
Association Rule Mining

Yannis Kotidis
kotidis@aueb.gr

Professor, Department of Informatics

Athens University of Economics and Business

Suggested Reading

 Data Mining: Concepts and Techniques, 3rd Edition

(The Morgan Kaufmann Series in Data Management

Systems) 3rd Edition, by Jiawei Han, Micheline

Kamber, Jian Pei (Chapter 6)

 Mining of Massive Datasets, 2nd Edition, by Jure

Leskovec, Anand Rajaraman, Jeffrey David Ullman,

Stanford University (Chapter 6)

2

Data Mining
3

 The process of analyzing data to identify patterns

or relationships

 Has become a well-established discipline related to

Artificial Intelligence and Statistical Analysis

 Led by advances in computer hardware and our ability

to analyze big datasets

◼ Data warehousing, BI, Cloud Computing

5

Association Rule Mining

 Finding frequent patterns (associations) among sets of
items in transactional databases

 Basket data analysis, catalog design, direct mailing,…

 Basic question: “Which groups or sets of items are customers

likely to purchase on a given trip to the store?”

 Learned patterns or itemsets, sush as {diapers, beers}, are
used to construct if-then scenario (probabilistic) rules

 buys(x, “diapers”) → buys(x, “beers”) [5%, 60%]

What to do with rule Diapers→Beers ?

 Enhance observed behavior

 Place products in proximity to further encourage the

combined sale

 Increase the price of diapers but put beer in discount

for a combined sale

 Put products at opposite ends of the store to make

customers spend more time (and buy more products)

at the store

6

More ideas

 Assume laptops and printers are frequently sold

together

 Place a higher-margin printer near the laptop section

 Take a soon to be updated software suite and bundle it

in an offer with laptops and printers

 See https://www.kdnuggets.com/news/98/n01.html

 What Wal-Mart might do with Barbie doll → Candy

bars association rule

7

https://www.kdnuggets.com/news/98/n01.html

Basic Concepts
9

 Example: Basket Data analysis

 Each transaction (basket) is a set of items (e.g.

purchased by a customer in a visit)

T1: Milk, Diaper, Chocolate

T2: Diaper, Beer, Meat

T3: Sugar, Beer, Diaper

…

Inferred rule:

buys(x, “Diaper”) → buys(x, “Beer”) [5%, 67%]

Support and Confidence

 Given rule X,Y Z

 Support: probability that a
transaction contains {X,Y,Z}

 s=P[X and Y and Z]

 Confidence: probability that a
transaction having {X,Y} also
contains Z

 c=P[Z|X,Y]

TID Items

T1 A,C

T2 A,C,D

T3 A,E

T4 D,E,F,G

10

Let minimum support 50%, and

minimum confidence 50%, we have

A C (50%, 66.6%)

C A (50%, 100%)

Contains Z
Contains

X,Y,Z

Contains X,Y

?

?

Problem formulation

 Given

 a set of ‘market baskets’

(=binary matrix, of N

rows/baskets and M

columns/products)

 min-support ‘s’ and

 min-confidence ‘c’

 Find

 all the rules with:

support ≥ s & confidence ≥ c

11

Tid Diaper Meat Milk Beer

1 1 0 1 1

2 1 1 0 0

3 1 1 0 0

4 0 1 1 0

From rules to itemsets
12

 First, find frequent itemsets

 e.g. {X,Y,Z}

 “Frequent” means support ≥ s (min-support)

 Once we have a ‘frequent itemset’, we can find out
the qualifying rules easily (how?)

 Thus, let’s focus on how to find frequent itemsets

Support(X,Y→Z) = Freq({X,Y,Z})

Conf(X,Y→Z) = P[Z|X,Y] = P[X,Y,Z]/P[X,Y]

 = Freq({X,Y,Z}) / Freq({X,Y})

Brute-force Frequent Itemsets Counting

 Scan database once; maintain 2M-1 counters

 One counter for each of {A}, {B}, {C}, …., {A,B}, {A,C},

{A,D}, … {B,C}, {B,D}, {B,E},… {A,B,C}, …

 Example (M=3, 23-1=7 possible itemsets)

14

Itemset Counter

{A} 0

{B} 0

{C} 0

{A,B} 0

{A,C} 0

{B,C} 0

{A,B,C} 0

Basket 1: A,B

+1
+1

+1
Increase counters of

itemsets {A}, {B} and {A,B}

contained in the basket

Brute-force Frequent Itemsets Counting

 Scan database once; keep 2M-1 counters

 One counter for each of {A}, {B}, {C}, …., {A,B}, {A,C},

{A,D}, … {B,C}, {B,D}, {B,E},… {A,B,C}, …

 Example (M=3)

