Association Rule Mining

Yannis Kotidis

kotidis@aueb.gr
Professor, Department of Informatics

Athens University of Economics and Business

Suggested Reading

\square Data Mining: Concepts and Techniques, $3^{\text {rd }}$ Edition (The Morgan Kaufmann Series in Data Management Systems) 3rd Edition, by Jiawei Han, Micheline Kamber, Jian Pei (Chapter 6)
\square Mining of Massive Datasets, $2^{\text {nd }}$ Edition, by Jure Leskovec, Anand Rajaraman, Jeffrey David Ullman, Stanford University (Chapter 6)

Data Mining

\square The process of analyzing data to identify patterns or relationships
\square Has become a well-established discipline related to Artificial Intelligence and Statistical Analysis
\square Led by advances in computer hardware and our ability to analyze big datasets

- Data warehousing, BI, Cloud Computing

Association Rule Mining

\square Finding frequent patterns (associations) among sets of items in transactional databases
\square Basket data analysis, catalog design, direct mailing,...
\square Basic question: "Which groups or sets of items are customers likely to purchase on a given trip to the store?"
\square Learned patterns or itemsets, sush as \{diapers, beers\}, are used to construct if-then scenario (probabilistic) rules
\square buys(x, "diapers") \rightarrow buys(x, "beers") [5\%, 60\%]

What to do with rule Diapers \rightarrow Beers?

\square Enhance observed behavior
\square Place products in proximity to further encourage the combined sale
\square Increase the price of diapers but put beer in discount for a combined sale
\square Put products at opposite ends of the store to make customers spend more time (and buy more products) at the store

More ideas

\square Assume laptops and printers are frequently sold together
\square Place a higher-margin printer near the laptop section
\square Take a soon to be updated software suite and bundle it in an offer with laptops and printers
\square See https://www.kdnuggets.com/news/98/n01.html
\square What Wal-Mart might do with Barbie doll \rightarrow Candy bars association rule

Basic Concepts

\square Example: Basket Data analysis
\square Each transaction (basket) is a set of items (e.g. purchased by a customer in a visit)
T1: Milk, Diaper, Chocolate
T2: Diaper, Beer, Meat
T3: Sugar, Beer, Diaper

Inferred rule: buys(x, "Diaper") \rightarrow buys(x, "Beer") [5\%, 67\%]

Support and Confidence

TID	Items
T1	A,C
T2	A,C,D
T3	A,E
T4	D,E,F,G

\square Given rule $X, Y \Rightarrow Z$
\square Support: probability that a transaction contains $\{X, Y, Z\}$
$\square s=P[X$ and Y and $Z]$
\square Confidence: probability that a transaction having $\{X, Y\}$ also contains Z
$\square c=P[Z \mid X, Y]$

Let minimum support 50\%, and minimum confidence 50\%, we have

Problem formulation

\square Given
\square a set of 'market baskets'
(=binary matrix, of N rows/baskets and M columns/products)
\square min-support ' s ' and
\square min-confidence ' c '

Tid	Diaper	Meat	Milk	Beer
1	1	0	1	1
2	1	1	0	0
3	1	1	0	0
4	0	1	1	0

\square Find
\square all the rules with:
support $\geq \mathrm{s} \&$ confidence $\geq \mathrm{c}$

From rules to itemsets

\square First, find frequent itemsets
-e.g. $\{X, Y, Z\}$
\square "Frequent" means support $\geq \mathrm{s}$ (min-support)
\square Once we have a 'frequent itemset', we can find out the qualifying rules easily (how?)

$$
\begin{aligned}
& \text { Support }(X, Y \rightarrow Z)=\operatorname{Freq}(\{X, Y, Z\}) \\
& \begin{aligned}
\operatorname{Conf}(X, Y \rightarrow Z) & =P[Z \mid X, Y]=P[X, Y, Z] / P[X, Y] \\
& =\operatorname{Freq}(\{X, Y, Z\}) / \operatorname{Freq}(\{X, Y\})
\end{aligned}
\end{aligned}
$$Thus, let's focus on how to find frequent itemsets

Brute-force Frequent Itemsets Counting

\square Scan database once; maintain $2^{M}-1$ counters
\square One counter for each of $\{A\},\{B\},\{C\}, \ldots .,\{A, B\},\{A, C\}$, $\{A, D\}, \ldots\{B, C\},\{B, D\},\{B, E\}, \ldots\{A, B, C\}, \ldots$
\square Example ($M=3,2^{3}-1=7$ possible itemsets)

