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Data Mining
3

 The process of analyzing data to identify patterns

or relationships

 Has become a well-established discipline related to 

Artificial Intelligence and Statistical Analysis

 Led by advances in computer hardware and our ability 

to analyze big datasets

◼ Data warehousing, BI, Cloud Computing
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Association Rule Mining

 Finding frequent patterns (associations) among sets of 
items in transactional databases

 Basket data analysis, catalog design, direct mailing,… 

 Basic question: “Which groups or sets of  items are customers 

likely to purchase on a given trip to the store?”

 Learned patterns or itemsets, sush as {diapers, beers}, are 
used to construct if-then scenario (probabilistic) rules

 buys(x, “diapers”) → buys(x, “beers”) [5%, 60%]



What to do with rule Diapers→Beers ?

 Enhance observed behavior

 Place products in proximity to further encourage the 

combined sale

 Increase the price of diapers but put beer in discount 

for a combined sale

 Put products at opposite ends of the store to make 

customers spend more time (and buy more products) 

at the store
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More ideas

 Assume laptops and printers are frequently sold 

together

 Place a higher-margin printer near the laptop section

 Take a soon to be updated software suite and bundle it 

in an offer with laptops and printers

 See https://www.kdnuggets.com/news/98/n01.html

 What Wal-Mart might do with Barbie doll → Candy 

bars association rule
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https://www.kdnuggets.com/news/98/n01.html


Basic Concepts
9

 Example: Basket Data analysis

 Each transaction (basket) is a set of items (e.g.

purchased by a customer in a visit)

T1: Milk, Diaper, Chocolate

T2: Diaper, Beer, Meat

T3: Sugar, Beer, Diaper

…

Inferred rule: 

buys(x, “Diaper”) → buys(x, “Beer”) [5%, 67%]



Support and Confidence

 Given rule X,Y  Z 

 Support: probability that a 
transaction contains {X,Y,Z}

 s=P[X and Y and Z]

 Confidence: probability that a 
transaction having {X,Y} also 
contains Z

 c=P[Z|X,Y]

TID Items

T1 A,C

T2 A,C,D

T3 A,E

T4 D,E,F,G
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Let minimum support 50%, and 

minimum confidence 50%, we have

A   C  (50%, 66.6%)

C   A  (50%, 100%)

Contains Z
Contains 

X,Y,Z

Contains X,Y

?

?



Problem formulation

 Given

 a set of ‘market baskets’ 

(=binary matrix, of N 

rows/baskets and M 

columns/products)

 min-support ‘s’ and

 min-confidence ‘c’

 Find

 all the rules with: 

support ≥ s & confidence ≥  c
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Tid Diaper Meat Milk Beer

1 1 0 1 1

2 1 1 0 0

3 1 1 0 0

4 0 1 1 0



From rules to itemsets
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 First, find frequent itemsets 

 e.g. {X,Y,Z}

 “Frequent” means support ≥ s (min-support)

 Once we have a ‘frequent itemset’, we can find out 
the qualifying rules easily (how?)

 Thus, let’s focus on how to find frequent itemsets

Support(X,Y→Z) = Freq({X,Y,Z})

Conf(X,Y→Z) = P[Z|X,Y] = P[X,Y,Z]/P[X,Y]

           = Freq({X,Y,Z}) / Freq({X,Y})



Brute-force Frequent Itemsets Counting

 Scan database once; maintain 2M-1 counters

 One counter for each of {A}, {B}, {C}, …., {A,B}, {A,C}, 

{A,D}, … {B,C}, {B,D}, {B,E},… {A,B,C}, …

 Example (M=3, 23-1=7 possible itemsets)
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Itemset Counter

{A} 0

{B} 0

{C} 0

{A,B} 0

{A,C} 0

{B,C} 0

{A,B,C} 0

Basket 1: A,B

+1
+1

+1
Increase counters of 

itemsets {A}, {B} and {A,B} 

contained in the basket



Brute-force Frequent Itemsets Counting

 Scan database once; keep 2M-1 counters

 One counter for each of {A}, {B}, {C}, …., {A,B}, {A,C}, 

{A,D}, … {B,C}, {B,D}, {B,E},… {A,B,C}, …

 Example (M=3)
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Itemset Counter

