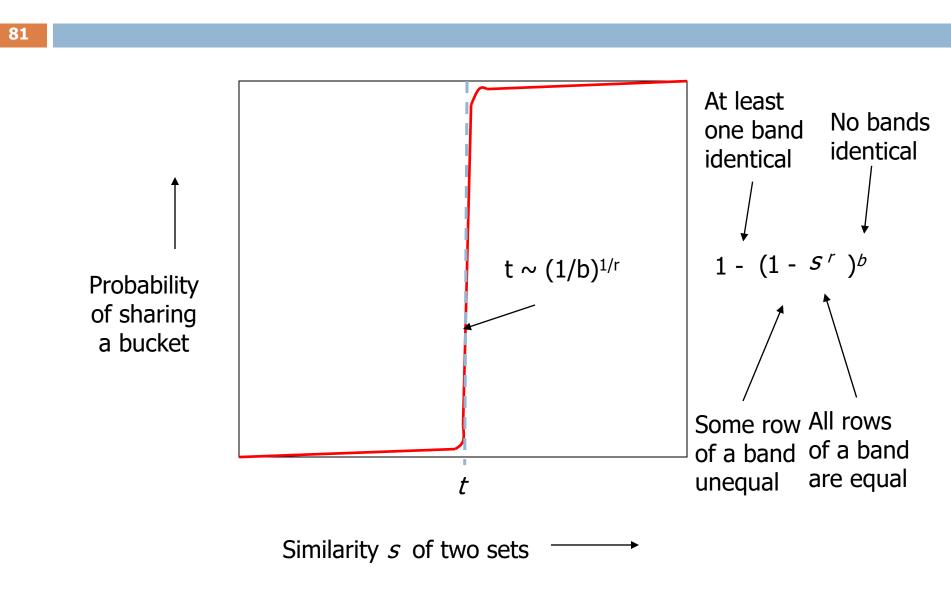
#### Analysis of LSH – What We Want



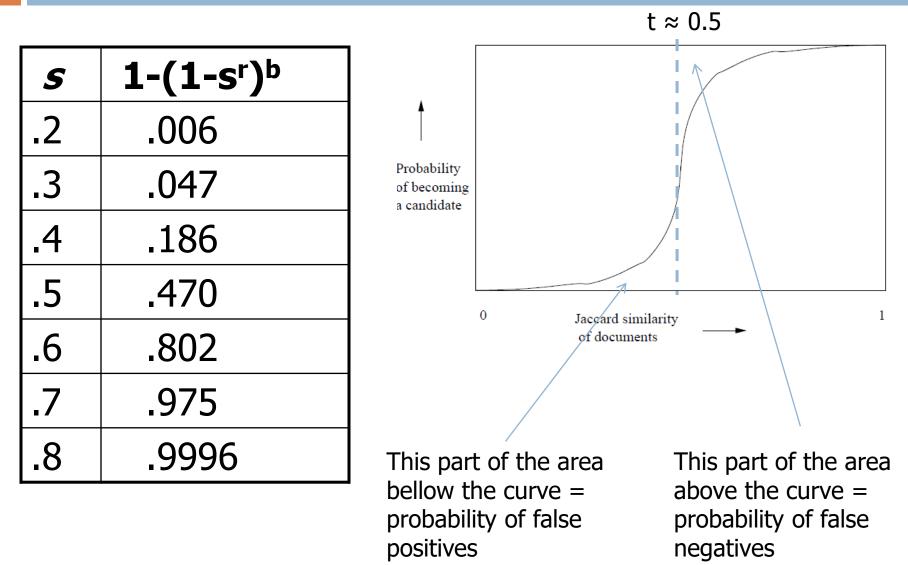
# What One Band of One Row Gives You



#### What b Bands of r Rows Gives You



### Example: b = 20; r = 5



# LSH Summary (Document Similarity)

- Tune to get almost all pairs with similar signatures but eliminate most pairs that do not have similar signatures.
- Check in main memory that candidate pairs really do have similar signatures.
- Optional: In another pass through the data, check that the remaining candidate pairs really represent similar sets.
  - This way we avoid false positives