

Association Rule Mining

Yannis Kotidis

kotidis@aueb.gr

Professor, Department of Informatics Athens University of Economics and Business

Suggested Reading

- 2
- Data Mining: Concepts and Techniques, 3rd Edition (The Morgan Kaufmann Series in Data Management Systems) 3rd Edition, by Jiawei Han, Micheline Kamber, Jian Pei (Chapter 6)
- Mining of Massive Datasets, 2nd Edition, by Jure Leskovec, Anand Rajaraman, Jeffrey David Ullman, Stanford University (Chapter 6)

Data Mining

- The process of analyzing data to identify patterns or relationships
- Has become a well-established discipline related to Artificial Intelligence and Statistical Analysis
 - Led by advances in computer hardware and our ability to analyze big datasets
 - Data warehousing, BI, Cloud Computing

Association Rule Mining

- Finding frequent patterns (associations) among sets of items in transactional databases
 - Basket data analysis, catalog design, direct mailing,...
- Basic question: "Which groups or <u>sets of items</u> are customers likely to purchase on a given trip to the store?"
- □ Learned patterns or itemsets, sush as {diapers, beers}, are used to construct if-then scenario (probabilistic) rules
 □ buys(x, "diapers") → buys(x, "beers") [5%, 60%]

What to do with rule Diapers \rightarrow Beers ?

- Enhance observed behavior
 - Place products in proximity to further encourage the combined sale
 - Increase the price of diapers but put beer in discount for a combined sale
- Put products at opposite ends of the store to make customers spend more time (and buy more products) at the store

More ideas

- Assume laptops and printers are frequently sold together
 - Place a higher-margin printer near the laptop section
 - Take a soon to be updated software suite and bundle it in an offer with laptops and printers
- □ See <u>https://www.kdnuggets.com/news/98/n01.html</u>
 □ What Wal-Mart might do with Barbie doll → Candy bars association rule

Basic Concepts

- Example: Basket Data analysis
 - Each transaction (basket) is a set of items (e.g. purchased by a customer in a visit)
 - T1: Milk, Diaper, Chocolate
 - T2: Diaper, Beer, Meat
 - T3: Sugar, Beer, Diaper

• • •

Inferred rule:

 $buys(x, "Diaper") \rightarrow buys(x, "Beer") [5\%, 67\%]$

Support and Confidence

TID	Items
T1	A,C
T2	A,C,D
Т3	A,E
T4	D,E,F,G

 $\Box \quad \text{Given rule } X,Y \Rightarrow Z$

Support: probability that a transaction contains {X,Y,Z}

s=P[X and Y and Z]
 Confidence: probability that a transaction having {X,Y} also contains Z

c=P[Z|X,Y]

Let minimum support 50%, and minimum confidence 50%, we have $A \Rightarrow C$ () $C \Rightarrow A$ ()

Problem formulation

□ Given

- a set of 'market baskets' (=binary matrix, of N rows/baskets and M columns/products)
- min-support 's' and
- min-confidence 'c'

□ Find

all the rules with:

support \geq s & confidence \geq c

Tid	Diaper	Meat	Milk	Beer
1	1	0	1	1
2	1	1	0	0
3	1	1	0	0
4	0	1	1	0

From rules to itemsets

First, find frequent itemsets

□ e.g. {X,Y,Z}

• "Frequent" means support \geq s (min-support)

Once we have a 'frequent itemset', we can find out the qualifying rules easily (how?)

Support(X,Y \rightarrow Z) = Freq({X,Y,Z})

 $Conf(X,Y \rightarrow Z) = P[Z|X,Y] = P[X,Y,Z]/P[X,Y]$ = Freq({X,Y,Z}) / Freq({X,Y})

Thus, let's focus on how to find frequent itemsets

14

□ Scan database once; maintain 2^M-1 counters

- One counter for each of {A}, {B}, {C}, ..., {A,B}, {A,C}, {A,D}, ... {B,C}, {B,D}, {B,E},... {A,B,C}, ...
- \Box Example (M=3, 2³-1=7 possible itemsets)

15

- □ Scan database once; keep 2^M-1 counters
 - One counter for each of {A}, {B}, {C}, ..., {A,B}, {A,C}, {A,D}, ... {B,C}, {B,D}, {B,E},... {A,B,C}, ...
- Example (M=3)