Hemset	Counter	
\{A\}	$0+1$	
\{B\}	0 +1	
\{C\}	0	
\{A,B\}	$0 \stackrel{+1}{+}$	Increase counters of itemsets $\langle A\rangle,\{B\}$ and $\{A, B\rangle$
\{A,C $\}$	0	contained in the basket
$\{B, C\}$	0	
$\{A, B, C\}$	0	

Brute-force Frequent Itemsets Counting

\square Scan database once; keep 2^{M} - 1 counters
\square One counter for each of $\{A\},\{B\},\{C\}, \ldots .,\{A, B\},\{A, C\}$, $\{A, D\}, \ldots\{B, C\},\{B, D\},\{B, E\}, \ldots\{A, B, C\}, \ldots$
\square Example ($M=3$)

Liemset	Counter	
$\{\{A\}$	1	
$\{B\}$	$1+1$	Basket 1: A,B
$\{C\}$	0	Basket 2: B
$\{A, B\}$	1	
$\{A, C\}$	0	
$\{B, C\}$	0	
$\{A, B, C\}$	0	

Brute-force Frequent Itemsets Counting

\square Scan database once; keep 2^{M} - 1 counters
\square One counter for each of $\{A\},\{B\},\{C\}, \ldots .,\{A, B\},\{A, C\}$, $\{A, D\}, \ldots\{B, C\},\{B, D\},\{B, E\}, \ldots\{A, B, C\}, \ldots$
\square Example ($M=3$)

| $\left.\begin{array}{lll}\text { Hemset } & \text { Counter } & \\ \{A\} & 1 & \\ \{B\} & 2+1 & \text { Basket 1: A,B } \\ \{C\} & 0^{+1} & \text { Basket 2: B } \\ \{A, B\} & 1 & \text { Basket 3: B,C } \\ \{A, C\} & 0 & \\ \{B, C\} & 0^{+1} & \\ \{A, B, C\} & 0 & \end{array}\right)$ |
| :--- | :--- | :--- |

Brute-force Frequent Itemsets Counting

\square Scan database once; keep 2^{M} - 1 counters
\square One counter for each of $\{A\},\{B\},\{C\}, \ldots .,\{A, B\},\{A, C\}$, $\{A, D\}, \ldots\{B, C\},\{B, D\},\{B, E\}, \ldots\{A, B, C\}, \ldots$
\square Example ($M=3$)

Itemset	Counter
$\{A\}$	1
$\{B\}$	3
$\{C\}$	1
$\{A, B\}$	1
$\{A, C\}$	0
$\{B, C\}$	1
$\{A, B, C\}$	0

Basket 1: A,B
Basket 2: B
Basket 3: B,C

Brute-force Frequent Itemsets Counting

\square Scan database once; keep 2^{M} - 1 counters
\square One counter for each of $\{A\},\{B\},\{C\}, \ldots .,\{A, B\},\{A, C\}$, $\{A, D\}, \ldots\{B, C\},\{B, D\},\{B, E\}, \ldots\{A, B, C\}, \ldots$
\square Example ($M=3$)

Itemset	Counter
$\{A\}$	2
$\{B\}$	4
$\{C\}$	1
$\{A, B\}$	2
$\{A, C\}$	0
$\{B, C\}$	1
$\{A, B, C\}$	0

Basket 1: A,B
Basket 2: B
Basket 3: B,C
Basket 4: A,B

Brute-force Frequent Itemsets Counting

\square Scan database once; keep 2^{M} - 1 counters
\square One counter for each of $\{A\},\{B\},\{C\}, \ldots .,\{A, B\},\{A, C\}$, $\{A, D\}, \ldots\{B, C\},\{B, D\},\{B, E\}, \ldots\{A, B, C\}, \ldots$
\square Example ($M=3$)

liemset	Counter
$\{A\}$	3
$\{B\}$	4
$\{C\}$	1
$\{A, B\}$	2
$\{A, C\}$	0
$\{B, C\}$	1
$\{A, B, C\}$	0

$\mathrm{A} \rightarrow \mathrm{B}$ [Support $=$? , Confident $=$? $]$
Basket 1: A,B
Basket 2: B
Basket 3: B,C
Basket 4: A,B
Basket 5: A

Brute-force Frequent Itemsets Counting

\square Scan database once; keep 2^{M} - 1 counters
\square One counter for each of $\{A\},\{B\},\{C\}, \ldots .\{A, B\},\{A, C\}$, $\{A, D\}, \ldots\{B, C\},\{B, D\},\{B, E\}, \ldots\{A, B, C\}, \ldots$
\square Drawback?
\square For $M=1000$ products, 2^{1000} is prohibitive...
\square E.g. 16GB RAM ($=2^{34}$ bits) stores 2^{29} counters using $32=2^{5}$ bit integers
\square Improvement?
\square Scan the db M times, looking for 1-, 2-, etc itemsets

