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Χρηματοδότηση 
• Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια 

του εκπαιδευτικού έργου του διδάσκοντα. 

• Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Οικονομικό 
Πανεπιστήμιο Αθηνών» έχει χρηματοδοτήσει μόνο τη 
αναδιαμόρφωση του εκπαιδευτικού υλικού.  

• Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού 
Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και 
συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό 
Κοινωνικό Ταμείο) και από εθνικούς πόρους. 
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Άδειες Χρήσης 

• Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες 
χρήσης Creative Commons.  

• Οι εικόνες προέρχονται … . 
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Σκοποί ενότητας 

Εισαγωγή και εξοικείωση με τις μεθόδους 
Introduction & Motivation, Community 
evaluation measures, Graph clustering 
algorithms, Alternative Methods for Community 
Evaluation, New directions for research in the 
area of graph mining. 
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Networks are Everywhere 

(d) Social network 

(b) World Wide Web (c) Email network 
(a) Internet 

(e) Collaboration network (f) Citation network 



Social Networks Growth 
• Social networking accounts for 1 of every 6 minutes spent online 

[http://blog.comscore.com/]  

• One out of seven people on Earth is on Facebook  

• People on Facebook install 20 million “Apps” every day 

• YouTube has more than on billion unique users who visit every month 
(Oct. 2014) 

• Users on YouTube spend a total of 6 billion hours per month (almost an 
hour for every person on Earth! 

• Wikipedia hosts ~34 million articles and has over 91,000 contributors 

• 500 million average  Tweets per day occur on Twitter (Oct. 2014) 

 

---------------------------------------------------------- 

[http://www.jeffbullas.com/2011/09/02/20-stunning-social-media-tatistics/#q3eTJhr64rtD0tLF.99] 
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Communities in Real Networks 

• Real networks are not random graphs (e.g., the Erdos-Renyi 
random graph model) 

•  Present fascinating patterns and properties:  

– The degree distribution is skewed, following a power-law   

– The average distance between the nodes of the network is short (the 
small-world phenomenon)    

– The edges between the nodes may not represent reciprocal relations, 
forming directed networks with non-symmetric links    

– Edge density is inhomogeneous (groups of nodes with high 
concentration of edges within them and low concentration between 
different groups 

 



Community Detection 

• Community detection in graphs aims to 
identify the modules and, possibly, their 
hierarchical organization, using mainly the 
information encoded in the graph topology 

• First attempt dates back to 1955 by Weiss 
and Jacobson searching for work groups 
within a government agency 



Communities – application 
domains 

• Social communities have been studied for a long time (Coleman, 1964; 
Freeman, 2004; Kottak, 2004; Moody and White, 2003) 

• In biology: protein-protein interaction networks, communities are likely to 
group proteins having the same specific function within the cell (Chen, 
2006; Rives and Galitski 2003; Spirin and Mirny, 2003) 

• World Wide Web: communities correspond to groups of pages dealing 
with the same or related topics (Dourisboure et al., 2007; Flake et al., 
2002)  

• Metabolic networks they may be related to functional modules such as 
cycles and pathways (Guimera and Amaral, 2005; Palla et al., 2005) 

• In food webs they may identify compartments (Krause et al., 2003; Pimm, 
1979) 



Community evaluation measures  
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Basics 
• The notion of community structure captures  the tendency of 

nodes to be organized into modules (communities, clusters, 
groups) 

– Members within a community are more similar among each other 

• Typically, the communities in graphs (networks) correspond to 
densely connected entities (nodes) 

• Set of nodes with more/better/stronger connections between 
its members, than to the rest of the network 

• Why this happens? 

– Individuals are typically organized into social groups (e.g., family, 
associations, profession) 

– Web pages can form groups according to their topic 

– … 

 



Definition/notion of communities 
• How a community in graphs looks like? 

• The property of community structure is difficult to be defined 

– There is no universal definition of the problem 

– It depends heavily on the application domain and the properties 
of the graph under consideration 

• Most widely used notion/definition of communities is based on 
the number of edges within a group  (density) compared to the 
number of edges between different groups 

 

A community corresponds to a group of nodes with more intra-
cluster edges than inter-clusters edges 

[Newman ‘03], [Newman and Girvan ‘04], [Schaeffer ‘07], [Fortunato 
‘10],  
[Danon et al. ‘05], [Coscia et al. 11] 



Schematic representation of 
communities 

Example graph with three 
communities 



Community detection in graphs 

• How can we extract the inherent communities of graphs? 