16

- □ Scan database once; keep 2^M-1 counters
 - One counter for each of {A}, {B}, {C}, ..., {A,B}, {A,C}, {A,D}, ... {B,C}, {B,D}, {B,E},... {A,B,C}, ...
- Example (M=3)

17

- □ Scan database once; keep 2^M-1 counters
 - One counter for each of {A}, {B}, {C}, ..., {A,B}, {A,C}, {A,D}, ... {B,C}, {B,D}, {B,E},... {A,B,C}, ...
- Example (M=3)

ltemset	Counter
{A}	1
{B}	3
{C}	1
{A,B}	1
{A,C}	0
{B,C}	1
{A,B,C}	0

Basket 1: A,B Basket 2: B Basket 3: B,C

18

- □ Scan database once; keep 2^M-1 counters
 - One counter for each of {A}, {B}, {C}, ..., {A,B}, {A,C}, {A,D}, ... {B,C}, {B,D}, {B,E},... {A,B,C}, ...
- Example (M=3)

ltemset	Counter
{A}	2
{B}	4
{C}	1
{A,B}	2
{A,C}	0
{B,C}	1
{A,B,C}	0

Basket 1: A,B Basket 2: B Basket 3: B,C Basket 4: A,B

19

- □ Scan database once; keep 2^M-1 counters
 - One counter for each of {A}, {B}, {C}, ..., {A,B}, {A,C}, {A,D}, ... {B,C}, {B,D}, {B,E},... {A,B,C}, ...
- Example (M=3)

ltemset	Counter
{A}	3
{B}	4
{C}	1
{A,B}	2
{A,C}	0
{B,C}	1
{A,B,C}	0

 $A \rightarrow B$ [Support = ? , Confident = ?]

Basket 1: A,B Basket 2: B Basket 3: B,C Basket 4: A,B Basket 5: A

- \Box Scan database once; keep 2^M-1 counters
 - One counter for each of {A}, {B}, {C}, ..., {A,B}, {A,C}, {A,D}, ... {B,C}, {B,D}, {B,E},... {A,B,C}, ...
- Drawback?
 - **•** For M = 1000 products, 2^{1000} is prohibitive...
 - E.g. 16GB RAM (=2³⁴ bits) stores 2²⁹ counters using 32=2⁵ bit integers
- Improvement?

Scan the db M times, looking for 1-, 2-, etc itemsets

Assume three products/items A,B and C (M=3)

Move on

min-sup:10

Anti-monotonicity property

- If an itemset fails to be frequent, so will every superset of it
 hence all supersets can be pruned
- A subset of a frequent itemset must also be a frequent itemset
 i.e., if {AB} is a frequent itemset, both {A} and {B} should be a frequent itemset
- Sketch of the (famous!) 'a-priori' algorithm
 Let L(i-1) be the set of large (frequent) itemsets with i-1 elements
 Let C(i) be the set of candidate itemsets (of size i)

The A-priori Algorithm

Compute L(1), by scanning the database.

repeat, for i=2,3...,

'join' L(i-1) with itself, to generate C(i)

two itemset in L(i-1) can be joined, if they agree on their first *i*-2 elements (i.e. all but the last)

prune the itemsets of C(i) (how?)

scan the db, finding the counts of the C(i) itemsets - those that reach or exceed threshold are placed in L(i)

unless L(i) is empty, repeat the loop

An Example

notation for itemset {a,c,e}

notation for itemset {b,c,d}

- L₃={abc, abd, acd, ace, bcd}
- Self-joining: $L_3 \triangleright \subset L_3$ to obtain candidates for C_4
 - abcd is produced from <u>abc</u> and <u>abd</u>
 - acde is produced from <u>acd</u> and <u>ace</u>
- Pruning:
 - acde is removed because ade is not in L_3
- C₄={abcd}

Note on Self-joining $L_1 \bowtie L_1$

- The result is essentially a Cartesian Product (x)
- For example:
 - L1={a, b, c, d, e}
 - C₂ = L₁ x L₁ = {ab, ac, ad, ae, bc, bd, be, cd, ce, de}
- No pruning possible (why?)

Example 2

Min Support = 2(50%)

Generate Rules		Min Support = 2		
	L_1	itemset	su	
	1	{A}	2	
$B \rightarrow C$ [Support = ?, Confidence = ?]		{B}	3	
		{C}	3	

(50%)

Э.