Assume three products/items A, B and C ($M=3$)

200

first pass
min-sup:10

Move on

Anti-monotonicity property

\square If an itemset fails to be frequent, so will every superset of it
\square hence all supersets can be pruned
\square A subset of a frequent itemset must also be a frequent itemset
\square i.e., if $\{A B\}$ is a frequent itemset, both $\{A\}$ and $\{B\}$ should be a frequent itemset
\square Sketch of the (famous!) 'a-priori' algorithm
\square Let $L(i-1)$ be the set of large (frequent) itemsets with i-1 elements
\square Let $C(i)$ be the set of candidate itemsets (of size i)

The A-priori Algorithm

Compute $L(1)$, by scanning the database.
repeat, for $\mathrm{i}=2,3 \ldots$,
'join' $L(i-1)$ with itself, to generate $C(i)$
two itemset in $L(i-1)$ can be joined, if they agree on their first
$i-2$ elements (i.e. all but the last)
prune the itemsets of $\mathrm{C}(\mathrm{i})$ (how?)
scan the db , finding the counts of the $\mathrm{C}(\mathrm{i})$ itemsets - those that reach or exceed threshold are placed in L(i)
unless $L(i)$ is empty, repeat the loop

An Example

- $L_{3}=\{a b c, a b d, a c d, ~ a c e, b c d\}$
- Self-joining: $L_{3} \bowtie L_{3}$ to obtain candidates for C_{4}
- abcd is produced from abc and abd
- acde is produced from acd and ace
- Pruning:
- acde is removed because ade is not in L_{3}
- $\mathrm{C}_{4}=\{a b c d\}$

Note on Self-joining $L_{,} \bowtie L_{,}$

- The result is essentially a Cartesian Product (x)
- For example:
- $L_{1}=\{a, b, c, d, e\}$
- $C_{2}=L_{1} \times L_{1}=\{a b, a c, a d, a e, b c, b d, b e, c d, c e, d e\}$
- No pruning possible (why?)

Example 2

Min Support $=2$ (50\%)

Database D

TID	ltems
100	A,C,D
200	B,C,E
300	A,B,C,E
400	B E

$\xrightarrow{C_{1}}$| Scan D | $\{\mathrm{A}\}$ | 2 |
| :---: | :---: | :---: |
| | $\{\mathrm{~B}\}$ | 3 |
| | $\{\mathrm{C}\}$ | 3 |
| | $\{\mathrm{D}\}$ | 1 |
| | $\{\mathrm{E}\}$ | 1 |

L_{1}	itemset	sup.
	\{A\}	2
\longrightarrow	\{B\}	3
	\{C\}	3
	\{E\}	3

C_{2} itemset sup

L_{2} itemset sup $\{\mathrm{A}, \mathrm{C}\}$ $\{B, C\}$ $\{B, E\}$ $\{C, E\} \quad 2$

$\{A, B\}$	1
$\{A, C\}$	2
$\{A, E\}$	1
$\{B, C\}$	2
$\{B, E\}$	3
$\{C, E\}$	2

C_{3}| itemset |
| :---: | :---: | :---: | :---: |
| $\{\mathrm{B}, \mathrm{C}, \mathrm{E}\}$ |$\xrightarrow{\text { Scan } \mathrm{D}} L_{3}$| itemset | sup |
| :--- | :--- |
| $\{\mathrm{B}, \mathrm{C}, \mathrm{E}\}$ | 2 |

Generate Rules

Min Support $=2$ (50\%)

$\mathrm{B} \rightarrow \mathrm{C}$ [Support = ?, Confidence $=$?]

L_{l}| itemset | sup. |
| :---: | :---: |
| $\{\mathrm{A}\}$ | 2 |
| $\{B\}$ | 3 |
| $\{\mathrm{C}\}$ | 3 |
| $\{\mathrm{E}\}$ | 3 |

L_{2}| itemset | sup | |
| :---: | :---: | :---: |
| | $\{A, C\}$ | 2 |
| | $\{B, C\}$ | 2 |
| | $\{B, E\}$ | 3 |
| | $\{C, E\}$ | 2 |

$$
L_{3} \begin{array}{|l|c|}
\hline \text { itemset } & \text { sup } \\
\hline\{B, C, E\} & 2 \\
\hline & \{B, C
\end{array}
$$

Generate Rules

Min Support $=2$ (50\%)

$B \rightarrow C$ [Support $=2 / 4$, Confidence $=$?]