• Typically, a two-step approach 

1. Specify a quality measure (evaluation measure, objective function) 
that quantifies the desired properties of communities 

2. Apply algorithmic techniques to assign the nodes of graph into 
communities, optimizing the objective function 

• Several measures for quantifying the quality of communities have 
been proposed 

• They mostly consider that communities are set of nodes with many 
edges between them and few connections with nodes of different 
communities 

– Many possible ways to formalize it 



Community evaluation measures 
• Focus on 

– Intra-cluster edge density (# of edges within community), 

– Inter-cluster edge density (# of edges across communities)  

– Both two criteria 

 

• We group the community evaluation measures according to 

– Evaluation based on internal connectivity 

– Evaluation based on external connectivity 

– Evaluation based on internal and external connectivity 

– Evaluation based on network model 

[Leskovec et al. ‘10], [Yang and Leskovec ‘12], [Fortunato ‘10] 



Notation 
• G = (V, E) is an undirected graph, |V| = n, |E| = m 

• S is the set of nodes in the cluster 

• ns = |S| is the number of nodes in S 

• ms is the number of edges in S,  

• cs is the number of edges on the boundary of S,  

• du is the degree of node u 

• f (S) represent  the clustering quality of set S 

  SvSuvums  ,:,

  SvSuvucs  ,:,

S 

Nodes in S (ns) 

Edges in S (ms) 

Edges in boundary 
of S (cs) 



Evaluation based on internal 
connectivity (1) 

• Internal density [Radicchi et al. ’04] 

 

 

 

 

 

• Edges inside [Radicchi et al. ’04] 
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Evaluation based on internal 
connectivity (2) 

• Average degree [Radicchi et al. ’04] 

 

 

 

 

• Fraction over median degree (FOMD) [Yang and Leskovec ‘12] 
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Evaluation based on internal 
connectivity (3) 

• Triangle participation ratio (TPR) [Yang and Leskovec ’12] 
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Evaluation based on external 
connectivity 

• Expansion [Radicchi et al. ’04] 

 

 

 

 

• Cut ratio [Fortunato ‘10] 
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Evaluation based on internal and 
external connectivity (1) 

• Conductance [Chung ‘97] 

 

 

 

 

• Normalized cut [Shi and Malic ’00] 
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Evaluation based on internal and 
external connectivity (2) 

• Maximum out degree fraction (Max ODF) [Flake et al ‘00] 

 

 

 

 

• Average out degree fraction (Avg ODF) [Flake et al ‘00] 
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Evaluation based on internal and 
external connectivity (3) 

• Flake’s out degree fraction (Flake’s ODF) [Flake et al ‘00] 
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Evaluation based on network model 

• Modularity [Newman and Girvan ‘04], [Newman ‘06] 
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How different are the evaluation 
measures? (1) 

• Several community evaluation measures (objective criteria) 
have been proposed 

• Is there any relationship between them? 

• Consider real graphs with known node assignment to 
communities (ground-truth information) and test the behavior 
of the objective measures [Yang and Leskovec ‘12] 

1. For each of the ground-truth communities S 

2. Compute the score of S using each of the  previously described 
evaluation measures 

3. Form the correlation matrix of the objective measures based on 
the scores 

4. Apply a threshold in the correlation matrix 

5. Extract the correlations between community objective measures 

 

 

 

 

 



How different are the evaluation 
measures? (2) 

• Observation:  Community evaluation measures form four 
groups based on their correlation [Yang and Leskovec ‘12] 
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How different are the evaluation 
measures? (3) 

• The different structural definitions of communities are heavily 
correlated [Yang and Leskovec ‘12] 

• Community evaluation measures form four groups based on 
their correlation 

• These groups correspond to the four main notions of structural 
communities 

– Communities based on internal connectivity 

– Communities based on external connectivity 

– Communities based on internal and external connectivity 

– Communities based on a network model (modularity) 
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Graph Clustering Algorithms 

• Spectral Clustering 

• Modularity Based Methods 

 