{A} 1

{B} 1

{C} 0

{A,B} 1

{A,C} 0

{B,C} 0

{A,B,C} 0

Basket 1: A,B

Basket 2: B

+1



Brute-force Frequent Itemsets Counting

 Scan database once; keep 2M-1 counters

 One counter for each of {A}, {B}, {C}, …., {A,B}, {A,C}, 

{A,D}, … {B,C}, {B,D}, {B,E},… {A,B,C}, …

 Example (M=3)
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Itemset Counter

{A} 1

{B} 2

{C} 0

{A,B} 1

{A,C} 0

{B,C} 0

{A,B,C} 0

Basket 1: A,B

Basket 2: B

Basket 3: B,C

+1

+1

+1



Brute-force Frequent Itemsets Counting

 Scan database once; keep 2M-1 counters

 One counter for each of {A}, {B}, {C}, …., {A,B}, {A,C}, 

{A,D}, … {B,C}, {B,D}, {B,E},… {A,B,C}, …

 Example (M=3)
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Itemset Counter

{A} 1

{B} 3

{C} 1

{A,B} 1

{A,C} 0

{B,C} 1

{A,B,C} 0

Basket 1: A,B

Basket 2: B

Basket 3: B,C



Brute-force Frequent Itemsets Counting

 Scan database once; keep 2M-1 counters

 One counter for each of {A}, {B}, {C}, …., {A,B}, {A,C}, 

{A,D}, … {B,C}, {B,D}, {B,E},… {A,B,C}, …

 Example (M=3)
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Itemset Counter

{A} 2

{B} 4

{C} 1

{A,B} 2

{A,C} 0

{B,C} 1

{A,B,C} 0

Basket 1: A,B

Basket 2: B

Basket 3: B,C

Basket 4: A,B



Brute-force Frequent Itemsets Counting

 Scan database once; keep 2M-1 counters

 One counter for each of {A}, {B}, {C}, …., {A,B}, {A,C}, 

{A,D}, … {B,C}, {B,D}, {B,E},… {A,B,C}, …

 Example (M=3)
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Itemset Counter

{A} 3

{B} 4

{C} 1

{A,B} 2

{A,C} 0

{B,C} 1

{A,B,C} 0

Basket 1: A,B

Basket 2: B

Basket 3: B,C

Basket 4: A,B

Basket 5: A

A→B [Support = ? , Confident = ?]



Brute-force Frequent Itemsets Counting

 Scan database once; keep 2M-1 counters

 One counter for each of {A}, {B}, {C}, …., {A,B}, {A,C}, 

{A,D}, … {B,C}, {B,D}, {B,E},… {A,B,C}, …

 Drawback?

 For M=1000 products, 21000 is prohibitive...

 E.g. 16GB RAM (=234 bits) stores 229 counters using 

32=25 bit integers

 Improvement? 

 Scan the db M times, looking for 1-, 2-, etc itemsets
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Assume three products/items A,B and C 
(M=3)
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A B C
first pass

100 200 2

min-sup:10



Move on

22

A B C
first pass

100 200 2

min-sup:10

A,B A,C B,C



Anti-monotonicity property
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 If an itemset fails to be frequent, so will every superset of it

 hence all supersets can be pruned

 A subset of a frequent itemset must also be a frequent itemset

 i.e., if {AB} is a frequent itemset, both {A} and {B} should be a 

frequent itemset

 Sketch of the (famous!) ‘a-priori’ algorithm

 Let L(i-1) be the set of large (frequent) itemsets with i-1 elements

 Let C(i) be the set of candidate itemsets (of size i)



The A-priori Algorithm
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Compute L(1), by scanning the database.

repeat, for i=2,3...,
‘join’ L(i-1) with itself, to generate C(i)

two itemset in L(i-1) can be joined, if they agree on their first 
i-2 elements (i.e. all but the last)

prune the itemsets of C(i) (how?)

scan the db, finding the counts of the C(i) itemsets – those that 
reach or exceed threshold are placed in L(i)

unless L(i) is empty, repeat the loop



An Example
25

 L3={abc, abd, acd, ace, bcd}

 Self-joining: L3 L3 to obtain candidates for C4

 abcd is produced from abc and abd 

 acde is produced from acd and ace

 Pruning:

 acde is removed because ade is not in L3

 C4={abcd}

notation for itemset {b,c,d}

notation for itemset {a,c,e}



Note on Self-joining L1      L1
26

 The result is essentially a Cartesian Product (x)

 For example:

 L1={a, b, c, d, e}

 C2 = L1 x L1= {ab, ac, ad, ae, bc, bd, be, cd, ce, de}

 No pruning possible (why?)



