
Hashing

Yannis Kotidis

What is hashing?

 Hashing generally takes records whose
key values come from a large range and
maps those records in a “hash table” with
a relatively smaller number of slots called
buckets

 Collisions occur when two records with
different keys hash to the same bucket

Hash function h()

 Maps arbitrary items (keys) into integers
 We can limit the number of slots by using modulo arithmetic: slot

= h() % N
 %N returns values in range [0..N-1], e.g. 19 % 7 = 5

 (For most applications) a good has function should
 be easy (fast) to compute

 provide a uniform distribution across the hash table and should
not result in clustering of keys (unless this is desirable)

 avoid collisions (to the extend possible)

Example: h(x)=(2x+1) % 3
x =1x1=1
x2=3
x3=2
x4=7
x5=5
x6=9

x1

x4

…

x2

x6

…

x3

x5

…

Bucket “0”

Bucket “2”

Bucket “1”Hash value denotes bucket

h(xi)

collision

Careful

 Often key values exhibit skew
Age of my customers used as key. But most

of my customers are young

 Prefer hash functions that distribute
records uniformly among the buckets

 Example: want to hash strings extracted
from a document

Assume h(s) = length of string s
 English Word Length Distribution:

Buckets 5-9 will
receive most words

These buckets will be
almost empty

le
n

gt
h(

s)

A better function (input string s)

 s[i] = ith character in string

 K=some (large) constant

 Recursively compute
h(1) = s[1] /*** first character in string ***/

h(i) = h(i-1)*K + s[i] , for i>1

 Return h[length(s)]

Example for s=‘abc’

 h(1)=a

 h(2)=h(1)K+b=aK+b

 h(3)=h(2)K+c=aK2+bK+c

 Thus:

h(‘abc’)=aK2+bK+c

Example continued
(assume K=299)
 Ascii code of ‘a’,’b’ and ’c’ is 97, 98 and

99, respectively

 h(‘abc’) = (a*K+b)*K+c = aK2+bK+c
=97*2992+98*299+99=8701298

 Compare to h(‘acb’) = … = 8701596

Note

 Previous function may return arbitrarily large numbers
 h(‘supercalifragilisticexpialidocious‘)=

389236099458587451617003512335442884432133029560316
1825327689504791395104502384955 (for K=257)

 Quite often you want to restrict the range of buckets in
an implementation
 For instance if a bucket maps to a physical entity like a page in

main memory or disk

 Assume you want to create N=1024 buckets. How to modify the
hashing function?

Universal Hashing

 Informally: derive a family of hash functions H with low
probability of collisions

 Assume keys (data) are drawn from a universe U and
there are m slots in the hash table.

 For every hash function hH, the following property
should hold:

Universal Hashing Example

 Assume a, b are randomly chosen integers and a≠0

 Given a prime number p, with p≥m

 Then, the following family of hash functions is universal:

 Note: commonly used families of hash function use bit-
arithmetic instead of modulo operations for efficiency

ha,b(x) = ((ax+b) % p) %m

Hashing as an index for Chess Games

 Zorbist hashing:
 Generate an array of 781 64 bit

random numbers

 One number for each piece at a
position (2*6*64 total)
 6 pieces: king, queen, rooks, bishops,

knights, pawns

 8*8 positions, 2 colors

 13 additional numbers encoding
side to move, castling rights, etc

 A position is hashed to a bucket by
XORing appropriate random
numbers

 Need 64bits to describe a
board

 Very small rate of collisions

X = x1 XOR x2 XOR … x14

xi
white pawn @ e5

Use this single value to encode the position

More on x XOR y

 Result is 1 if input bits differ, 0 otherwise

 0101 XOR 0110 = 0011

 0011 XOR 0110 = 0101

and

 0011 XOR 0101 = 0110

0

1

Hashing as an index

 Organize your data so as to quickly locate
records based on attribute’s x value
Data may be stored in memory or on disk

retrieve info on
orderNo=00174

00174,John, Smith, 555-2047162, Smartphone, Delivered

Bucket

0

1

2

3

4

h(00174)=1

?