Notations 





Graph-Cut 



Min-Cut 

• Easy for k=2 : Mincut(A1,A2) 

– Stoer and Wagner: “A Simple Min-Cut Algorithm” 

• In practice one vertex is separated from the 
rest 

– The algorithm is drawn to outliers 

 



Normalized Graph Cuts 



From Graph Cuts to Spectral 
Clustering 



Graph Laplacian 



Properties of L 

• L is  

– Symmetric 

– Positive 

– Semi-definite 

• The smallest eigenvalue of L is 0  

– The corresponding eigenvector is 𝟙  

• L has n non-negative, real valued eigenvalues 

– 0 = 𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆𝑛 

 



Two Way Cut from the Laplacian 



Example 



Ratio Cut 



Ratio Cut 



Normalized Cut 



Normalized Cut 



Multi-Way Graph Partition 

• The cluster assignment is given by the smallest k 
eigenvectors of L   

• The real values need to be converted to cluster 
assignments 

– We use k-means to cluster the  rows  

– We can substitute L with Lsym 

 A11………….…………A1n 

A21………….…………A2n 
 

Ak1………….…………Akn 

. 

. 

. 

Smallest k  
eigenvectors 

 A11 
 
 
 
 
 
 
 
 
 
 
 A1n 

 A21 
 
 
 
 
 
 
 
 
 
 
 A2n 
 

 Ak1 
 
 
 
 
 
 
 
 
 
 
 Akn 
 

....

. 

K-means on 
the rows 
 
Each row 
represents a 
vertex 
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Graph Clustering Algorithms 

• Spectral Clustering 

• Modularity Based Methods 

 



Basics 
• Most of the community evaluation measures (e.g., 

conductance, cut-based measures), quantify the quality of a 
community based on 

– Internal connectivity (intra-community edges) 

– External connectivity (inter-community edges) 

• Question: Is there any other way to distinguish groups of nodes 
with good community structure? 

• Random graphs are not expected to present inherent 
community structure 

• Idea: Compare the number of edges that lie within a cluster  with 
the expected one in case of random graphs with the same degree 
distribution – modularity measure 



Main idea 
• Modularity function [Newman and Girvan ‘04], [Newman ‘06] 

• Initially introduced as a measure for assessing the strength of 
communities 

– Q = (fraction of edges within communities) –  

    (expected number of edges within communities) 

• What is the expected number of edges? 

• Consider a configuration model 

– Random graph model with the same degree distribution 

– Let Pij = probability of an edge between nodes i and j 

 with degrees ki and kj respectively 

– Then Pij  = ki kj / 2m,  where  m = |E| = ½ Σi ki 



Formal definition of modularity 
• Modularity  Q 

 

 

where  

– A is the adjacency matrix 

– ki, kj the degrees of nodes i and j respectively 

–  m is the number of edges 

– Ci is the community of node i 

– δ(.) is the Kronecker function: 1 if both nodes i and j belong on 
the same community (Ci = Cj), 0 otherwise 
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[Newman and Girvan ‘04], [Newman ‘06] 



Properties of modularity 

• Larger modularity  Q indicates better communities (more than 
random intra-cluster density) 

– The community structure would be better if the number of 
internal edges exceed the expected number 

• Modularity value is always smaller than 1 

• It can also take negative values 

– E.g., if each node is a community itself 

– No partitions with positive modularity  No community structure 

– Partitions with large negative modularity  Existence of 
subgraphs with small internal number of edges and large number 
of inter-community edges 
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[Newman and Girvan ‘04], [Newman ‘06], [Fortunato ‘10] 



Applications of modularity 
• Modularity can be applied: 

– As quality function in clustering algorithms 

– As evaluation measure for comparison of different partitions or 
algorithms 

– As a community detection tool itself 

Modularity optimization 

– As criterion for reducing the size of a graph 

Size reduction preserving modularity [Arenas et al. 
‘07] 

 

[Newman and Girvan ‘04], [Newman ‘06], [Fortunato ‘10] 



Modularity-based community 
detection 

• Modularity was first applied as a stopping criterion in the Newman-
Girvan algorithm 

• Newman-Girvan algorithm [Newman and Girvan ‘04] 

– A divisive algorithm (detect and remove edges that connect vertices of 
different communities) 

– Idea: try to identify the edges of the graph that are most between other 
vertices  responsible for connecting many node pairs 

– Select and remove edges based to the value of betweenness centrality 

– Betweenness centrality: number of shortest paths between every pair of 
nodes, that pass through an edge 

 Edge betweenness 
is higher for edges 

that connect 
different 

communities 



Newman-Girvan algorithm (1) 
• Basic steps: 

1. Compute betweenness centrality for all edges in the graph 

2. Find and remove the edge with the highest score 

3. Recalculate betweenness centrality score for the remaining 
edges 

4. Go to step 2 

• How do we know if the produced communities are  good ones 
and stop the algorithm? 