L_{l}| itemset | sup. |
| :---: | :---: |
| $\{\mathrm{A}\}$ | 2 |
| $\{B\}$ | 3 |
| $\{\mathrm{C}\}$ | 3 |
| $\{\mathrm{E}\}$ | 3 |

L_{2}| itemset | sup |
| :---: | :---: |
| A, C | 2 |
| | 2 |
| $\{\mathrm{~B}, \mathrm{E}\}$ | 3 |
| | $\{\mathrm{C}, \mathrm{E}\}$ |
| | 2 |

L_{3}| itemset | sup |
| :---: | :---: |
| $\{B, C, E\}$ | 2 |

Generate Rules

Min Support $=2$ (50\%)

Recall that Confidence $=P[C \mid B]=P[B, C] / P[B]$

L_{2}	itemset	sup
	\{A,C\}	2
	$\{\mathrm{B}, \mathrm{C}\}$	2
	$\{\mathrm{B}, \mathrm{E}\}$	3
	$\{\mathrm{C}, \mathrm{E}\}$	2

L_{3}| itemset | sup |
| :--- | :---: |
| $\{B, C, E\}$ | 2 |

From Itemsets to Association Rules

\square Itemset $\{B, C, E\}$ is frequent (support=50\%)
\square Consider rule $B, C \rightarrow E$
\square Support $(B, C \rightarrow E)=P[B, C, E]=50 \%$
\square Confidence $(B, C \rightarrow E)=P[B, C, E] / P[B, C]=2 / 2=100 \%$
\square Thus: $\quad B, C \rightarrow E[50 \%, 100 \%]$
\square More rules?
\square Also look at L_{2}

Exercise 3

\square Frequent Itemsets
$\square\{A, B, C\}$ support $=50 \%,\{A, B\}$ support $=50 \%,\{A, C\}$ support $=80 \%,\{B, C\}$ support $=80 \%,\{A\}=90 \%,\{B\}=90 \%$, $\{C\}=90 \%$
$\square A, B \rightarrow C[50 \%, 100 \%]$ (OK, exceeds thresholds)
\square Reject the following (confidence $<90 \%$)

- $A, C \rightarrow B[50 \%, 62.5 \%]$
- $B, C \rightarrow A[50 \%, 62.5 \%]$
- $A \rightarrow B[50 \%, 55.5 \%]$
- (also $B \rightarrow A, A \rightarrow C, C \rightarrow A, B \rightarrow C, C \rightarrow B$)

Apache Spark MLlib Example

\square Modified example from
https://spark.apache.org/docs/latest/ml-frequent-
pattern-mining.html
\square In addition to association rule mining, library provides common learning algorithms such as classification, regression, clustering, and collaborative filtering, feature extraction, transformation, dimensionality reduction, and selection

Define input dataset, convert to DF

```
scala> val dataset = spark.createDataset(Seq(
    | "A C D",
    | "B C E",
    | "A B C E",
        "B E")
    | ).map(t => t.split(" ")).toDF("items")
```

scala> dataset.show

Database D
TID Items
100 A,C,D 200 B,C,E 300 A,B,C,E 400 B E

Execute FPGrowth Algorithm

```
val fpgrowth = new
FPGrowth().setltemsCol("items").setMinSuppo
rt(0.5).setMinConfidence(0.5)
val model = fpgrowth.fit(dataset)
```

// Display frequent itemsets. model.freqltemsets.show()

Database D
TID Items
100 A,C,D 200 B,C,E 300 A,B,C,E 400 B E

List rules with their confidence

scala> model.associationRules.show()

Database D
TID Items
100 A,C,D
200 B,C,E
300 A,B,C,E 400 B E

Use rules to predict new purchases

scala> val newCustomer = spark.createDataset(Seq("A","B C")).map(t => t.split(" ")).toDF("items") newCustomer: org.apache.spark.sql.DataFrame = [items: array<string>]
scala> newCustomer.show

```
+------+
    items|
    [A]
|[B,C]|
+------+
scala> model.transform(newCustomer).show()
+------+----------+
items|prediction|
    [A]| [C]|
|[B,C]| [E, A]|
```


More uses of Association Rules

(MMDS book)

\square Related concepts: Let items be words, and let baskets be documents (e.g., Web pages, blogs, tweets).

- Brad and Angelina appear together.
\square Plagiarism: Let the items be documents and the baskets be sentences. An item (doc) is "in" a basket (sentence) if the sentence is in the document.
\square Look for pairs of items (docs) that appear together in baskets (sentences).
\square Biomarkers: Let the items be biomarkers such as genes or blood proteins, and diseases. Each basket is the set of data about a patient: list of biomarkers and deseses
- A frequent itemset that consists of one disease and one or more biomarkers suggests a test for the disease.