15

Itemset Counter

{A} 1

{B} 1

{C} 0

{A,B} 1

{A,C} 0

{B,C} 0

{A,B,C} 0

Basket 1: A,B

Basket 2: B

+1

Brute-force Frequent Itemsets Counting

 Scan database once; keep 2M-1 counters

 One counter for each of {A}, {B}, {C}, …., {A,B}, {A,C},

{A,D}, … {B,C}, {B,D}, {B,E},… {A,B,C}, …

 Example (M=3)

16

Itemset Counter

{A} 1

{B} 2

{C} 0

{A,B} 1

{A,C} 0

{B,C} 0

{A,B,C} 0

Basket 1: A,B

Basket 2: B

Basket 3: B,C

+1

+1

+1

Brute-force Frequent Itemsets Counting

 Scan database once; keep 2M-1 counters

 One counter for each of {A}, {B}, {C}, …., {A,B}, {A,C},

{A,D}, … {B,C}, {B,D}, {B,E},… {A,B,C}, …

 Example (M=3)

17

Itemset Counter

{A} 1

{B} 3

{C} 1

{A,B} 1

{A,C} 0

{B,C} 1

{A,B,C} 0

Basket 1: A,B

Basket 2: B

Basket 3: B,C

Brute-force Frequent Itemsets Counting

 Scan database once; keep 2M-1 counters

 One counter for each of {A}, {B}, {C}, …., {A,B}, {A,C},

{A,D}, … {B,C}, {B,D}, {B,E},… {A,B,C}, …

 Example (M=3)

18

Itemset Counter

{A} 2

{B} 4

{C} 1

{A,B} 2

{A,C} 0

{B,C} 1

{A,B,C} 0

Basket 1: A,B

Basket 2: B

Basket 3: B,C

Basket 4: A,B

Brute-force Frequent Itemsets Counting

 Scan database once; keep 2M-1 counters

 One counter for each of {A}, {B}, {C}, …., {A,B}, {A,C},

{A,D}, … {B,C}, {B,D}, {B,E},… {A,B,C}, …

 Example (M=3)

19

Itemset Counter

{A} 3

{B} 4

{C} 1

{A,B} 2

{A,C} 0

{B,C} 1

{A,B,C} 0

Basket 1: A,B

Basket 2: B

Basket 3: B,C

Basket 4: A,B

Basket 5: A

A→B [Support = ? , Confident = ?]

Brute-force Frequent Itemsets Counting

 Scan database once; keep 2M-1 counters

 One counter for each of {A}, {B}, {C}, …., {A,B}, {A,C},

{A,D}, … {B,C}, {B,D}, {B,E},… {A,B,C}, …

 Drawback?

 For M=1000 products, 21000 is prohibitive...

 E.g. 16GB RAM (=234 bits) stores 229 counters using

32=25 bit integers

 Improvement?

 Scan the db M times, looking for 1-, 2-, etc itemsets

20

Assume three products/items A,B and C
(M=3)

21

A B C
first pass

100 200 2

min-sup:10

Move on

22

A B C
first pass

100 200 2

min-sup:10

A,B A,C B,C

Anti-monotonicity property

23

 If an itemset fails to be frequent, so will every superset of it

 hence all supersets can be pruned

 A subset of a frequent itemset must also be a frequent itemset

 i.e., if {AB} is a frequent itemset, both {A} and {B} should be a

frequent itemset

 Sketch of the (famous!) ‘a-priori’ algorithm

 Let L(i-1) be the set of large (frequent) itemsets with i-1 elements

 Let C(i) be the set of candidate itemsets (of size i)

The A-priori Algorithm

24

Compute L(1), by scanning the database.

repeat, for i=2,3...,
‘join’ L(i-1) with itself, to generate C(i)

two itemset in L(i-1) can be joined, if they agree on their first
i-2 elements (i.e. all but the last)

prune the itemsets of C(i) (how?)

scan the db, finding the counts of the C(i) itemsets – those that
reach or exceed threshold are placed in L(i)

unless L(i) is empty, repeat the loop

An Example
25

 L3={abc, abd, acd, ace, bcd}

 Self-joining: L3 L3 to obtain candidates for C4

 abcd is produced from abc and abd

 acde is produced from acd and ace

 Pruning:

 acde is removed because ade is not in L3

 C4={abcd}

notation for itemset {b,c,d}

notation for itemset {a,c,e}

Note on Self-joining L1 L1
26

 The result is essentially a Cartesian Product (x)

 For example:

 L1={a, b, c, d, e}

 C2 = L1 x L1= {ab, ac, ad, ae, bc, bd, be, cd, ce, de}

 No pruning possible (why?)