3

{E}

Min Support = 2(50%)

$B \rightarrow C$ [Support = 2/4, Confidence = ?]

Generate Rules

Min Support = 2(50%)

itemset sup.

{A}

{B}

{C}

{E}

2 3 3

3

31

Recall that Confidence = P[C|B] = P[B,C]/P[B]

 L_1

From Itemsets to Association Rules

- Itemset {B,C,E} is frequent (support=50%)
- \Box Consider rule B,C \rightarrow E
 - □ Support(B,C \rightarrow E) = P[B,C,E] = 50%
 - □ Confidence(B,C \rightarrow E) = P[B,C,E]/P[B,C]=2/2=100%
- □ Thus : B,C→E [50%,100%]
- □ More rules?
- \square Also look at L₂

MIN-SUPPORT = 50% MIN-CONFIDENCE=90%

Exercise 3

Frequent Itemsets

- {A,B,C} support = 50%, {A,B} support = 50%, {A,C} support=80%, {B,C} support = 80%, {A}=90%, {B}=90%, {C}=90%
- \square A,B \rightarrow C [50%, 100%] (OK, exceeds thresholds)
- \Box Reject the following (confidence < 90%)
 - A,C→B [50%, 62.5%]
 - B,C→A [50%, 62.5%]
 - A→B [50% , 55.5%]
 - (also $B \rightarrow A$, $A \rightarrow C$, $C \rightarrow A$, $B \rightarrow C$, $C \rightarrow B$)

Apache Spark MLlib Example

Modified example from <u>https://spark.apache.org/docs/latest/ml-frequent-pattern-mining.html</u>

In addition to association rule mining, library provides common learning algorithms such as classification, regression, clustering, and collaborative filtering, feature extraction, transformation, dimensionality reduction, and selection

Define input dataset, convert to DF

Database D
TIDItems100A,C,D200B,C,E300A,B,C,E400B E

scala> dataset.show

Execute FPGrowth Algorithm

36

val fpgrowth = new
FPGrowth().setItemsCol("items").setMinSuppo
rt(0.5).setMinConfidence(0.5)
val model = fpgrowth.fit(dataset)

// Display frequent itemsets. model.freqItemsets.show()

scala≻ mode	l.freqItemsets.show()
items	freq
[E]	3
[E, C]	2
[E, C, B]	2
[E, B]	3
[B]	3
[[C]	3
[C, B]	2
[A]	2
[A, C]	2
++	+

List rules with their confidence

scala> model.associationRules.show()

Use rules to predict new purchases

38

More uses of Association Rules

(MMDS book)

- Related concepts: Let items be words, and let baskets be documents (e.g., Web pages, blogs, tweets).
 - Brad and Angelina appear together.
- Plagiarism: Let the items be documents and the baskets be sentences. An item (doc) is "in" a basket (sentence) if the sentence is in the document.
 - Look for pairs of items (docs) that appear together in baskets (sentences).
- Biomarkers: Let the items be biomarkers such as genes or blood proteins, and diseases. Each basket is the set of data about a patient: list of biomarkers and deseses
 - A frequent itemset that consists of one disease and one or more biomarkers suggests a test for the disease.

Reducing the number of Frequent Itemsets

- Maximum Frequent Itemsets
- Closed Frequent Itemsets

40
Maximal Frequent Itemsets

(slide adapted from MMD)

- Defined as a frequent itemset for which none of its immediate supersets are frequent.
 - {a,d}, {a,c,e}, {b,c,d,e} are maximal frequent itemsets in the example on the right
 - Note that all remaining frequent itemsets can be derived (are subsets of) from those three
- Caveat: we lose information on the support of their children
 - E.g what is the support of {b,c}?
 - Thus, need to scan db again to compute support of non-maximal sets

Closed Itemsets

(adapted from MMD)

Closed Itemset: an itemset I is closed if none of its immediate supersets has the same support as I

Closed Frequent Itemset: if it is closed and its support is greater than or equal to minsup.

□ Thus, if a frequent itemset is not closed → at least one of its super sets has the same support

Closed Itemsets

(adapted from MMD)

- {a,b,c} is closed frequent itemset
 - None of its supersets have same support
- {a,d} is not closed because (closed) frequent itemset {a,c,d} is the same
 - Thus, we can derive the support of a non-closed frequent itemset by moving down the lattice until we reach a closed frequent dataset
- Examples
 - $\square \quad sup(\{a,d\}) = sup(\{a,c,d\}) = 2$
 - **u** $sup(\{b\}) = sup(\{b,c\}) = 3$
 - □ sup({b,e}) = ?
 - Note that {b,e} is not a subnet of the depicted closed frequent itemsets, thus it cannot be frequent!