Reducing the number of Frequent Itemsets
\square Maximum Frequent Itemsets
Closed Frequent Itemsets

Maximal Frequent Itemsets

(slide adapted from MMD)
\square Defined as a frequent itemset for which none of its immediate supersets are frequent.
$\square \quad\{\mathrm{a}, \mathrm{d}\},\{\mathrm{a}, \mathrm{c}, \mathrm{e}\},\{\mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$ are maximal frequent itemsets in the example on the right

- Note that all remaining frequent itemsets can be derived (are subsets of) from those three
\square Caveat: we lose information on the support of their children
- E.g what is the support of $\{\mathrm{b}, \mathrm{c}\}$?
- Thus, need to scan db again to compute support of non-maximal sets

Closed Itemsets

(adapted from MMD)
\square Closed Itemset: an itemset I is closed if none of its immediate supersets has the same support as I
\square Closed Frequent Itemset: if it is closed and its support is greater than or equal to minsup.
\square Thus, if a frequent itemset is not closed \rightarrow at least one of its super sets has the same support

Closed Itemsets

(adapted from MMD)

$\square \quad\{a, b, c\}$ is closed frequent itemset

- None of its supersets have same support
$\square \quad\{a, d\}$ is not closed because (closed) frequent itemset $\{a, c, d\}$ is the same
- Thus, we can derive the support of a non-closed frequent itemset by moving down the lattice until we reach a closed frequent dataset
- Examples
$\square \sup (\{a, d\})=\sup (\{a, c, d\})=2$
$\square \sup (\{b\})=\sup (\{b, c\})=3$
$\square \sup (\{b, e\})=$?

- Note that $\{b, e\}$ is not a subnet of the depicted closed frequent itemsets, thus it cannot be frequent!

Hot vs Not-so-hot items

\square Most people buy milk, vegetables, soda, snacs etc. in their trip to the store.
\square Other products are not that common (e.g. windscreen cleaners, sushi, wasabi).
\square How to choose a good min-support threshold?
\square A global, low threshold will produce many rules from the frequent items.
\square A global, high threshold will not generate any rule containing less frequent items.

Idea 1: Separate hot from cold

\square Partition the data into several subsets, each of which contains only items of similar frequencies.
\square Perform association rule mining for each subset using a different minsupport threshold.
\square Caveat: can not generate rules spanning items from different subsets (e.g. Milk \rightarrow Sushi)

Basket: \{milk, soda, snacks, sushi\}
\{milk, soda, snacks\} \{sushi\}

snacks \rightarrow soda
windscre
en
cleaners, sushi, wasabi

Idea 2: Use multiple thresholds

\square Assign a different minimum support threshold per item (or group of items based on their frequencies)
\square E.g. \min-sup(Milk) $=10 \%, \min -$ sup $(S u s h i)=5 \%$
\square When considering an itemset use the minimum minsup() value of its elements
\square E.g. $\min -$ sup $(\{$ Milk, Sushi\}) $=\min (10 \%, 5 \%)=5 \%$
\square Thus, rules need to satisfy different minimum supports depending on what items are in the rules

Multiple-Level Association Rules

\square Items often form hierarchy
\square Recall dimension hierarchies in data warehousing
\square Rules regarding itemsets at appropriate levels could be quite useful:

p144 \Rightarrow p11 vS
Skim Milk \Rightarrow Wheat bread

Product-ids

Shopping Cart \rightarrow Itemset

P144

P2157

P11
\{P2157, Whole Milk, Milk, P144, Skim Milk, P11, Wheat-bread, Bread\}
\qquad
\qquad ,

Quantitative Association Rules

\square Boolean rules (categorical values): buys(x, "Bread") ^ buys(x, "Diapers") \rightarrow buys(x, "Beer") [20\%, 60\%]
\square Quantitative rules (interval values): age(x, "25..35") ^ income(x, "12..30K") \rightarrow buys(x, "PC") [20\%, 75\%]

Handling Numerical Attributes

\square Want to discretize continuous domain (e.g. age)
\square Idea 1: Equi-width binning

Equi-width binning problems

Some bins may never
find enough support

Min-age
Max-age

Bin-merging

Merge adjacent intervals when support < min-support

Equi-depth binning

\square Sort objects, choose bins so as to equi-divide objects among them
\square Produced bins have (approximately) same freq

Example (python)

Equi-width binning with cut()

In [2]: out = pd.cut(df.age,7,labels=['too young','very young','young','fine','kind of old','old','dinosaur'] df['equi_width']=out print(df)

name	age	equi_width
john	21	too young
nick	22	too young
martha	23	too young
taylor	26	very young
tim	27	very young
jim	27	very young
nick	28	very young
mike	28	very young
kostas	28	very young
don	29	young
mihaela	29	young
jay	30	young
donald	31	young
josh	32	young
george	35	fine
terry	39	kind of old
lisa	40	old
dina	42	old
pit	46	dinosaur
nash	47	dinosaur
McDuck	47	dinosaur