Example 2
28

TID Items

100 A,C,D

200 B,C,E

300 A,B,C,E

400 B E

Database D itemset sup.

{A} 2

{B} 3

{C} 3

{D} 1

{E} 3

Scan D

C1

itemset sup

{A,B} 1

{A,C} 2

{A,E} 1

{B,C} 2

{B,E} 3

{C,E} 2

C2

Scan D

itemset

{A,B}

{A,C}

{A,E}

{B,C}

{B,E}

{C,E}

C2

L3Scan D itemset sup

{B,C,E} 2

C3 itemset

{B,C,E}

itemset sup.

{A} 2

{B} 3

{C} 3

{E} 3

L1

itemset sup

{A,C} 2

{B,C} 2

{B,E} 3

{C,E} 2

L2

Min Support = 2 (50%)

Generate Rules
29

L3 itemset sup

{B,C,E} 2

itemset sup.

{A} 2

{B} 3

{C} 3

{E} 3

L1

itemset sup

{A,C} 2

{B,C} 2

{B,E} 3

{C,E} 2

L2

Min Support = 2 (50%)

B→C [Support = ?, Confidence = ?]

Generate Rules
30

L3 itemset sup

{B,C,E} 2

itemset sup.

{A} 2

{B} 3

{C} 3

{E} 3

L1

itemset sup

{A,C} 2

{B,C} 2

{B,E} 3

{C,E} 2

L2

Min Support = 2 (50%)

B→C [Support = 2/4, Confidence = ?]

Generate Rules
31

L3 itemset sup

{B,C,E} 2

itemset sup.

{A} 2

{B} 3

{C} 3

{E} 3

L1

itemset sup

{A,C} 2

{B,C} 2

{B,E} 3

{C,E} 2

L2

Min Support = 2 (50%)

B→C [Support = 2/4, Confidence = (2/4)/(3/4)=2/3]

Recall that Confidence = P[C|B] = P[B,C]/P[B]

32

From Itemsets to Association Rules

 Itemset {B,C,E} is frequent (support=50%)

 Consider rule B,C →E

 Support(B,C →E) = P[B,C,E] = 50%

 Confidence(B,C →E) = P[B,C,E]/P[B,C]=2/2=100%

 Thus : B,C→E [50%,100%]

 More rules?

 Also look at L2

33

Exercise 3

 Frequent Itemsets

 {A,B,C} support = 50%, {A,B} support = 50%, {A,C}

support=80%, {B,C} support = 80%, {A}=90%, {B}=90%,

{C}=90%

 A,B→C [50%, 100%] (OK, exceeds thresholds)

 Reject the following (confidence < 90%)

 A,C→B [50%, 62.5%]

 B,C→A [50%, 62.5%]

 A→B [50% , 55.5%]

◼ (also B→A, A→C, C→A, B→C, C→B)

MIN-SUPPORT = 50%

MIN-CONFIDENCE=90%

Apache Spark MLlib Example

 Modified example from

https://spark.apache.org/docs/latest/ml-frequent-

pattern-mining.html

 In addition to association rule mining, library

provides common learning algorithms such as

classification, regression, clustering, and

collaborative filtering, feature extraction,

transformation, dimensionality reduction, and

selection

34

https://spark.apache.org/docs/latest/ml-frequent-pattern-mining.html
https://spark.apache.org/docs/latest/ml-frequent-pattern-mining.html

Define input dataset, convert to DF
35

TID Items

100 A,C,D

200 B,C,E

300 A,B,C,E

400 B E

Database Dscala> val dataset = spark.createDataset(Seq(

 | "A C D",

 | "B C E",

 | "A B C E",

 | "B E")

 |).map(t => t.split(" ")).toDF("items")

scala> dataset.show

Execute FPGrowth Algorithm
36

TID Items

100 A,C,D

200 B,C,E

300 A,B,C,E

400 B E

Database Dval fpgrowth = new

FPGrowth().setItemsCol("items").setMinSuppo

rt(0.5).setMinConfidence(0.5)

val model = fpgrowth.fit(dataset)

// Display frequent itemsets.

model.freqItemsets.show()

L3

itemset sup

{B,C,E} 2

itemset sup.