Hot vs Not-so-hot items

- Most people buy milk, vegetables, soda, snacs etc. in their trip to the store.
- Other products are not that common (e.g. windscreen cleaners, sushi, wasabi).
- □ How to choose a good min-support threshold?
 - A global, low threshold will produce many rules from the frequent items.
 - A global, high threshold will not generate any rule containing less frequent items.

Idea 1: Separate hot from cold

- Partition the data into several subsets, each of which contains only items of similar frequencies.
- Perform association rule mining for each subset using a different minsupport threshold.
- □ Caveat: can not generate rules spanning items from different subsets (e.g. Milk → Sushi)

Idea 2: Use multiple thresholds

- 46
- Assign a different minimum support threshold per item (or group of items based on their frequencies)
 E.g. min-sup(Milk) = 10%, min-sup(Sushi) = 5%
- When considering an itemset use the minimum minsup() value of its elements

E.g. min-sup({Milk, Sushi}) = min(10%, 5%) = 5%

Thus, rules need to satisfy different minimum supports depending on what items are in the rules

Multiple-Level Association Rules

47

Items often form hierarchy

- Recall dimension hierarchies in data warehousing
- Rules regarding itemsets at appropriate levels could be quite useful:

Shopping Cart \rightarrow Itemset

Performance considerations?

Quantitative Association Rules

49

■ Boolean rules (categorical values): buys(x, "Bread") ^ buys(x, "Diapers") → buys(x, "Beer") [20%, 60%]

□ Quantitative rules (interval values): age(x, "25..35") ^ income(x, "12..30K") → buys(x, "PC") [20%, 75%]

Handling Numerical Attributes

50

Want to discretize continuous domain (e.g. age)
 Idea 1: Equi-width binning

Equi-width binning problems

51

Bin-merging

52

Equi-depth binning

53

Sort objects, choose bins so as to equi-divide objects among them

Produced bins have (approximately) same freq

Example (python)

54

In

[5]:	<pre>df=pd.DataFrame([['john',21],['nick',22],['martha',23],['taylor',26],['tim',27],['jim',27],</pre>									
	print(df)									
		name	age							
(0	john	21							
	1	nick	22							
1	2	martha	23							
3	3	taylor	26							
4	4	tim	27							
1	5	jim	27							
(6	nick	28							
	7	mike	28							
8	8	kostas	28							
9	9	don	29							
1	10	mihaela	29							
1	11	jay	30							
	12	donald	31							
	13	josh	32							
-	14	george	35							
-	15	terry	39							
	16	lisa	40							
	17	dina	42							
-	18	pit	46							
1	19	nash	47							
	20	scrooge McDuck	47							

Equi-width binning with cut()

In [2]: out = pd.cut(df.age,7,labels=['too young','very young','young','fine','kind of old','old','dinosaur'])
df['equi_width']=out
print(df)

	name	age	equi_width
0	john	21	too young
1	nick	22	too young
2	martha	23	too young
3	taylor	26	very young
4	tim	27	very young
5	jim	27	very young
6	nick	28	very young
7	mike	28	very young
8	kostas	28	very young
9	don	29	young
10	mihaela	29	young
11	jay	30	young
12	donald	31	young
13	josh	32	young
14	george	35	fine
15	terry	39	kind of old
16	lisa	40	old
17	dina	42	old
18	pit	46	dinosaur
19	nash	47	dinosaur
20	scrooge McDuck	47	dinosaur

Issue: some bins are too sparse

In	[2]:	<pre>out = pd.cut(df.age,7,labels=['too young','very young','young','fine','kind of old','old','dinosaur'])</pre>
		df['equi_width']=out
		print(df)

name	age	equi_width
john	21	too young
nick	22	too young
martha	23	too young
taylor	26	very young
tim	27	very young
jim	27	very young
nick	28	very young
mike	28	very young
kostas	28	very young
don	29	young
mihaela	29	young
jay	30	young
donald	31	young
josh	32	young
george	35	fine
terry	39	kind of old
lisa	40	old
dina	42	old
pit	46	dinosaur
nash	47	dinosaur
scrooge McDuck	47	dinosaur
	name john nick martha taylor tim jim nick mike kostas don mihaela jay donald josh george terry lisa dina pit nash scrooge McDuck	name age john 21 nick 22 martha 23 taylor 26 tim 27 jim 27 nick 28 Mike 28 don 29 mihaela 29 jay 30 donald 31 josh 32 george 35 terry 39 lisa 40 dina 42 pit 46 nash 47 scrooge McDuck 47