Example 2
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TID Items

100 A,C,D

200 B,C,E

300 A,B,C,E

400 B E

Database D itemset sup.

{A} 2

{B} 3

{C} 3

{D} 1

{E} 3

Scan D

C1

itemset sup

{A,B} 1

{A,C} 2

{A,E} 1

{B,C} 2

{B,E} 3

{C,E} 2

C2

Scan D

itemset

{A,B}

{A,C}

{A,E}

{B,C}

{B,E}

{C,E}

C2

L3Scan D itemset sup

{B,C,E} 2

C3 itemset

{B,C,E}

itemset sup.

{A} 2

{B} 3

{C} 3

{E} 3

L1

itemset sup

{A,C} 2

{B,C} 2

{B,E} 3

{C,E} 2

L2

Min Support = 2 (50%)



Generate Rules
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L3 itemset sup

{B,C,E} 2

itemset sup.

{A} 2

{B} 3

{C} 3

{E} 3

L1

itemset sup

{A,C} 2

{B,C} 2

{B,E} 3

{C,E} 2

L2

Min Support = 2 (50%)

B→C [Support = ?,  Confidence = ?]



Generate Rules
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L3 itemset sup

{B,C,E} 2

itemset sup.

{A} 2

{B} 3

{C} 3

{E} 3

L1

itemset sup

{A,C} 2

{B,C} 2

{B,E} 3

{C,E} 2

L2

Min Support = 2 (50%)

B→C [Support = 2/4,  Confidence = ?]



Generate Rules
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L3 itemset sup

{B,C,E} 2

itemset sup.

{A} 2

{B} 3

{C} 3

{E} 3

L1

itemset sup

{A,C} 2

{B,C} 2

{B,E} 3

{C,E} 2

L2

Min Support = 2 (50%)

B→C [Support = 2/4,  Confidence = (2/4)/(3/4)=2/3]

Recall that Confidence = P[C|B] = P[B,C]/P[B]
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From Itemsets to Association Rules

 Itemset {B,C,E} is frequent (support=50%)

 Consider rule B,C →E

 Support(B,C →E) = P[B,C,E] = 50%

 Confidence(B,C →E) = P[B,C,E]/P[B,C]=2/2=100%

 Thus :     B,C→E [50%,100%]

 More rules?

 Also look at L2
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Exercise 3

 Frequent Itemsets 

 {A,B,C} support = 50%, {A,B} support = 50%, {A,C} 

support=80%, {B,C} support = 80%, {A}=90%, {B}=90%, 

{C}=90%

 A,B→C [50%, 100%] (OK, exceeds thresholds)

 Reject the following (confidence < 90%)

 A,C→B [50%, 62.5%]

 B,C→A [50%, 62.5%]

 A→B [50% , 55.5%] 

◼ (also B→A, A→C, C→A, B→C, C→B) 

MIN-SUPPORT = 50%

MIN-CONFIDENCE=90%



Apache Spark MLlib Example

 Modified example from 

https://spark.apache.org/docs/latest/ml-frequent-

pattern-mining.html

 In addition to association rule mining, library 

provides common learning algorithms such as 

classification, regression, clustering, and 

collaborative filtering, feature extraction, 

transformation, dimensionality reduction, and 

selection
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https://spark.apache.org/docs/latest/ml-frequent-pattern-mining.html
https://spark.apache.org/docs/latest/ml-frequent-pattern-mining.html


Define input dataset, convert to DF
35

TID Items

100 A,C,D

200 B,C,E

300 A,B,C,E

400 B E

Database Dscala> val dataset = spark.createDataset(Seq(

     |   "A C D",

     |   "B C E",

     |   "A B C E",

     |   "B E")

     | ).map(t => t.split(" ")).toDF("items")

scala> dataset.show



Execute FPGrowth Algorithm
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TID Items

100 A,C,D

200 B,C,E

300 A,B,C,E

400 B E

Database Dval fpgrowth = new 

FPGrowth().setItemsCol("items").setMinSuppo

rt(0.5).setMinConfidence(0.5)

val model = fpgrowth.fit(dataset)

// Display frequent itemsets.

model.freqItemsets.show()

L3

itemset sup

{B,C,E} 2

itemset sup.