{A} 2

{B} 3

{C} 3

{E} 3

L1

itemset sup

{A,C} 2

{B,C} 2

{B,E} 3

{C,E} 2

L2

List rules with their confidence
37

TID Items

100 A,C,D

200 B,C,E

300 A,B,C,E

400 B E

Database Dscala> model.associationRules.show()

Use rules to predict new purchases
38

More uses of Association Rules
(MMDS book)

 Related concepts: Let items be words, and let baskets be documents (e.g.,

Web pages, blogs, tweets).

 Brad and Angelina appear together.

 Plagiarism: Let the items be documents and the baskets be sentences. An

item (doc) is “in” a basket (sentence) if the sentence is in the document.

 Look for pairs of items (docs) that appear together in baskets

(sentences).

 Biomarkers: Let the items be biomarkers such as genes or blood proteins,

and diseases. Each basket is the set of data about a patient: list of

biomarkers and deseses

 A frequent itemset that consists of one disease and one or more

biomarkers suggests a test for the disease.

39

Reducing the number of Frequent

Itemsets

 Maximum Frequent Itemsets

 Closed Frequent Itemsets

40

Maximal Frequent Itemsets
(slide adapted from MMD)

 Defined as a frequent itemset

for which none of its

immediate supersets are

frequent.

 {a,d}, {a,c,e}, {b,c,d,e} are

maximal frequent itemsets in

the example on the right

 Note that all remaining frequent

itemsets can be derived (are

subsets of) from those three

 Caveat: we lose information

on the support of their

children

 E.g what is the support of

{b,c}?

◼ Thus, need to scan db again to

compute support of non-maximal

sets

41

Closed Itemsets
(adapted from MMD)

 Closed Itemset: an itemset I is closed if none of its

immediate supersets has the same support as I

 Closed Frequent Itemset: if it is closed and its

support is greater than or equal to minsup.

 Thus, if a frequent itemset is not closed → at least

one of its super sets has the same support

42

Closed Itemsets
(adapted from MMD)

 {a,b,c} is closed frequent itemset

 None of its supersets have same

support

 {a,d} is not closed because (closed)

frequent itemset {a,c,d} is the same

 Thus, we can derive the support of a

non-closed frequent itemset by moving

down the lattice until we reach a closed

frequent dataset

 Examples

 sup({a,d}) = sup({a,c,d}) = 2

 sup({b}) = sup({b,c}) = 3

 sup({b,e}) = ?

◼ Note that {b,e} is not a subnet of the depicted

closed frequent itemsets, thus it cannot be

frequent!

43

Hot vs Not-so-hot items

 Most people buy milk, vegetables, soda, snacs etc.

in their trip to the store.

 Other products are not that common (e.g.

windscreen cleaners, sushi, wasabi).

 How to choose a good min-support threshold?

 A global, low threshold will produce many rules from

the frequent items.

 A global, high threshold will not generate any rule

containing less frequent items.

44

Idea 1: Separate hot from cold

 Partition the data into

several subsets, each of

which contains only items of

similar frequencies.

 Perform association rule

mining for each subset

using a different min-

support threshold.

 Caveat: can not generate

rules spanning items from

different subsets (e.g. Milk

→ Sushi)

45

milk,

vegetabl

es, soda,

snacs

snacks→soda

windscre

en

cleaners,

sushi,

wasabi

wasabi →sushi

Basket: {milk, soda, snacks, sushi}

{milk, soda, snacks} {sushi}

P
a

rt
it
io

n
 1

P
a

rt
it
io

n
 2

Idea 2: Use multiple thresholds

 Assign a different minimum support threshold per

item (or group of items based on their frequencies)

 E.g. min-sup(Milk) = 10%, min-sup(Sushi) = 5%

 When considering an itemset use the minimum min-

sup() value of its elements

 E.g. min-sup({Milk, Sushi}) = min(10%, 5%) = 5%

 Thus, rules need to satisfy different minimum

supports depending on what items are in the rules

46

Multiple-Level Association Rules
47

 Items often form hierarchy

 Recall dimension hierarchies

in data warehousing

 Rules regarding itemsets at

appropriate levels could

be quite useful:

Food

BreadMilk

Whole Milk White-breadWheat-breadSkim Milk

Product-ids

p144 p11

p144 p11

 vs

Skim Milk Wheat bread

Shopping Cart → Itemset
48

3.5%1.5%

P144 P2157 P11

Performance considerations?

