
Hashing

Yannis Kotidis

What is hashing?

 Hashing generally takes records whose
key values come from a large range and
maps those records in a “hash table” with
a relatively smaller number of slots called
buckets

 Collisions occur when two records with
different keys hash to the same bucket

Hash function h()

 Maps arbitrary items (keys) into integers
 We can limit the number of slots by using modulo arithmetic: slot

= h() % N
 %N returns values in range [0..N-1], e.g. 19 % 7 = 5

 (For most applications) a good has function should
 be easy (fast) to compute

 provide a uniform distribution across the hash table and should
not result in clustering of keys (unless this is desirable)

 avoid collisions (to the extend possible)

Example: h(x)=(2x+1) % 3
x =1x1=1
x2=3
x3=2
x4=7
x5=5
x6=9

x1

x4

…

x2

x6

…

x3

x5

…

Bucket “0”

Bucket “2”

Bucket “1”Hash value denotes bucket

h(xi)

collision

Careful

 Often key values exhibit skew
Age of my customers used as key. But most

of my customers are young

 Prefer hash functions that distribute
records uniformly among the buckets

 Example: want to hash strings extracted
from a document

Assume h(s) = length of string s
 English Word Length Distribution:

Buckets 5-9 will
receive most words

These buckets will be
almost empty

le
n

gt
h(

s)

A better function (input string s)

 s[i] = ith character in string

 K=some (large) constant

 Recursively compute
h(1) = s[1] /*** first character in string ***/

h(i) = h(i-1)*K + s[i] , for i>1

 Return h[length(s)]

Example for s=‘abc’

 h(1)=a

 h(2)=h(1)K+b=aK+b

 h(3)=h(2)K+c=aK2+bK+c

 Thus:

h(‘abc’)=aK2+bK+c

Example continued
(assume K=299)
 Ascii code of ‘a’,’b’ and ’c’ is 97, 98 and

99, respectively

 h(‘abc’) = (a*K+b)*K+c = aK2+bK+c
=97*2992+98*299+99=8701298

 Compare to h(‘acb’) = … = 8701596

Note

 Previous function may return arbitrarily large numbers
 h(‘supercalifragilisticexpialidocious‘)=

389236099458587451617003512335442884432133029560316
1825327689504791395104502384955 (for K=257)

 Quite often you want to restrict the range of buckets in
an implementation
 For instance if a bucket maps to a physical entity like a page in

main memory or disk

 Assume you want to create N=1024 buckets. How to modify the
hashing function?

Universal Hashing

 Informally: derive a family of hash functions H with low
probability of collisions

 Assume keys (data) are drawn from a universe U and
there are m slots in the hash table.

 For every hash function hH, the following property
should hold:

Universal Hashing Example

 Assume a, b are randomly chosen integers and a≠0

 Given a prime number p, with p≥m

 Then, the following family of hash functions is universal:

 Note: commonly used families of hash function use bit-
arithmetic instead of modulo operations for efficiency

ha,b(x) = ((ax+b) % p) %m

Hashing as an index for Chess Games

 Zorbist hashing:
 Generate an array of 781 64 bit

random numbers

 One number for each piece at a
position (2*6*64 total)
 6 pieces: king, queen, rooks, bishops,

knights, pawns

 8*8 positions, 2 colors

 13 additional numbers encoding
side to move, castling rights, etc

 A position is hashed to a bucket by
XORing appropriate random
numbers

 Need 64bits to describe a
board

 Very small rate of collisions

X = x1 XOR x2 XOR … x14

xi
white pawn @ e5

Use this single value to encode the position

More on x XOR y

 Result is 1 if input bits differ, 0 otherwise

 0101 XOR 0110 = 0011

 0011 XOR 0110 = 0101

and

 0011 XOR 0101 = 0110

0

1

Hashing as an index

 Organize your data so as to quickly locate
records based on attribute’s x value
Data may be stored in memory or on disk

retrieve info on
orderNo=00174

00174,John, Smith, 555-2047162, Smartphone, Delivered

Bucket

0

1

2

3

4

h(00174)=1

?