Issue: some bins are too sparse

In [8]: df.groupby('equi_width').size()
Out [8]: equi_width
too young 3
very young 6
young 5
fine 1
kind of old 1
old
dinosaur 3

Equi-depth binning with qcut()

In [5]: out = pd.qcut(df.age,7,labels=['too young','very young','young','fine','kind of old','old','dinosaur']) df['equi_depth']=out print(df)

name	age	equi_width	equi_depth
john	21	too young	too young
nick	22	too young	too young
martha	23	too young	too young
taylor	26	very young	very young
tim	27	very young	very young
jim	27	very young	very young
nick	28	very young	young
mike	28	very young	young
kostas	28	very young	young
don	29	young	fine
mihaela	29	young	fine
jay	30	young	fine
donald	31	young	kind of old
josh	32	young	kind of old
george	35	fine	kind of old
terry	39	kind of old	old
lisa	40	old	old
dina	42	old	old
pit	46	dinosaur	dinosaur
nash	47	dinosaur	dinosaur
McDuck	47	dinosaur	dinosaur

Discretization with clustering (several options)

Ratio Rules

\square Example:
Customer spends 1:2:5 \$ on bread:milk:butter
\square May answer questions of the form:
\square A customer who spends $\$ 10$ on milk and $\$ 7$ on butter how much is he willing to spend on diapers and beer?
\square Ratio Rules derived using eigenvector analysis

All is not perfect with A-priori
\square Performance considerations
\square Usefulness of rules discovered

Tyranny of counting pairs

\square Why counting supports of candidates is a problem?
\square The total number of candidates can be huge
\square One transaction may contain many candidates

- Assume M items
\square How many itemsets of size 2?

$$
M!/[(M-2)!* 2!]=M(M-1) / 2
$$

$\square \mathrm{M}=10,000 \rightarrow 49,995,000$ combinations

Many optimizations considered

\square Hash-based itemset counting: A k-itemset whose corresponding hashing bucket count is below the threshold cannot be frequent
\square Transaction reduction: A transaction that does not contain any frequent k -itemset is useless in subsequent scans.
\square Partitioning: Any itemset that is potentially frequent in DB must be frequent in at least one of the partitions of $D B$
\square Sampling: mining on a subset of given data, lower support threshold

Use hashing to expedite generation of C_{2}

\square The PCY algorithm
J. Park, M. Chen, and P. Yu. An effective hash-based algorithm for mining association rules. In SIGMOD'95

Key issue

\square Counting pairs (second phase of a-priori) is too slow
\square Number of possible pairs is (often) much larger than main memory
\square Wal-Mart sells 140,000 items and can store billions of baskets.
\square With 4-byte counters, need 36GB of RAM to store all pair counts in a triangular matrix
\square May also store only existing pairs in a list using $3 x$ more space per pair

PCY Algorithm

\square Hash-based improvement to A-Priori.
\square During Pass 1 of A-priori, most memory is idle.
\square We only count frequent items
\square One counter (e.g. 4 bytes) per item suffices
■ For the Wal-Mart example $\sim 0.6 \mathrm{MB}$ is enough
\square Use extra memory for a hash table [0...B-1]
\square Each hash bucket stores a counter for that bin
\square Need B*4bytes

Hash Table Memory Usage:

 All-you-can-eat

- Counters for itemsets with exactly 1 item used during fist pass
- Will be used for counting groups of $\{x, y\}$ pairs appearing in transactions
- Initialize all counters to 0

Hashing pairs

\square Assume hash function $h(x, y)$ that maps a pair of items x, y to a bucket in range 0..B-1
\square E.g. h(beer,diaper)=127
\square While counting frequent items, upon seeing a transaction with $x_{1}, \ldots x_{k}$ items list all pairs x_{i}, x_{i} from this transaction
\square For each pair increase counter of corresponding bucket $h\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}\right)$ by one

Notice: collisions

\square Number of possible pairs is much larger than size of hash table
\square Collisions are inevitable!
\square E.g. is may be that h(beep, diapers) $=$ $\mathrm{h}(\mathrm{PC}$, Monitor $)=$
\square Thus, a bucket k counts
all pairs x, y for which $h(x, y)=k$

Observations About Buckets

\square If a bucket contains a frequent pair, then the bucket is surely frequent.
\square We cannot use the hash table to eliminate any member of this bucket.
\square Even without any frequent pair, a bucket can be frequent.
\square Again, nothing in the bucket can be eliminated.
\square But in the best case, the count for a bucket is less than the support s.