Extended basket {P2157, Whole Milk, Milk, P144, Skim Milk, P11, Wheat-bread, Bread}

Quantitative Association Rules

 Boolean rules (categorical values):

buys(x, “Bread”) ^ buys(x, “Diapers”) →

buys(x, “Beer”) [20%, 60%]

 Quantitative rules (interval values):

age(x, “25..35”) ^ income(x, “12..30K”) →

buys(x, “PC”) [20%, 75%]

49

Handling Numerical Attributes

 Want to discretize continuous domain (e.g. age)

 Idea 1: Equi-width binning

50

Age

Min-age Max-age

20 25 30 35 40 45 50 55

“25<=Age<30”

Equi-width binning problems
51

Age

Min-age Max-age

20 25 30 35 40 45 50 55

Some bins may never

find enough support

Bin-merging
52

Age

Min-age Max-age

20 25 30 35 40 45 50 55

Merge adjacent intervals when

support < min-support
“45<=Age<55”

Equi-depth binning

 Sort objects, choose bins so as to equi-divide

objects among them

 Produced bins have (approximately) same freq

53

Age

Min-age Max-age

20 25 3027 37 4528 55

Example (python)
54

Equi-width binning with cut()
55

Issue: some bins are too sparse
56

Equi-depth binning with qcut()
57

Discretization with clustering

(several options)
58

Age

Salary

Ranges may overlap, merge?

Ratio Rules
59

 Example:

Customer spends 1:2:5 $ on bread:milk:butter

 May answer questions of the form:

 A customer who spends $10 on milk and $7 on butter

how much is he willing to spend on diapers and beer?

 Ratio Rules derived using eigenvector analysis

60

All is not perfect with A-priori

 Performance considerations

 Usefulness of rules discovered

Tyranny of counting pairs

 Why counting supports of candidates is a problem?

 The total number of candidates can be huge

 One transaction may contain many candidates

 Assume M items

 How many itemsets of size 2?

M!/[(M-2)! * 2!] = M(M-1)/2

 Μ=10,000 → 49,995,000 combinations

61

62

Many optimizations considered

 Hash-based itemset counting: A k-itemset whose corresponding

hashing bucket count is below the threshold cannot be frequent

 Transaction reduction: A transaction that does not contain any frequent

k-itemset is useless in subsequent scans.

 Partitioning: Any itemset that is potentially frequent in DB must be

frequent in at least one of the partitions of DB

 Sampling: mining on a subset of given data, lower support threshold

Use hashing to expedite generation of C2

 The PCY algorithm

64

J. Park, M. Chen, and P. Yu. An effective hash-based
algorithm for mining association rules. In SIGMOD’95

Key issue

 Counting pairs (second phase of a-priori) is too slow

 Number of possible pairs is (often) much larger than

main memory

 Wal-Mart sells 140,000 items and can store billions

of baskets.

 With 4-byte counters, need 36GB of RAM to store all

pair counts in a triangular matrix

 May also store only existing pairs in a list using 3x

more space per pair

65

PCY Algorithm

 Hash-based improvement to A-Priori.

 During Pass 1 of A-priori, most memory is idle.

 We only count frequent items

 One counter (e.g. 4 bytes) per item suffices

◼ For the Wal-Mart example ~0.6MB is enough

 Use extra memory for a hash table [0...B-1]

 Each hash bucket stores a counter for that bin

 Need B*4bytes

66

67

Hash Table Memory Usage:

All-you-can-eat

Item counts

Hash Table

• Counters for itemsets

with exactly 1 item

used during fist pass

• Will be used for counting

groups of {x,y} pairs

appearing in transactions

• Initialize all counters to 0

Hashing pairs

 Assume hash function h(x,y) that maps a pair of

items x,y to a bucket in range 0..B-1

 E.g. h(beer,diaper)=127

 While counting frequent items, upon seeing a

transaction with x1,… xk items list all pairs xi, xj

from this transaction

 For each pair increase counter of corresponding bucket

h(xi, xj) by one

68

Notice: collisions

 Number of possible

pairs is much larger

than size of hash table

 Collisions are

inevitable!