In [8]	: df.	.groupby	('equi	width').size(
--------	-------	----------	--------	--------	---------

365123

Out[8]:	equi_width too young
	very young
	young
	fine
	kind of old
	old
	dinosaur

Equi-depth binning with qcut()

20 scrooge McDuck 47

dinosaur

dinosaur

In [5]:	out = p df['equ print(c	od.qcut(df.ag <mark>ui_depth'</mark>]=ou If)	ge,7,1 It	abels=[' <mark>too)</mark>	voung','very y	<pre>'oung','young','fine','kind of old','old','dinosaur'])</pre>
		name	age	equi width	equi depth	
	0	john	21	too young	too young	
	1	nick	22	too young	too young	
	2	martha	23	too young	too young	
	3	taylor	26	very young	very young	
	4	tim	27	very young	very young	
	5	jim	27	very young	very young	
	6	nick	28	very young	young	
	7	mike	28	very young	young	
	8	kostas	28	very young	young	
	9	don	29	young	fine	
	10	mihaela	29	young	fine	
	11	jay	30	young	fine	
	12	donald	31	young	kind of old	
	13	josh	32	young	kind of old	
	14	george	35	fine	kind of old	
	15	terry	39	kind of old	old	
	16	lisa	40	old	old	
	17	dina	42	old	old	
	18	pit	46	dinosaur	dinosaur	
	19	nash	47	dinosaur	dinosaur	

Discretization with clustering (several options)

Ratio Rules

Example:

Customer spends 1:2:5 \$ on bread:milk:butter

- May answer questions of the form:
 - A customer who spends \$10 on milk and \$7 on butter how much is he willing to spend on diapers and beer?

Ratio Rules derived using eigenvector analysis

All is not perfect with A-priori

Performance considerations
 Usefulness of rules discovered

Tyranny of counting pairs

- Why counting supports of candidates is a problem?
 - The total number of candidates can be huge
 - One transaction may contain many candidates

 Assume M items
 How many itemsets of size 2? M!/[(M-2)! * 2!] = M(M-1)/2

$\blacksquare M=10,000 \rightarrow 49,995,000 \text{ combinations}$

Many optimizations considered

- 62
- Hash-based itemset counting: A k-itemset whose corresponding hashing bucket count is below the threshold cannot be frequent
- Transaction reduction: A transaction that does not contain any frequent k-itemset is useless in subsequent scans.
- Partitioning: Any itemset that is potentially frequent in DB must be frequent in at least one of the partitions of DB
- **Sampling:** mining on a subset of given data, lower support threshold

Use hashing to expedite generation of C_2

The PCY algorithm

J. Park, M. Chen, and P. Yu. An effective hash-based algorithm for mining association rules. In *SIGMOD'95*

Key issue

- Counting pairs (second phase of a-priori) is too slow
 - Number of possible pairs is (often) much larger than main memory
- Wal-Mart sells 140,000 items and can store billions of baskets.
 - With 4-byte counters, need 36GB of RAM to store all pair counts in a triangular matrix
 - May also store only existing pairs in a list using 3x more space per pair

PCY Algorithm

- Hash-based improvement to A-Priori.
- During Pass 1 of A-priori, most memory is idle.
 - We only count frequent items
 - One counter (e.g. 4 bytes) per item suffices
 - For the Wal-Mart example ~0.6MB is enough
- Use extra memory for a hash table [0...B-1]
 Each hash bucket stores a counter for that bin
 Need B*4bytes

Hash Table Memory Usage: All-you-can-eat

Hashing pairs

Assume hash function h(x,y) that maps a pair of items x,y to a bucket in range 0...B-1
 E.g. h(beer,diaper)=127

- While counting frequent items, upon seeing a transaction with x₁,... x_k items list all pairs x_i, x_i from this transaction
 - For each pair increase counter of corresponding bucket h(x_i, x_i) by one

Notice: collisions

- Number of possible pairs is much larger than size of hash table
 - Collisions are inevitable!
- E.g. is may be that
 h(beep,diapers) =
 h(PC,Monitor) =
- Thus, a bucket k counts all pairs x,y for which h(x,y)=k

Observations About Buckets

- If a bucket contains a frequent pair, then the bucket is surely frequent.
 - We cannot use the hash table to eliminate any member of this bucket.
- Even without any frequent pair, a bucket can be frequent.
 - Again, nothing in the bucket can be eliminated.
- But in the best case, the count for a bucket is less than the support s.
 - Now, all pairs that hash to this bucket can be eliminated as candidates, even if the pair consists of two frequent items.