– The output of the algorithm is in the form of a dendrogram 

– Use modularity as a criterion to cut the dendrogram and 
terminate the algorithm (Q ~= 0.3-0.7 indicates good partitions)  

• Complexity: O(m2n) (or O(n3) on a sparse graph) 

 [Newman and Girvan ‘04], [Girvan and Newman ‘02] 



Newman-Girvan algorithm (2) 

[Newman and Girvan ‘04] 

Zachary’s karate club 
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Modularity optimization 
• High values of modularity indicate good quality of partitions 

• Goal: find the partition that corresponds to the maximum value 
of modularity 

• Modularity maximization problem 

– Computational difficult problem [Brandes et al. ‘06] 

– Appoximation techniques and heuristics 

• Four main categories of techniques 

1. Greedy techniques 

2. Spectral optimization 

3. Simulated annealing 

4. Extremal optimization 
[Fortunato ‘10] 



Spectral optimization (1) 

• Idea: Spectral techniques for modularity optimization 

• Goal: Assign the nodes into two communities, X and Y 

• Let  be an indicator variable where si = +1 if i is assigned to 
X and si = -1 if i is assigned to Y  

 

[Newman ‘06], [Newman 
‘06b] 
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 B is the modularity matrix 

 



Spectral optimization (2) 

• Modularity matrix B 

 

• Vector s can be written as a linear combination of the eigenvectors 
ui of the modularity matrix B 

                                              where                                                          

  

• Modularity can now expressed as 

 

 

Where βi is the eigenvalue of B corresponding to eigenvector ui 

 

 
[Newman ‘06], [Newman ‘06b] 
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Spectral optimization (3) 

• Spectral modularity optimization algorithm 

1. Consider the eigenvector u1 of B corresponding to the largest eigenvalue 

2. Assign the nodes of the graph in one of the two communities X (si = +1) and Y (si = 
-1) based on the signs of the corresponding components of the eigenvector 

 

 

– More than two partitions? 

1. Iteratively, divide the produced partitions into two parts 

2. If at any step the split does not contribute to the modularity, leave the 
corresponding subgraph as is 

3. End when the entire graph has been splinted into no further divisible subgraphs 

– Complexity: O(n2 logn) for sparse graphs 

 [Newman ‘06], [Newman 
‘06b] 
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Extensions of modularity 

• Modularity has been extended in several directions 

– Weighted graphs [Newman ‘04]  

– Bipartite graphs [Guimera et al ‘07]  

– Directed graphs (next in this tutorial) [Arenas et al. ‘07], [Leicht and 
Newman ‘08] 

– Overlapping community detection (next in this tutorial) [Nicosia et al. 
‘09] 

– Modifications in the configuration model – local definition of 
modularity [Muff et al. ‘05] 

 



Resolution limit of modularity 
• Resolution Limit of modularity [Fortunato and Barthelemy ‘07] 

• The method of modularity optimization may not detect 
communities with relatively small size, which depends on the 
total number of edges in the graph 

 

 

Km 

Km 

Km Km 

Km 

Km 

Km 

Km 

Km 
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 Km are cliques with m edges (m ≤ sqrt(|E|)) 

 Km represent well-defined clusters 

 However, the maximum modularity 
corresponds to clusters formed by two or 
more cliques 

 It is difficult to know if the community 
returned by modularity optimization 
corresponds to a single community or a 
union of smaller communities 
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Topics on community detection 
and evaluation 

• Observations on structural properties of large graphs 

• Degeneracy-based community evaluation 



Community structure in small vs. 
large graphs 

Small scale collaboration 
network (Newman) 

Blog network 
http://www.ryze.com 



Examine the structural 
differences 

• How can we examine and compare the structural differences – in terms of 
community structure – at different scale graphs? 