 E.g. is may be that

h(beep,diapers) =

h(PC,Monitor) =

 Thus, a bucket k counts

all pairs x,y for which

h(x,y)=k

69

Item counts

Hash Table

Observations About Buckets

 If a bucket contains a frequent pair, then the bucket is

surely frequent.

 We cannot use the hash table to eliminate any member of

this bucket.

 Even without any frequent pair, a bucket can be

frequent.

 Again, nothing in the bucket can be eliminated.

 But in the best case, the count for a bucket is less than

the support s.

 Now, all pairs that hash to this bucket can be eliminated as

candidates, even if the pair consists of two frequent items.

70

71

PCY Algorithm --- Pass 1

FOR (each basket) {

FOR (each item)

add 1 to item’s count;

FOR (each pair of items) {

hash the pair to a bucket;

add 1 to the count for that

bucket

}

}

PCY Algorithm: Between Passes

 Replace the buckets by a bit-vector:

 1 means the bucket count exceeds the support s

(frequent bucket); 0 means it did not.

 Integers are replaced by bits, so the bit-vector

requires little second-pass space.

 Also, decide which C1 items are frequent and list

them (create L1) for the second pass.

72

73

Pass 2

Item counts

0 1

Pass 1 Pass 2

Frequent items

Hash Table Counts for

pairs in C2

>=s

<s

Bitmap:

sparse

representation

xi, xj

74

PCY Algorithm --- Pass 2

 Count all pairs {i,j} that meet the conditions:

1. Both i and j are frequent items (appear in L1)

2. The pair {i,j}, hashes to a bucket number whose bit in

the bit vector is 1.

 Notice all these conditions are necessary for the

pair to have a chance of being frequent.

Criticism on support/confidence (1)

 Not all high-confidence rules are interesting

 The rule X → milk may have high confidence for many itemsets X,

because milk is just purchased very often (independent of X) and the

confidence will be high

 Rule X → Y in interesting if Conf(X→Y) >> Support(Y)

Modified slide from: J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets,

http://www.mmds.org

75

78

Criticism on high conf/support (2)

 Example 1: (Aggarwal & Yu, PODS98)

 Among 5000 students

◼ 3000 play basketball
◼ 3750 eat cereal
◼ 2000 both play basket ball and eat cereal

 Compare the following two rules

 play basketball eat cereal [40%, 66.7]

 play basketball not eat cereal [20%, 33.3%]

basketball not basketball sum(row)

cereal 2000 1750 3750

not cereal 1000 250 1250

sum(col.) 3000 2000 5000

2000/3000

2000/5000

79

Strong Rules Are Not Necessarily

Interesting

 play basketball eat cereal [40%, 66.7%] is misleading because

the overall percentage of students eating cereal is 75% which is

higher than 66.7%.

 play basketball not eat cereal [20%, 33.3%] is more interesting,

although with lower support and confidence

basketball not basketball sum(row)

cereal 2000 1750 3750

not cereal 1000 250 1250

sum(col.) 3000 2000 5000

Criticism to Support and

Confidence (Cont.)

 Example 2:

 X and Y: positively

correlated,

 X and Z, negatively

related

 support and confidence

of X→Z dominates

 We need a measure of

dependent or

correlated events

80

X 1 1 1 1 0 0 0 0

Y 1 1 0 0 0 0 0 0

Z 0 1 1 1 1 1 1 1

Rule Support Confidence

X=>Y 25% 50%

X=>Z 37,50% 75%

Lift of an Association Rule

 Lift(X→Y) = P(X and Y)/(P(X)*P(Y))

 P(X and Y) = support observed in the dataset

 P(X)*P(Y) = expected support if X and Y were

independent

 Lift(X→Y)>1 suggests that X&Y appear together more

often that expected. Thus, the occurrence of X has a

positive effect on the occurrence of Y

 In some cases rare items may produce rules with very high values of lift

81

X 1 1 1 1 0 0 0 0

Y 1 1 0 0 0 0 0 0

Z 0 1 1 1 1 1 1 1

Lift 𝑋 → 𝑌 =

2
8

4
8 ∗

2
8

= 2

observed=25%

expected=12.5%

Lift of an Association Rule

 Lift(X→Y) = P(X and Y)/(P(X)*P(Y))