Data container (e.g. table or array)

Index may store records, or refs (pointers) to these records

82011, Nick, Taylor, 555-4014154, PC, Pending

Handling collisions

 Another key hashes to the same position
 linear probing: scan for next available slot

How to search this table?

store data for
orderNo=91402

?

91402,Tim, Duncan, 451-2243551,TV, Delivered

00174,John, Smith, 555-2047162, Smartphone, Delivered

Data container

82011, Nick, Taylor, 555-4014154, PC, Pending

Bucket

0

1

2

3

4

h(91402)=1

Next empty slot Store record here

slot has data

Deletions are complicated

 Assume that orderNo 00174 is deleted

 How to update the hash-table?

00174,John, Smith, 555-2047162, Smartphone, Delivered

Data container

82011, Nick, Taylor, 555-4014154, PC, Pending

Bucket

0

1

2

3

4

91402,Tim, Duncan, 451-2243551,TV, Delivered

X

One of these (or both) will
have to be moved up (why)?

Better strategy

 Assume that orderNo 00174 is deleted
Mark corresponding slot as “available” using a

special marker

Periodically perform a clean up
 remove available markers and reinsert items

AVAILABLE

Data container

82011, Nick, Taylor, 555-4014154, PC, Pending

Bucket

0

1

2

3

4

91402,Tim, Duncan, 451-2243551,TV, Delivered

Chaining (Main Memory
example) buckets

32

(null)

(null)

(null)

(null)

(null)

10

48

27 75

21

55

0

3

1

2

4

5

6

7

key
g (key)

g(key) = key % 8

Pointer to record with key=32

key value

Adapting to disk

 1 Hash Bucket = 1 disk block (e.g. 4KB)
All keys that hash to bucket stored in the

block

 Intuition: keys in a bucket usually accessed
together

No need for linked lists of keys …

Adapting to Disk

How do we handle this?

Adapting to disk

 1 Hash Bucket = 1 Block
All keys that hash to bucket stored in the

block

 Intuition: keys in a bucket are usually
accessed together

No need for linked lists of keys …

… but need linked list of blocks (overflow
blocks)

Adapting to Disk

Hashing in distributed systems

 Hashing can be used to disperse a large dataset
across several server nodes (workers)

 For example to bypass the memory limitations of
using a single server (scale out)

0 1 2 3Node id:

Big Data

Simple Hashing

 Simple hashing: place record with key = x at
location h(x) %N, where N=4 is the number of
available nodes

4
12
200

17
21

6
26

15
23
27

Hash value of
data record

0 1 2 3

26 % 4 = 2

12 % 4 = 0

Node id:

Addition/deletion of server
nodes necessitates rehashing
 Assume a new (5th) server node is added

 Now the function changes to h(x) % 5
What about existing records?

4
12
200

17
21

6
26

15
23
27

What needs to change in the picture above?

0 1 2 3 4

Consistent hashing

 Nodes (servers) are hashed in the same
domain with data using some unique
identifier (their id, mac address etc.)

 Nodes are placed in a virtual ring

 A node with position p is responsible for
an individual set of data items whose keys
are hashed to an arc (or partition) of the
ring between p.predecessor+1 and p.

Consistent hashing

12
15

10

16

24

30

4
6
200

17
21
23

26
27 17

23

21

stores hash values
in range (16..24]

Stores values <=10
Also stores values > 30
(last node in the ring)

stores hash values
in range (10..16]

Addition of a new server
(e.g. 18)

12
15

10

16

24

30

17

17

23

21

18

17
21
23

4
6
200

26
27

Removal of server 24

12
15

10

16

30

4
6
200

17
21
23
26
27

17

23

21

24

Scale-up + Scale out

 Assume that servers have different
capacities

 For instance, assume that server node 2 is
twice as powerful compared to the rest of
the server pool

 Idea: hash server multiple times (twice in
this example) so that it receives more data

Server 2 hashed twice
node1: 10

node2: 16

node3: 24

node4: 30

node2: 27