• Use conductance Φ(S) as a community evaluation measure 

– Smaller value for conductance implies better community-like properties 
[Leskovec et al. ’09]  Φ(S) = # outgoing edges / # edges 

within 

Example by J. Leskovec, ICML 2009 

Φ1 = 5/6 = 0.83   

Φ2 = 2/5 = 0.4  

Better than Φ1  

Φ3 = 2/8 = 0.25   

Best community  

 

Find the best 
community of 5 

nodes 

   SkSVSk 
 ,min



Network Community Profile plot 
• Network Community Profile (NCP) plot [Leskovec et al. ’09]  

– Plot the best conductance score (minimum) Φ(k) for each community 
size k 

Conductanc
e 

log Φ(k) 

Size of community, log 
k 

k=3 k=4 k=4 
k=6 

… 

… 

NCP plot of real 
graphs 
 ? 



NCP plot examples 

cut A 
cut A+B 

k (# nodes in community) 
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Zachary’s karate club social network 
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A B 

C D 
C+E 

Newman’s collaboration network 

Small scale 
networks 

[Leskovec et al. ’09]  



NCP plot of large real-world 
graphs 
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LiveJournal01 Messenger-DE ATP-DBLP 

Cit-Hep-Th Web-Google Amazon-All 

Large scale 
networks 

[Leskovec et al. ’09]  
Figure: J. Leskovec, ICML 2009 

Any common property? 



NCP plot: Observation in large 
graphs 

[Leskovec et al. ’09]  Figure: http://snap.stanford.edu/ncp/ 
Slide by J. Leskovec, ICML 2009 
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k (# nodes in 
community) 

LiveJournal  social network 
|V| = 5M, |E| = 42 M 

Improved community 
structure 

Quality of communities 
is decreasing 

Best community: 
Size ~ 100 nodes 



Explanation: Core-Periphery 
structure 

• How can we explain the observed structure of large graphs? 

– Core-periphery structure 

[Leskovec et al. ’09]  

Whiskers: maximal subgraphs 
connected to the core via a 

single edge 

Core: contains a large 
portion of the graph (~60% 

of nodes and ~80% of edges) 

Core becomes 
denser and denser 



Similar structural observations 

• Jellyfish model for the Internet topology [Tauro et al. ’01] 

 

•  Min-cut plots [Chakrabarty et al. ’04] 

– Perform min-cut recursively 

– Plot the relative size of the minimum cut 

 

• Robustness of large scale social networks [Malliaros et al. ’12] 

– Robustness estimation based on the expansion properties of graphs 

– Social networks are expected to show low robustness due to the existence of 
communities  the (small number of) inter-community edges will act as 
bottlenecks 

– Large scale social graphs tend to be extremely robust 

– Structural differences (in terms of robustness and community structure) 
between different scale graphs 

 



Clustering algorithms and 
objective criteria 

• Question 1: Is the observed property 
an effect of the used community 
detection algorithm (Metis + flow 
based method)? 

– A: No. The qualitative shape of the NCP 
plot is the same, regardless of the 
community detection algorithm 
[Leskovec et al. ’09]  

• Question 2: Is the observed property 
an effect of the conductance 
community evaluation measure? 

– A: No. All the objective criteria that 
based on both internal and external 
connectivity, show a qualitatively 
almost similar behavior [Leskovec et al. 
’10]  

– A V-like slope in the NCP plot 

 

C
o

m
m

u
n

it
y 

Sc
o

re
 

k (# nodes in community) 

AuthToPap-DBLP 



Conclusions 

• Large scale real-world graphs 

– Core-periphery structure 

– No large, well defined communities 

– Structural differences between different scale graphs 

• Community detection algorithms should take into account these 
structural observation 

– Whiskers correspond to the best (conductance-based) communities 

– Need larger high-quality clusters? 