 P(X and Y) = support observed in the dataset

 P(X)*P(Y) = expected support if X and Y were

independent

 Lift(X→Y)>1 suggests that X&Y appear together more

often that expected. Thus, the occurrence of X has a

positive effect on the occurrence of Y

 In some cases rare items may produce rules with very high values of lift

82

X 1 1 1 1 0 0 0 0

Y 1 1 0 0 0 0 0 0

Z 0 1 1 1 1 1 1 1

Lift 𝑋 → 𝑍 =

3
8

4
8 ∗

7
8

= 0.86

observed=37.5%

expected=43.75%

Lift of an Association Rule

 Lift(X→Y) = P(X and Y)/(P(X)*P(Y))

 P(X and Y) = support observed in the dataset

 P(X)*P(Y) = expected support if X and Y were

independent

 Lift(X→Y)>1 suggests that X&Y appear together more

often that expected. Thus, the occurrence of X has a

positive effect on the occurrence of Y

 In some cases rare items may produce rules with very high values of lift

83

X 1 1 1 1 0 0 0 0

Y 1 1 0 0 0 0 0 0

Z 0 1 1 1 1 1 1 1

Itemset Support Lift

{X,Y} 25% 2.00

{X,Z} 37.5% 0.86

{Y,Z} 12.5% 0.57

Rules with multiple items in the antecedent

 Lift(A→B) = P(A and B)/(P(A)*P(B))

 A in this formula can be a set of items

 Example:

Assume rule X,Y→Z

84

X 1 1 1 1 0 0 0 0

Y 1 1 0 0 0 0 0 0

Z 0 1 1 1 1 1 1 1

Lift 𝑋, 𝑌 → 𝑍 =

1
8

2
8 ∗

7
8

= 0.57

85

Back to the student’s survey

 play basketball eat cereal [40%, 66.7%]

 Lift = (2000/5000)/((3000/5000)*(3750/5000)) = 0.89 < 1

 play basketball not eat cereal [20%, 33.3%]

 Lift = (1000/5000)/((3000/5000)*(1250/5000)) = 1.33 > 1

basketball not basketball sum(row)

cereal 2000 1750 3750

not cereal 1000 250 1250

sum(col.) 3000 2000 5000

Recap (lift)

 Lift evaluates the mined rule against the expected

response assuming independence

 Lift(X→Y) = sup(X,Y)/(sup(X)*sup(Y))

 Equiv. Lift = Confidence(rule)/expConfidence(Rule)

 Confidence(X→Y)=P(X,Y)/P(X)=sup(X,Y)/sup(X)

 expConfidence(X→Y)=P(X)(P(Y)/P(X)= P(Y)= sup(Y)

 Lift tells us how much better a rule is at predicting the

result.

◼ Greater lift values indicate stronger associations.

86

Criticism on lift: effect of null transactions

 Assume itemset {A,B}

 A null transaction is a transaction that does not

contain any of the itemsets being examined.

 E.g T={D,F,G} is a null transaction for this itemset

87

Example

 Assume that store sold 100 packages of A and 100

packages of B

 Only one of the above transactions contains both A,B

 There are no null transactions for {A,B} in this example

88

A A A

B B B

199 baskets (transactions)

Example

 Assume that store sold 100 packages of A and 100

packages of B

 Only one of the above transactions contains both A,B

 Thus, P(A)= P(B) = 100/199

 P(A and B) = 1/199

 Lift = 1/199 /(100/199 * 100/199) ≈ 0.02

 Conclusion: A and B are negatively correlated

89

A A A

B B B

199 baskets (transactions)

Effect of null transactions

 Now assume arrival of 19801 more transactions that do not contain A nor B

 Total number of transactions is n=199+19801=20000

 Thus, P(A) = P(B) =100/20000

 P(A and B) = 1/20000

 Lift = 1/20000/(100/20000 * 100/20000) =2

 Conclusion: A and B are positively correlated

 Which is true. Neither A nor B appear in the 19801 null transactions we added!

90

A A A

B B B

199 baskets 19801 baskets

(null transactions)

+
… …

Why is that?

 Lift = P(A and B) /(P(A)*P(B)) =

= |A and B|/n / (|A|/n * |B|/n) =

= n * |A and B|/(|A|*|B|)

 When more null transactions are added

 n in increased

 |A and B|, |A| and |B| stay constant

 As a result, lift increases by adding more null

transactions

 Thus, lift is not null invariant

91

A solution: use cosine!