Data container (e.g. table or array)

Index may store records, or refs (pointers) to these records

82011, Nick, Taylor, 555-4014154, PC, Pending

Handling collisions

 Another key hashes to the same position
 linear probing: scan for next available slot

How to search this table?

store data for
orderNo=91402

?

91402,Tim, Duncan, 451-2243551,TV, Delivered

00174,John, Smith, 555-2047162, Smartphone, Delivered

Data container

82011, Nick, Taylor, 555-4014154, PC, Pending

Bucket

0

1

2

3

4

h(91402)=1

Next empty slot Store record here

slot has data

Deletions are complicated

 Assume that orderNo 00174 is deleted

 How to update the hash-table?

00174,John, Smith, 555-2047162, Smartphone, Delivered

Data container

82011, Nick, Taylor, 555-4014154, PC, Pending

Bucket

0

1

2

3

4

91402,Tim, Duncan, 451-2243551,TV, Delivered

X

One of these (or both) will
have to be moved up (why)?

Better strategy

 Assume that orderNo 00174 is deleted
Mark corresponding slot as “available” using a

special marker

Periodically perform a clean up
 remove available markers and reinsert items

AVAILABLE

Data container

82011, Nick, Taylor, 555-4014154, PC, Pending

Bucket

0

1

2

3

4

91402,Tim, Duncan, 451-2243551,TV, Delivered

Chaining (Main Memory
example) buckets

32

(null)

(null)

(null)

(null)

(null)

10

48

27 75

21

55

0

3

1

2

4

5

6

7

key
g (key)

g(key) = key % 8

Pointer to record with key=32

key value

Adapting to disk

 1 Hash Bucket = 1 disk block (e.g. 4KB)
All keys that hash to bucket stored in the

block

 Intuition: keys in a bucket usually accessed
together

No need for linked lists of keys …

Adapting to Disk

How do we handle this?

Adapting to disk

 1 Hash Bucket = 1 Block
All keys that hash to bucket stored in the

block

 Intuition: keys in a bucket are usually
accessed together

No need for linked lists of keys …

… but need linked list of blocks (overflow
blocks)

Adapting to Disk

Hashing in distributed systems

 Hashing can be used to disperse a large dataset
across several server nodes (workers)

 For example to bypass the memory limitations of
using a single server (scale out)

0 1 2 3Node id:

Big Data

Simple Hashing

 Simple hashing: place record with key = x at
location h(x) %N, where N=4 is the number of
available nodes

4
12
200

17
21

6
26

15
23
27

Hash value of
data record

0 1 2 3

26 % 4 = 2

12 % 4 = 0

Node id:

Addition/deletion of server
nodes necessitates rehashing
 Assume a new (5th) server node is added

 Now the function changes to h(x) % 5
What about existing records?

4
12
200

17
21

6
26

15
23
27

What needs to change in the picture above?

0 1 2 3 4

Consistent hashing

 Nodes (servers) are hashed in the same
domain with data using some unique
identifier (their id, mac address etc.)

 Nodes are placed in a virtual ring

 A node with position p is responsible for
an individual set of data items whose keys
are hashed to an arc (or partition) of the
ring between p.predecessor+1 and p.

Consistent hashing

12
15

10

16

24

30

4
6
200

17
21
23

26
27 17

23

21

stores hash values
in range (16..24]

Stores values <=10
Also stores values > 30
(last node in the ring)

stores hash values
in range (10..16]

Addition of a new server
(e.g. 18)

12
15

10

16

24

30

17

17

23

21

18

17
21
23

4
6
200

26
27

Removal of server 24

12
15

10

16

30

4
6
200

17
21
23
26
27

17

23

21

24

Scale-up + Scale out

 Assume that servers have different
capacities

 For instance, assume that server node 2 is
twice as powerful compared to the rest of
the server pool

 Idea: hash server multiple times (twice in
this example) so that it receives more data

Server 2 hashed twice
node1: 10

node2: 16

node3: 24

node4: 30

node2: 27