– Bag of whiskers: union of disjoint (disconnected) whiskers are mainly 
responsible for the best high-quality clusters of larger size (above 100) 

 



Topics on community detection 
and evaluation 

• Observations on structural properties of large graphs 

• Degeneracy-based community evaluation 



Graph Degeneracy and the k-core 
Decomposition  

• Degeneracy for an undirected graph G 

• Also known as the k-core number 

• The k-core of G is the largest subgraph in which every vertex has 
degree at least k within the subgraph 
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Example: 

Note: 
The degeneracy and the size of 
the k-core provide a good 
indication of the cohesiveness 
of the graph 

Important property: 
• Fast and easy to compute 
• Almost linear to the size of 

the graph 
• Scalable to large scale graphs 



Another example 

                 
core0(G) 

core1(G) 

core2(G) 

core4(G) 

core3(G) 



K-core 
 

• An algorithm for computing the k-th core of a graph:  

Procedure Trimk(G, k ) 

Input: An undirected graph G and  positive integer k 

Output: k-core(G) 

1. let F := G. 

2. while there is a node x in F such that  degF(x)<k 

delete node x from F. 

3. return F. 

 

• Many  efficient algorithms have been given for the 
computation: 

– E.g. [Batagelj and Zaversnik, 2003] 

• Time complexity: O(m) (m= |E|) 

• Fast! `especially in real word data where G is usually sparse. 

 



DBLP K-cores 

• Extreme k-core: k=15  (DBLP), 76 authors 

• Author ranking metric: max(k)-core that an author belongs to 

– e.g.  Paul Erdos : 14  

• On the max(k)-core we can identify the “closest” collaborators: Hop-1 
community  

– Erdos hop-1:  
Boris Aronov, Daniel J. Kleitman, János Pach, Leonard J. Schulman, 
Nathan Linial, Béla Bollobás, Miklós Ajtai, Endre Szemerédi, Joel 
Spencer,Fan R. K. Chung, Ronald L. Graham, David Avis, Noga Alon, 
László Lovász, Shlomo Moran, Richard Pollack, Michael E. Saks, Shmuel 
Zaks, Peter Winkler, Prasad Tetali, László Babai 



Degeneracy on directed graphs 
(k,l)-D-core (G): the (k,l) D-core of graph G  

for each k,l : dck,l = |(k,l)-D-core (G)|  

D-core matrix:  D(k,l)=dck,l, k,l integers – each cell stores the size of 
the respective D-core  

Frontier: F(D) = {(k;l): dck,l > 0 &  dck+1,l+1 = 0 } : the extreme (k,l)-D-
cores  

Collaboration indices 

• Balanced collaboration index (BCI) : Intersection of diagonal D(k,k) with frontier 

• Optimal collaboration index (OCI) : DC(k,l) where max((k+l)/2) distance from 
D(0,0) 

• Inherent collaboration index (ICI): All cores on the angle defined by the average 
inlinks/outlinks ratio 



D-core matrix Wikipedia & DBLP 

  
Christos Giatsidis, Dimitrios M. Thilikos, Michalis Vazirgiannis: “D-cores: Measuring 
Collaboration of Directed Graphs Based on Degeneracy”, IEEE - ICDM 2011: 201-210 

WIKIPEDIA 2004 DBLP – CITATION graph  

Extend the notion of degeneracy in directed graphs: (k, l)-D-Core 



The Extreme DBLP D-core Authors 
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Eric N. Hanson 
Jennifer Widom 
Klaus R. Dittrich 
Nathan Goodman 
Won Kim 
Alfons Kemper 
Guido Moerkotte 
Clement T. Yu 
M. Tamer Ã Zsu 
Amit P. Sheth 
Ming-Chien Shan 
Richard T. Snodgrass 
David Maier 
Michael J. Carey 
David J. DeWitt 
Joel E. Richardson 
Eugene J. Shekita 
Waqar Hasan 
Marie-Anne Neimat 
Darrell Woelk 
Roger King 
Stanley B. Zdonik 
Lawrence A. Rowe 
Michael Stonebraker 
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Richard Hull 
Victor Vianu 
Jeffrey D. Ullman 
Michael Kifer 
Philip A. Bernstein 
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Stefano Ceri 
Georges Gardarin 

Patrick Valduriez 
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Authoritative and Collaborative Scientists 



Degeneracy in Signed Graphs 
• Signed graphs can depict a wide variety of  concepts 

– Positive/negative interactions among individuals 

– Common behavior in product review websites (e.g., epinions.com) 

 

• A member of a directed signed graph G can either trust or distrust 
another but not both simultaneously 

 