 Define cosine(A,B) = P(A and B)/sqrt(P(A)*P(B))

 Cosine takes values between 0 and 1

 Because of the sqrt(), cosine does not depend on n,

thus, it is null invariant

 In this example cosine(A,B)= 0.01 in both examples

92

Many different implementations

 R: rules<-apriori(trans,parameter=list(supp=.02,

conf=.5, target="rules"))

 Rapidminer:

94

Association rules - Conclusions

 An intuitive tool to find patterns

 easy to understand its output

 number of rules is a concern

 fine-tuned algorithms exist

95

	Slide 1: Association Rule Mining
	Slide 2: Suggested Reading
	Slide 3: Data Mining
	Slide 5: Association Rule Mining
	Slide 6: What to do with rule DiapersBeers ?
	Slide 7: More ideas
	Slide 9: Basic Concepts
	Slide 10: Support and Confidence
	Slide 11: Problem formulation
	Slide 12: From rules to itemsets
	Slide 14: Brute-force Frequent Itemsets Counting
	Slide 15: Brute-force Frequent Itemsets Counting
	Slide 16: Brute-force Frequent Itemsets Counting
	Slide 17: Brute-force Frequent Itemsets Counting
	Slide 18: Brute-force Frequent Itemsets Counting
	Slide 19: Brute-force Frequent Itemsets Counting
	Slide 20: Brute-force Frequent Itemsets Counting
	Slide 21: Assume three products/items A,B and C (M=3)
	Slide 22: Move on
	Slide 23: Anti-monotonicity property
	Slide 24: The A-priori Algorithm
	Slide 25: An Example
	Slide 26: Note on Self-joining L1 L1
	Slide 28: Example 2
	Slide 29: Generate Rules
	Slide 30: Generate Rules
	Slide 31: Generate Rules
	Slide 32: From Itemsets to Association Rules
	Slide 33: Exercise 3
	Slide 34: Apache Spark MLlib Example
	Slide 35: Define input dataset, convert to DF
	Slide 36: Execute FPGrowth Algorithm
	Slide 37: List rules with their confidence
	Slide 38: Use rules to predict new purchases
	Slide 39: More uses of Association Rules (MMDS book)
	Slide 40: Reducing the number of Frequent Itemsets
	Slide 41: Maximal Frequent Itemsets (slide adapted from MMD)
	Slide 42: Closed Itemsets (adapted from MMD)
	Slide 43: Closed Itemsets (adapted from MMD)
	Slide 44: Hot vs Not-so-hot items
	Slide 45: Idea 1: Separate hot from cold
	Slide 46: Idea 2: Use multiple thresholds
	Slide 47: Multiple-Level Association Rules
	Slide 48: Shopping Cart Itemset
	Slide 49: Quantitative Association Rules
	Slide 50: Handling Numerical Attributes
	Slide 51: Equi-width binning problems
	Slide 52: Bin-merging
	Slide 53: Equi-depth binning
	Slide 54: Example (python)
	Slide 55: Equi-width binning with cut()
	Slide 56: Issue: some bins are too sparse
	Slide 57: Equi-depth binning with qcut()
	Slide 58: Discretization with clustering (several options)
	Slide 59: Ratio Rules
	Slide 60: All is not perfect with A-priori
	Slide 61: Tyranny of counting pairs
	Slide 62: Many optimizations considered
	Slide 64: Use hashing to expedite generation of C2
	Slide 65: Key issue
	Slide 66: PCY Algorithm
	Slide 67: Hash Table Memory Usage: All-you-can-eat
	Slide 68: Hashing pairs
	Slide 69: Notice: collisions
	Slide 70: Observations About Buckets
	Slide 71: PCY Algorithm --- Pass 1
	Slide 72: PCY Algorithm: Between Passes
	Slide 73: Pass 2
	Slide 74: PCY Algorithm --- Pass 2
	Slide 75: Criticism on support/confidence (1)
	Slide 78: Criticism on high conf/support (2)
	Slide 79: Strong Rules Are Not Necessarily Interesting
	Slide 80: Criticism to Support and Confidence (Cont.)
	Slide 81: Lift of an Association Rule
	Slide 82: Lift of an Association Rule
	Slide 83: Lift of an Association Rule
	Slide 84: Rules with multiple items in the antecedent
	Slide 85: Back to the student’s survey
	Slide 86: Recap (lift)
	Slide 87: Criticism on lift: effect of null transactions
	Slide 88: Example
	Slide 89: Example
	Slide 90: Effect of null transactions
	Slide 91: Why is that?
	Slide 92: A solution: use cosine!
	Slide 94: Many different implementations
	Slide 95: Association rules - Conclusions