PCY Algorithm --- Pass 1

}

FOR (each basket) {
 FOR (each item)
 add 1 to item's count;
 FOR (each pair of items) {
 hash the pair to a bucket;
 add 1 to the count for that
 bucket

PCY Algorithm: Between Passes

- Replace the buckets by a bit-vector:
 - 1 means the bucket count exceeds the support s (frequent bucket); 0 means it did not.

- Integers are replaced by bits, so the bit-vector requires little second-pass space.
- Also, decide which C₁ items are frequent and list them (create L₁) for the second pass.

Pass 2

PCY Algorithm --- Pass 2

- Count all pairs $\{i,j\}$ that meet the conditions:
 - Both *i* and *j* are frequent items (appear in L1)
 - 2. The pair $\{i,j\}$, hashes to a bucket number whose bit in the bit vector is 1.

Notice all these conditions are necessary for the pair to have a chance of being frequent.

Criticism on support/confidence (1)

- Not all high-confidence rules are interesting
 - The rule X → milk may have high confidence for many itemsets X, because milk is just purchased very often (independent of X) and the confidence will be high
- □ Rule $X \rightarrow Y$ in interesting if Conf($X \rightarrow Y$) >> Support(Y)

Criticism on high conf/support (2)

78

Example 1: (Aggarwal & Yu, PODS98)

- Among 5000 students
 - 3000 play basketball
 - 3750 eat cereal
 - 2000 both play basket ball and eat cereal
- Compare the following two rules
 - play basketball \Rightarrow eat cereal [40%, 66.7]
 - play basketball \Rightarrow not eat cereal [20%, 33.3%]

	basketball	not basketball	sum(row)
cereal	2000	1750	3750
not cereal	1000	250	1250
sum(col.)	3000	2000	5000

2000/3000

2000/5000

Strong Rules Are Not Necessarily Interesting

79

- □ play basketball ⇒ eat cereal [40%, 66.7%] is misleading because the overall percentage of students eating cereal is 75% which is higher than 66.7%.
- play basketball \Rightarrow not eat cereal [20%, 33.3%] is more interesting, although with lower support and confidence

	basketball	not basketball	sum(row)
cereal	2000	1750	3750
not cereal	1000	250	1250
sum(col.)	3000	2000	5000
Criticism to Support and Confidence (Cont.)

- Example 2:
 - X and Y: positively correlated,
 - X and Z, negatively related
 - support and confidence of X→Z dominates
- We need a measure of dependent or correlated events

Rule	Support	Confidence
X=>Y	25%	50%
X=>Z	37,50%	75%

Х	1	1	1	1	0	0	0	0
Y	1	1	0	0	0	0	0	0
Ζ	0	1	1	1	1	1	1	1

Lift of an Association Rule

- □ Lift(X→Y) = P(X and Y)/(P(X)*P(Y))
 - P(X and Y) = support observed in the dataset
 - P(X)*P(Y) = expected support if X and Y were independent
 - Lift(X→Y)>1 suggests that X&Y appear together more often that expected. Thus, the occurrence of X has a positive effect on the occurrence of Y

In some cases rare items may produce rules with very high values of lift

Lift of an Association Rule

- □ Lift(X→Y) = P(X and Y)/(P(X)*P(Y))
 - P(X and Y) = support observed in the dataset
 - P(X)*P(Y) = expected support if X and Y were independent
 - Lift(X→Y)>1 suggests that X&Y appear together more often that expected. Thus, the occurrence of X has a positive effect on the occurrence of Y

In some cases rare items may produce rules with very high values of lift

Lift of an Association Rule

- □ Lift(X→Y) = P(X and Y)/(P(X)*P(Y))
 - P(X and Y) = support observed in the dataset
 - P(X)*P(Y) = expected support if X and Y were independent
 - Lift(X→Y)>1 suggests that X&Y appear together more often that expected. Thus, the occurrence of X has a positive effect on the occurrence of Y