{A} 2

{B} 3

{C} 3

{E} 3

L1

itemset sup

{A,C} 2

{B,C} 2

{B,E} 3

{C,E} 2

L2



List rules with their confidence
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TID Items

100 A,C,D

200 B,C,E

300 A,B,C,E

400 B E

Database Dscala> model.associationRules.show()



Use rules to predict new purchases 
38



More uses of Association Rules
(MMDS book)

 Related concepts: Let items be words, and let baskets be documents (e.g., 

Web pages, blogs, tweets). 

 Brad and Angelina appear together.

 Plagiarism: Let the items be documents and the baskets be sentences. An 

item (doc) is “in” a basket (sentence) if the sentence is in the document.

 Look for pairs of items (docs) that appear together in baskets 

(sentences). 

 Biomarkers: Let the items be biomarkers such as genes or blood proteins, 

and diseases. Each basket is the set of data about a patient: list of 

biomarkers and deseses

 A frequent itemset that consists of one disease and one or more 

biomarkers suggests a test for the disease.
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Reducing the number of Frequent 

Itemsets

 Maximum Frequent Itemsets

 Closed Frequent Itemsets

40



Maximal Frequent Itemsets
(slide adapted from MMD)

 Defined as a frequent itemset 

for which none of its 

immediate supersets are 

frequent.

 {a,d}, {a,c,e}, {b,c,d,e} are 

maximal frequent itemsets in 

the example on the right

 Note that all remaining frequent

itemsets can be derived (are

subsets of) from those three

 Caveat: we lose information

on the support of their 

children

 E.g what is the support of

{b,c}?

◼ Thus, need to scan db again to 

compute support of non-maximal 

sets
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Closed Itemsets
(adapted from MMD)

 Closed Itemset: an itemset I is closed if none of its 

immediate supersets has the same support as I

 Closed Frequent Itemset: if it is closed and its 

support is greater than or equal to minsup.

 Thus, if a frequent itemset is not closed → at least 

one of its super sets has the same support
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Closed Itemsets
(adapted from MMD)

 {a,b,c} is closed frequent itemset

 None of its supersets have same 

support

 {a,d} is not closed because (closed)

frequent itemset {a,c,d} is the same

 Thus, we can derive the support of a 

non-closed frequent itemset by moving 

down the lattice until we reach a closed 

frequent dataset

 Examples

 sup({a,d}) = sup({a,c,d}) = 2

 sup({b}) = sup({b,c}) = 3

 sup({b,e}) = ?

◼ Note that {b,e} is not a subnet of the depicted 

closed frequent itemsets, thus it cannot be 

frequent!
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Hot vs Not-so-hot items

 Most people buy milk, vegetables, soda, snacs etc. 

in their trip to the store.

 Other products are not that common (e.g. 

windscreen cleaners, sushi, wasabi).

 How to choose a good min-support threshold?

 A global, low threshold will produce many rules from 

the frequent items.

 A global, high threshold will not generate any rule 

containing less frequent items.
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Idea 1: Separate hot from cold

 Partition the data into 

several subsets, each of 

which contains only items of 

similar frequencies.

 Perform association rule 

mining for each subset 

using a different min-

support threshold. 

 Caveat: can not generate 

rules spanning items from 

different subsets (e.g. Milk 

→ Sushi)

45

milk, 

vegetabl

es, soda, 

snacs

snacks→soda

windscre

en 

cleaners, 

sushi, 

wasabi

wasabi →sushi

Basket: {milk, soda, snacks, sushi}

{milk, soda, snacks} {sushi}

P
a

rt
it
io

n
 1

P
a

rt
it
io

n
 2



Idea 2: Use multiple thresholds

 Assign a different minimum support threshold per 

item (or group of items based on their frequencies)

 E.g. min-sup(Milk) = 10%, min-sup(Sushi) = 5%

 When considering an itemset use the minimum min-

sup() value of its elements

 E.g. min-sup({Milk, Sushi}) = min(10%, 5%) = 5%

 Thus, rules need to satisfy different minimum 

supports depending on what items are in the rules
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Multiple-Level Association Rules
47

 Items often form hierarchy

 Recall dimension hierarchies 

in data warehousing

 Rules regarding itemsets at 

appropriate levels could 

be quite useful:

Food

BreadMilk

Whole Milk White-breadWheat-breadSkim Milk

Product-ids

p144 p11

p144  p11

 vs

Skim Milk  Wheat bread



Shopping Cart → Itemset
48

3.5%1.5%

P144 P2157 P11

Performance considerations?