- Now, all pairs that hash to this bucket can be eliminated as candidates, even if the pair consists of two frequent items.

PCY Algorithm --- Pass 1

FOR (each basket) \{ FOR (each item) add 1 to item's count; FOR (each pair of items) \{
hash the pair to a bucket;
add 1 to the count for that bucket
\}
\}

PCY Algorithm: Between Passes

\square Replace the buckets by a bit-vector:
$\square 1$ means the bucket count exceeds the support s (frequent bucket); 0 means it did not.
\square Integers are replaced by bits, so the bit-vector requires little second-pass space.
\square Also, decide which C_{1} items are frequent and list them (create L_{1}) for the second pass.

Pass 2

PCY Algorithm --- Pass 2

Count all pairs $\{i, i\}$ that meet the conditions:
Both i and i are frequent items (appear in L1)
2. The pair $\{i, i\}$, hashes to a bucket number whose bit in the bit vector is 1 .

Notice all these conditions are necessary for the pair to have a chance of being frequent.

Criticism on support/confidence (1)

\square Not all high-confidence rules are interesting
\square The rule $X \rightarrow$ milk may have high confidence for many itemsets X, because milk is just purchased very often (independent of X) and the confidence will be high
\square Rule $X \rightarrow Y$ in interesting if $\operatorname{Conf}(X \rightarrow Y) \gg \operatorname{Support}(Y)$

Criticism on high conf/support (2)

\square Example 1: (Aggarwal \& Yu, PODS98)
\square Among 5000 students

- 3000 play basketball
- 3750 eat cereal
- 2000 both play basket ball and eai cereal
\square Compare the following two rules
- play basketball \Rightarrow eat cereal $[40 \%, 66.7]$
\square play basketball \Rightarrow not eat cereal [20\%, 33.3\%]

	basketball	not basketball	sum(row)
cereal	2000	1750	3750
not cereal	1000	250	1250
sum(col.)	3000	2000	5000

Strong Rules Are Not Necessarily Interesting

\square play basketball \Rightarrow eat cereal $[40 \%, 66.7 \%$] is misleading because the overall percentage of students eating cereal is 75% which is higher than 66.7\%.
\square play basketball \Rightarrow not eat cereal $[20 \%, 33.3 \%]$ is more interesting, although with lower support and confidence

	basketball	not basketball	sum(row)
cereal	2000	1750	3750
not cereal	1000	250	1250
sum(col.)	3000	2000	5000

Criticism to Support and Confidence (Cont.)

\square Example 2:
$\square X$ and Y : positively correlated,
$\square X$ and Z, negatively related

X	1	1	1	1	0	0	0	0	
Y	1	1	0	0	0	0	0	0	
Z	0	1	1	1	1	1	1	1	1

\square support and confidence of $X \rightarrow Z$ dominates
\square We need a measure of dependent or correlated events

Rule	Support	Confidence
$X=>Y$	25%	50%
$X=>Z$	$37,50 \%$	75%

Lift of an Association Rule

$\square \operatorname{Lift}(X \rightarrow Y)=P(X$ and $Y) /\left(P(X)^{*} P(Y)\right)$
$\square P(X$ and $Y)=$ support observed in the dataset
$\square P(X)^{*} P(Y)=$ expected support if X and Y were independent
$\square \operatorname{Lift}(X \rightarrow Y)>1$ suggests that $X \& Y$ appear together more often that expected. Thus, the occurrence of X has a positive effect on the occurrence of Y

X	1	1	1	1	0	0	0
Y	1	1	0	0	0	0	0
Z	0	1	1	1	1	1	1

- In some cases rare items may produce rules with very high values of lift

Lift of an Association Rule

$\square \operatorname{Lift}(X \rightarrow Y)=P(X$ and $Y) /(P(X) * P(Y))$
$\square P(X$ and $Y)=$ support observed in the dataset
$\square P(X)^{*} P(Y)=$ expected support if X and Y were independent
$\square \operatorname{Lift}(X \rightarrow Y)>1$ suggests that $X \& Y$ appear together more often that expected. Thus, the occurrence of X has a positive effect on the occurrence of Y

X	1	1	1	1	0	0	0
Y	1	1	0	0	0	0	0
Z	0	1	1	1	1	1	1

- In some cases rare items may produce rules with very high values of lift

Lift of an Association Rule

$\square \operatorname{Lift}(X \rightarrow Y)=P(X$ and $Y) /(P(X) * P(Y))$
$\square P(X$ and $Y)=$ support observed in the dataset
$\square P(X)^{*} P(Y)=$ expected support if X and Y were independent
$\square \operatorname{Lift}(X \rightarrow Y)>1$ suggests that $X \& Y$ appear together more often that expected. Thus, the occurrence of X has a positive effect on the occurrence of Y