• Each vertex v has both positive & negative in-degree and both 
positive & negative out-degree 

 

• Our solution: we define and extend the degeneracy concept upon a 
trust network 

 

 



S-cores Stucture 

• We compute the trust network degeneracy along the 
4 combinations  of direction and sign (in, out): 

– (+,+): Mutual Trust 

– (+,-): Trust under distrust (i.e., trust those who do not trust 
me) 

– (-,-):  Mutual distrust 

– (-,+): Distrust under trust 



Data Statistics 

Network Nodes Edges Negative 

Epinions 119,217 841,200 15.0% 

Slashdot 82,144 549,202 22.6% 

Domain Articles Nodes Edges Positive Negative 

History 3,331 141,983 534,693 439,193 95,500 

Politics 12,921 453,116 2,428,945 2,099,410 329,535 

Religion 6,459 277,482 1,423,279 1,244,166 179,113 

Mathematics 9,610 158,671 651,450 548,073 103,377 

Explicit 

Implicit (Wikipedia)  



Examples 
• S-Cores sizes on real world data 

 

 

 

 

 

 

 

 

 

Observations: 
• In both cases positive trust dominates 
• In slashdot there is proportionaly much more mutual distrust than in the 

wikipedia-politics case 



Evaluate Wikipedia Topics 

 Original frontiers    Normalized 
__________________________________________________________________ 

- Wikipedia politics is the most robust trust network, history is the least 
one 

- In the normalized case: history is the one with the largest mutually 
negative trust  constituent  

 



Users & Articles 

• Editors 

• Gobonobo is by far the most trusting and trusted one – i.e., a very senior editor 

• Article frontier 

• “Reagan” article is almost as trusted as the “Politics” topic  



Graph Clustering and Degeneracy 
• Assume an “expensive” algorithm C (e.g., 

Spectral Clustering) as a black box 

• It is less expensive to compute in sections of 
the data separately 

 

• Utilize the vertical partition of k-core 
decomposition as incremental input to C 

 

• Starting at the max(k)-core, for i-core we: 

• Assign with a simple function nodes to existing 
clusters (from (i+1)-core) 

• Apply C to nodes less connected to the 
existing clusters than sub-graph nodes of 
{(i+1)-core}-{i-core}  

Gmax 
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CoreCluster framework 



CoreCluster Framework 

• Core decomposition 
partitions the graph in a 
hierarchical nested 
manner  

 

• We can utilize this 
structure in graph 
clustering 

  

 

7-core 

6-core 

7-core 
6-core 

5-core 4-core 



Experimental Results (Spectral 
Clustering) 
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CoreCluster

Execution time Clustering quality 

• Significant improvement in execution time 
• Clustering quality is retained 
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• An online demo at: http://www.graphdegeneracy.org/  
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Open Problems and Future 
Research Directions (1) 

• Community detection in directed graphs 

– A formal and precise definition of the clustering/community detection 
problem in directed networks (how clusters should look like) 

– In the existing methods on directed networks, there is no a clear way 
of how the edge directionality should be taken into account 

– Not straightforward generalizations of the methods for undirected 
graphs 

– Note: a single definition/notion of communities should possibly not fit 
to all needs – highly application-oriented task [Schaeffer ’07]  

• Extension of existing methods to cover the case of signed 
graphs 

 



Open Problems and Future 
Research Directions (2) 

• Scalability 

– Distributed spectral clustering 

• Compute Laplacian and eigenvector decomposition in a distributed 
manner  

– Degeneracy for large scale graph clustering 

• Degeneracy identifies the cores of the best clusters 

• The degenerated data are exponentially smaller than the original 
one so the scheme scales 

– k-core computation O(nm) 

• Can be costly for dense graphs 

• Optimize with divide and conquer + start from high degree nodes 

 

 



Open Problems and Future 
Research Directions (3) 

 

 Clustering Validity for graph clustering  
– How to decide if the results of graph clustering  are valid ? 

– Parameter values and algorithms choice …  

– Reliable benchmark graph dataset [Lancichinetti and Fortunato ’09] 

– Experimental and comparative studies should be performed 

 

  Towards data-driven and application-driven 
approaches 
– Study the structure and properties of the graph we are interested in 

– Take into account possible structural observations that may affect the 
community detection task 
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in Social and Information Networks 
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