Extended basket {P2157, Whole Milk, Milk, P144, Skim Milk, P11, Wheat-bread, Bread}



Quantitative Association Rules

 Boolean rules (categorical values):

buys(x, “Bread”) ^ buys(x, “Diapers”)  →

buys(x, “Beer”) [20%, 60%]

 Quantitative rules (interval values):

age(x, “25..35”) ^ income(x, “12..30K”) →

buys(x, “PC”) [20%, 75%]
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Handling Numerical Attributes

 Want to discretize continuous domain (e.g. age)

 Idea 1: Equi-width binning

50

Age

Min-age Max-age

20 25 30 35 40 45 50 55

“25<=Age<30”



Equi-width binning problems
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Age

Min-age Max-age

20 25 30 35 40 45 50 55

Some bins may never 

find enough support



Bin-merging
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Age

Min-age Max-age

20 25 30 35 40 45 50 55

Merge adjacent intervals when 

support < min-support
“45<=Age<55”



Equi-depth binning

 Sort objects, choose bins so as to equi-divide 

objects among them

 Produced bins have (approximately) same freq
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Age

Min-age Max-age

20 25 3027 37 4528 55



Example (python)
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Equi-width binning with cut()
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Issue: some bins are too sparse
56



Equi-depth binning with qcut()
57



Discretization with clustering 

(several options)
58

Age

Salary

Ranges may overlap, merge?



Ratio Rules
59

 Example:

Customer spends 1:2:5 $ on bread:milk:butter

 May answer questions of the form:

 A customer who spends $10 on milk and $7 on butter 

how much is he willing to spend on diapers and beer?

 Ratio Rules derived using eigenvector analysis
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All is not perfect with A-priori

 Performance considerations

 Usefulness of rules discovered



Tyranny of counting pairs

 Why counting supports of candidates is a problem?

 The total number of candidates can be huge

 One transaction may contain many candidates

 Assume M items

 How many itemsets of size 2?

M!/[(M-2)! * 2!] = M(M-1)/2

 Μ=10,000 → 49,995,000 combinations

61
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Many optimizations considered

 Hash-based itemset counting: A k-itemset whose corresponding 

hashing bucket count is below the threshold cannot be frequent

 Transaction reduction: A transaction that does not contain any frequent 

k-itemset is useless in subsequent scans. 

 Partitioning: Any itemset that is potentially frequent in DB must be 

frequent in at least one of the partitions of DB

 Sampling: mining on a subset of given data, lower support threshold 



Use hashing to expedite generation of C2

 The PCY algorithm

64

J. Park, M. Chen, and P. Yu. An effective hash-based 
algorithm for mining association rules. In SIGMOD’95



Key issue

 Counting pairs (second phase of a-priori) is too slow

 Number of possible pairs is (often) much larger than 

main memory

 Wal-Mart sells 140,000 items and can store billions 

of baskets.

 With 4-byte counters, need 36GB of RAM to store all 

pair counts in a triangular matrix

 May also store only existing pairs in a list using 3x 

more space per pair
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PCY Algorithm

 Hash-based improvement to A-Priori.

 During Pass 1 of A-priori, most memory is idle.

 We only count frequent items

 One counter (e.g. 4 bytes) per item suffices

◼ For the Wal-Mart example ~0.6MB is enough

 Use extra memory for a hash table [0...B-1] 

 Each hash bucket stores a counter for that bin

 Need B*4bytes

66
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Hash Table Memory Usage: 

All-you-can-eat

Item counts

Hash Table

• Counters for itemsets 

with exactly 1 item 

used during fist pass

• Will be used for counting 

groups of {x,y} pairs 

appearing in transactions

• Initialize all counters to 0



Hashing pairs

 Assume hash function h(x,y) that maps a pair of 

items x,y to a bucket in range 0..B-1

 E.g. h(beer,diaper)=127 

 While counting frequent items, upon seeing a 

transaction with x1,… xk items list all pairs xi, xj

from this transaction

 For each pair increase counter of corresponding bucket 

h(xi, xj) by one
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Notice: collisions

 Number of possible 

pairs is much larger 

than size of hash table

 Collisions are 

inevitable!