X	1	1	1	1	0	0	0
Y	1	1	0	0	0	0	0
Z	0	1	1	1	1	1	1

Ifemset	Support	Lift
$\{X, Y\}$	25%	2.00
$\{X, Z\}$	37.5%	0.86
$\{Y, Z\}$	12.5%	0.57

- In some cases rare items may produce rules with very high values of lift

Rules with multiple items in the antecedent

$\square \operatorname{Lift}(A \rightarrow B)=P(A$ and $B) /(P(A) * P(B))$
$\square \mathbf{A}$ in this formula can be a set of items
\square Example:
Assume rule $X, Y \rightarrow Z$

X	1	1	1	1	0	0	0
0							
Y	1	1	0	0	0	0	0

Back to the student's survey

\square play basketball \Rightarrow eat cereal [40\%, 66.7\%]
\square Lift $=(2000 / 5000) /((3000 / 5000) *(3750 / 5000))=0.89<1$
\square play basketball \Rightarrow not eat cereal $[20 \%, 33.3 \%$]
\square Lift $=(1000 / 5000) /((3000 / 5000) *(1250 / 5000))=1.33>1$

	basketball	not basketball	sum(row)
cereal	2000	1750	3750
not cereal	1000	250	1250
sum(col.)	3000	2000	5000

Recap (lift)

\square Lift evaluates the mined rule against the expected response assuming independence
$\square \operatorname{Lift}(X \rightarrow Y)=\sup (X, Y) /(\sup (X) * \sup (Y))$
\square Equiv. Lift $=$ Confidence(rule)/expConfidence(Rule)
\square Confidence $(X \rightarrow Y)=P(X, Y) / P(X)=\sup (X, Y) / \sup (X)$
$\square \operatorname{expConfidence}(X \rightarrow Y)=P(X)(P(Y) / P(X)=P(Y)=\sup (Y)$
\square Lift tells us how much better a rule is at predicting the result.

■ Greater lift values indicate stronger associations.

Criticism on lift: effect of null transactions

\square Assume itemset $\{\mathrm{A}, \mathrm{B}\}$
\square A null transaction is a transaction that does not contain any of the itemsets being examined.
$\square E . g T=\{D, F, G\}$ is a null transaction for this itemset

Example

\square Assume that store sold 100 packages of A and 100 packages of B
\square Only one of the above transactions contains both A, B
\square There are no null transactions for $\{A, B\}$ in this example

Example

\square Assume that store sold 100 packages of A and 100 packages of B
\square Only one of the above transactions contains both A, B
\square Thus, $P(A)=P(B)=100 / 199$
$\square P(A$ and $B)=1 / 199$
\square Lift $=1 / 199 /(100 / 199 * 100 / 199) \approx 0.02$
\square Conclusion: A and B are negatively correlated

Effect of null transactions

\square Now assume arrival of 19801 more transactions that do not contain A nor B

- Total number of transactions is $\mathrm{n}=199+19801=20000$
- Thus, $P(A)=P(B)=100 / 20000$
- $P(A$ and $B)=1 / 20000$
- Lift $=1 / 20000 /(100 / 20000 * 100 / 20000)=2$
\square Conclusion: A and B are positively correlated
- Which is true. Neither A nor B appear in the 19801 null transactions we added!

Why is that?

\square Lift $=P(A$ and $B) /(P(A) * P(B))=$
$=\mid A$ and $B \mid / n /(|A| / n *|B| / n)=$
$=n^{*} \mid A$ and $B \mid /(|A| *|B|)$
\square When more null transactions are added
$\square \mathrm{n}$ in increased
$\square \mid A$ and $B|,|A|$ and $| B \mid$ stay constant
\square As a result, lift increases by adding more null transactions
\square Thus, lift is not null invariant

A solution: use cosine!

\square Define cosine $(A, B)=P(A$ and $B) / \operatorname{sqrt}\left(P(A)^{*} P(B)\right)$
\square Cosine takes values between 0 and 1
\square Because of the sqrt(), cosine does not depend on n, thus, it is null invariant
\square In this example cosine $(A, B)=0.01$ in both examples

Many different implementations

\square R: rules<-apriori(trans,parameter=list(supp=.02, conf=.5, target="rules"))
\square Rapidminer:

Association rules - Conclusions

\square An intuitive tool to find patterns
\square easy to understand its output
\square number of rules is a concern
\square fine-tuned algorithms exist