X	1	1	1	1	0	0	0	0	ltemset	Support	Lift
									{X,Y}	25%	2.00
			U	U	U			U	{X,Z}	37.5%	0.86
Ζ	0	1	1	1	1	1	1	1	{Y,Z}	12.5%	0.57

In some cases rare items may produce rules with very high values of lift

Rules with multiple items in the antecedent

 $\Box \text{ Lift}(\mathbf{A} \rightarrow \mathbf{B}) = \mathbf{P}(\mathbf{A} \text{ and } \mathbf{B})/(\mathbf{P}(\mathbf{A})^*\mathbf{P}(\mathbf{B}))$

A in this formula can be a set of items

Example:

Assume rule $X, Y \rightarrow Z$

Х	1	1	1	1	0	0	0	0
Y	1	1	0	0	0	0	0	0
Ζ	0	1	1	1	1	1	1	1

Lift(X, Y
$$\rightarrow$$
 Z) = $\frac{\frac{1}{8}}{\frac{2}{8} * \frac{7}{8}} = 0.57$

Back to the student's survey

play basketball \Rightarrow eat cereal [40%, 66.7%]

Lift = (2000/5000)/((3000/5000)*(3750/5000)) = 0.89 < 1

□ play basketball \Rightarrow not eat cereal [20%, 33.3%]

Lift = (1000/5000)/((3000/5000)*(1250/5000)) = 1.33 > 1

	basketball	not basketball	sum(row)
cereal	2000	1750	3750
not cereal	1000	250	1250
sum(col.)	3000	2000	5000

Recap (lift)

- Lift evaluates the mined rule against the expected response assuming independence
 Lift(X→Y) = sup(X,Y)/(sup(X)*sup(Y))
- Equiv. Lift = Confidence(rule)/expConfidence(Rule)
 - □ Confidence(X → Y)=P(X,Y)/P(X)=sup(X,Y)/sup(X)
 - □ expConfidence(X→Y)=P(X)(P(Y)/P(X)= P(Y)= sup(Y)
 - Lift tells us how much better a rule is at predicting the result.
 - Greater lift values indicate stronger associations.

Criticism on lift: effect of null transactions

- Assume itemset {A,B}
- A null transaction is a transaction that does not contain any of the itemsets being examined.
 E.g T={D,F,G} is a null transaction for this itemset

Example

- Assume that store sold 100 packages of A and 100 packages of B
 - Only one of the above transactions contains both A,B
 - There are no null transactions for {A,B} in this example

Example

- Assume that store sold 100 packages of A and 100 packages of B
 - Only one of the above transactions contains both A,B

Thus,
$$P(A) = P(B) = 100/199$$

D P(A and B) = 1/199

- □ Lift = $1/199 / (100/199 * 100/199) \approx 0.02$
- Conclusion: A and B are negatively correlated

В

199 baskets (transactions)

Effect of null transactions

- □ Now assume arrival of 19801 more transactions that do not contain A nor B
 - Total number of transactions is n=199+19801=20000
 - **Thus,** P(A) = P(B) = 100/20000
 - P(A and B) = 1/20000
 - **Lift** = 1/20000/(100/20000 * 100/20000) = 2
- Conclusion: A and B are positively correlated
 - Which is true. Neither A nor B appear in the 19801 null transactions we added!

Why is that?

□ Lift = P(A and B) /(P(A)*P(B)) = = |A and B|/n / (|A|/n * |B|/n) == n * |A and B|/(|A|*|B|)

- When more null transactions are added
 n in increased
 - A and B, A and B stay constant
 - As a result, lift increases by adding more null transactions
- Thus, lift is not null invariant

A solution: use cosine!

- 92
- □ Define cosine(A,B) = P(A and B)/sqrt(P(A)*P(B))
- Cosine takes values between 0 and 1
- Because of the sqrt(), cosine does not depend on n, thus, it is null invariant
- \Box In this example cosine(A,B)= 0.01 in both examples

Many different implementations

R: rules<-apriori(trans,parameter=list(supp=.02, conf=.5, target="rules"))</p>

Association rules - Conclusions

- An intuitive tool to find patterns
 - easy to understand its output
 - number of rules is a concern
 - fine-tuned algorithms exist