 E.g. is may be that 

h(beep,diapers) = 

h(PC,Monitor) = 

 Thus, a bucket k counts 

all pairs x,y for which 

h(x,y)=k

69

Item counts

Hash Table



Observations About Buckets

 If a bucket contains a frequent pair, then the bucket is 

surely frequent.

 We cannot use the hash table to eliminate any member of 

this bucket. 

 Even without any frequent pair, a bucket can be 

frequent.

 Again, nothing in the bucket can be eliminated.

 But in the best case, the count for a bucket is less than 

the support s.

 Now, all pairs that hash to this bucket can be eliminated as 

candidates, even if the pair consists of two frequent items. 
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PCY Algorithm --- Pass 1

FOR (each basket) {

FOR (each item)

add 1 to item’s count;

FOR (each pair of items) {

hash the pair to a bucket;

add 1 to the count for that 

bucket

}

}



PCY Algorithm: Between Passes

 Replace the buckets by a bit-vector:

 1 means the bucket count exceeds the support s 

(frequent bucket); 0 means it did not.

 Integers are replaced by bits, so the bit-vector 

requires little second-pass space.

 Also, decide which C1 items are frequent and list 

them (create L1) for the second pass.
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Pass 2

Item counts

0            1

Pass 1 Pass 2

Frequent items

Hash Table Counts for 

pairs in C2

>=s

<s

Bitmap:

sparse

representation

xi, xj
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PCY Algorithm --- Pass 2

 Count all pairs {i,j} that meet the conditions:

1. Both i and j are frequent items (appear in L1)

2. The pair {i,j}, hashes to a bucket number whose bit in 

the bit vector is 1.

 Notice all these conditions are necessary for the 

pair to have a chance of being frequent.



Criticism on support/confidence (1)

 Not all high-confidence rules are interesting

 The rule X → milk may have high confidence for many itemsets X, 

because milk is just purchased very often (independent of X) and the 

confidence will be high

 Rule X → Y in interesting if Conf(X→Y) >> Support(Y)

Modified slide from: J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, 

http://www.mmds.org
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Criticism on high conf/support (2)

 Example 1: (Aggarwal & Yu, PODS98)

 Among 5000 students

◼ 3000 play basketball
◼ 3750 eat cereal
◼ 2000 both play basket ball and eat cereal

 Compare the following two rules

 play basketball  eat cereal [40%, 66.7]

 play basketball  not eat cereal [20%, 33.3%] 

basketball not basketball sum(row)

cereal 2000 1750 3750

not cereal 1000 250 1250

sum(col.) 3000 2000 5000

2000/3000

2000/5000
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Strong Rules Are Not Necessarily 

Interesting

 play basketball  eat cereal [40%, 66.7%] is misleading because 

the overall percentage of students eating cereal is 75% which is 

higher than 66.7%.

 play basketball  not eat cereal [20%, 33.3%] is more interesting, 

although with lower support and confidence

basketball not basketball sum(row)

cereal 2000 1750 3750

not cereal 1000 250 1250

sum(col.) 3000 2000 5000



Criticism to Support and 

Confidence (Cont.)

 Example 2:

 X and Y: positively 

correlated,

 X and Z, negatively 

related

 support and confidence 

of X→Z dominates 

 We need a measure of 

dependent or 

correlated events

80

X 1 1 1 1 0 0 0 0

Y 1 1 0 0 0 0 0 0

Z 0 1 1 1 1 1 1 1

Rule Support Confidence

X=>Y 25% 50%

X=>Z 37,50% 75%



Lift of an Association Rule

 Lift(X→Y) = P(X and Y)/(P(X)*P(Y))

 P(X and Y) = support observed in the dataset

 P(X)*P(Y) = expected support if X and Y were 

independent

 Lift(X→Y)>1 suggests that X&Y appear together more 

often that expected.  Thus, the occurrence of X has a 

positive effect on the occurrence of Y 

 In some cases rare items may produce rules with very high values of lift
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Lift of an Association Rule

 Lift(X→Y) = P(X and Y)/(P(X)*P(Y))

 P(X and Y) = support observed in the dataset

 P(X)*P(Y) = expected support if X and Y were 

independent

 Lift(X→Y)>1 suggests that X&Y appear together more 

often that expected.  Thus, the occurrence of X has a 

positive effect on the occurrence of Y 

 In some cases rare items may produce rules with very high values of lift
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Lift of an Association Rule

 Lift(X→Y) = P(X and Y)/(P(X)*P(Y))

 P(X and Y) = support observed in the dataset

 P(X)*P(Y) = expected support if X and Y were 

independent

 Lift(X→Y)>1 suggests that X&Y appear together more 

often that expected.  Thus, the occurrence of X has a 

positive effect on the occurrence of Y 

 In some cases rare items may produce rules with very high values of lift
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X 1 1 1 1 0 0 0 0

Y 1 1 0 0 0 0 0 0

Z 0 1 1 1 1 1 1 1

Itemset Support Lift

{X,Y} 25% 2.00

{X,Z} 37.5% 0.86

{Y,Z} 12.5% 0.57



Rules with multiple items in the antecedent

 Lift(A→B) = P(A and B)/(P(A)*P(B))

 A in this formula can be a set of items

 Example:

Assume rule X,Y→Z
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X 1 1 1 1 0 0 0 0

Y 1 1 0 0 0 0 0 0

Z 0 1 1 1 1 1 1 1

Lift 𝑋, 𝑌 → 𝑍 =

1
8

2
8 ∗

7
8

= 0.57
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Back to the student’s survey

 play basketball  eat cereal [40%, 66.7%]

 Lift = (2000/5000)/((3000/5000)*(3750/5000)) = 0.89 < 1

 play basketball  not eat cereal [20%, 33.3%]

 Lift = (1000/5000)/((3000/5000)*(1250/5000)) = 1.33 > 1

basketball not basketball sum(row)

cereal 2000 1750 3750

not cereal 1000 250 1250

sum(col.) 3000 2000 5000



Recap (lift)

 Lift evaluates the mined rule against the expected 

response assuming independence

 Lift(X→Y) = sup(X,Y)/(sup(X)*sup(Y))

 Equiv. Lift = Confidence(rule)/expConfidence(Rule)

 Confidence(X→Y)=P(X,Y)/P(X)=sup(X,Y)/sup(X)

 expConfidence(X→Y)=P(X)(P(Y)/P(X)= P(Y)= sup(Y)

 Lift tells us how much better a rule is at predicting the 

result. 

◼ Greater lift values indicate stronger associations.
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Criticism on lift: effect of null transactions

 Assume itemset {A,B}

 A null transaction is a transaction that does not 

contain any of the itemsets being examined.

 E.g T={D,F,G} is a null transaction for this itemset
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Example

 Assume that store sold 100 packages of A and 100 

packages of B

 Only one of the above transactions contains both A,B

 There are no null transactions for {A,B} in this example
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Example

 Assume that store sold 100 packages of A and 100 

packages of B

 Only one of the above transactions contains both A,B

 Thus, P(A)= P(B) = 100/199

 P(A and B) = 1/199

 Lift = 1/199 /(100/199 * 100/199) ≈ 0.02

 Conclusion: A and B are negatively correlated
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Effect of null transactions

 Now assume arrival of 19801 more transactions that do not contain A nor B

 Total number of transactions is n=199+19801=20000

 Thus, P(A) = P(B) =100/20000

 P(A and B) = 1/20000

 Lift = 1/20000/(100/20000 * 100/20000) =2                                       

 Conclusion: A and B are positively correlated

 Which is true. Neither A nor B appear in the 19801 null transactions we added!
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Why is that?

 Lift = P(A and B) /(P(A)*P(B)) = 

= |A and B|/n / (|A|/n * |B|/n) = 

= n * |A and B|/(|A|*|B|)

 When more null transactions are added

 n in increased

 |A and B|, |A| and |B| stay constant

 As a result, lift increases by adding more null 

transactions

 Thus, lift is not null invariant
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A solution: use cosine!

 Define cosine(A,B) = P(A and B)/sqrt(P(A)*P(B)) 

 Cosine takes values between 0 and 1

 Because of the sqrt(), cosine does not depend on n, 

thus, it is null invariant

 In this example cosine(A,B)= 0.01 in both examples
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Many different implementations

 R: rules<-apriori(trans,parameter=list(supp=.02, 

conf=.5, target="rules"))

 Rapidminer:
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Association rules - Conclusions

 An intuitive tool to find patterns

 easy to understand its output

 number of rules is a concern

 fine-tuned algorithms exist
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