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Χρηματοδότηση 
• Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια 

του εκπαιδευτικού έργου του διδάσκοντα. 

• Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Οικονομικό 
Πανεπιστήμιο Αθηνών» έχει χρηματοδοτήσει μόνο τη 
αναδιαμόρφωση του εκπαιδευτικού υλικού.  

• Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού 
Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και 
συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό 
Κοινωνικό Ταμείο) και από εθνικούς πόρους. 
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Άδειες Χρήσης 

• Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες 
χρήσης Creative Commons.  

• Οι εικόνες προέρχονται … . 
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Σκοποί ενότητας 

Εισαγωγή και εξοικείωση με τις μεθόδους, 
Clustering, K-means, Expectation Maximization 
(EM), Spectral Clustering.   
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Περιεχόμενα ενότητας 

• Clustering 

• K-means 

• Expectation Maximization (EM) 

• Spectral Clustering 
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Clustering  

Μάθημα: Εξόρυξη γνώσης από Βάσεις Δεδομένων και τον Παγκόσμιο 
Ιστό 
Ενότητα # 4: Unsupervised Learning (Clustering) 
Διδάσκων: Μιχάλης Βαζιργιάννης 
Τμήμα: Προπτυχιακό Πρόγραμμα Σπουδών “Πληροφορικής” 
 
 
 



Supervised vs. Unsupervised 
Learning 

• Unsupervised learning (clustering) 

– The class labels of training data are unknown 

– Given a set of measurements, observations, etc. establish the existence of 

clusters in the data 

• Supervised learning (classification) 

– Supervision: The training data (observations, measurements, etc.) are 

accompanied by labels indicating the class of the observations 

– New data is classified based on the training set 

• Semi-supervised clustering 

– Learning approaches that use user input (i.e. constraints or labeled data)  

– Clusters are defined so that user-constraints are satisfied 



• “automated detection of group structure in data” 

• Typically: partition N data points into K groups 
(clusters) such that the points in each group are 
more similar to each other than to points in 
other groups 

• descriptive technique (contrast with predictive) 

• for real-valued vectors, clusters can be thought 
of as clouds of points in p-dimensional space 

 

 

 

Clustering 



 

Sometimes easy 

 

Sometimes impossible 

 

and sometimes  in between 

Clustering 



Why is Clustering useful? 
•  “Discovery” of new knowledge from data 

– Contrast with supervised classification (where labels are known) 

– Long history in the sciences of categories, taxonomies, etc 

– Can be very useful for summarizing large data sets  

• For large n and/or high dimensionality 

 

• Applications of clustering 

– Discovery of new types of galaxies in astronomical data 

– Clustering of genes with similar expression profiles 

– Cluster pixels in an image into regions of similar intensity 

– Segmentation of customers for an e-commerce store 

– Clustering of documents produced by a search engine 

– …. many more 

 



General Issues in Clustering 
• Representation: 

– What types of clusters are we looking for? 

• Score: 

– The criterion to compare one clustering to another 

• Optimization 

– Generally, finding the optimal clustering is NP-hard 

• Greedy algorithms to optimize score are widely used 

 

• Other issues 

– Distance function, D(x(i),x(j))  critical aspect of clustering, both 

• distance of pairs of objects 

• distance of objects from clusters   

– How is K selected? 

– Different types of data 

• Real-valued versus categorical 

• Attribute-valued vectors vs. n2 distance matrix 



• Partitional algorithms  

– K-Means, PAM, CLARA, CLARANS [Ng and Han, VLDB 1994]  

• Hierarchical algorithms 

– CURE [Guha et al, SIGMOD’98], BIRCH [Zhang et al, SIGMOD’96], CHAMELEON [IEEE Computer, 

1999] 

• Density based algorithms  

– DENCLUE [Hinneburg, Keim, KDD’98], DBSCAN [Ester et al, KDD 96] 

• Subspace Clustering 

– CLIQUE [Agrawal et al, SIGMOD’98], PROCLUS [Agrawal et al, SIGMOD’99], ORCLUS: [Aggarwal, 

and Yu, SIGMOD’ 00], DOC: [Procopiuc, Jones, Agarwal, and Murali, SIGMOD’02] 

• Locally adaptive clustering techniques 

– LAC 

• Spectral clustering 

– [Ng, Jordan, Weiss], [Shi/Malik], [Scott/Longuet-Higgins], [Perona/ Freeman] 

Clustering Methods 



 Partitional method:  

 Partition the data set into a set of k disjoint partitions 

(clusters). 
 
 

 Problem Definition:  

 Given an integer k, find a partitioning of k clusters that 

optimizes the chosen partitioning criterion 

Partitional Algorithms: Basic Concept 



K-means 

Μάθημα: Εξόρυξη γνώσης από Βάσεις Δεδομένων και τον Παγκόσμιο 
Ιστό 
Ενότητα # 4: Unsupervised Learning (Clustering) 
Διδάσκων: Μιχάλης Βαζιργιάννης 
Τμήμα: Προπτυχιακό Πρόγραμμα Σπουδών “Πληροφορικής” 
 
 
 



K-means Clustering 
• basic idea: 

– Score =  wc(C) = sum-of-squares within cluster distance 

– start with randomly chosen cluster centers c1 … ck 

– repeat until no cluster memberships change: 

• assign each point x to cluster with nearest center 

– find smallest d(x,ci), over all c1 … ck 

• recompute cluster centers over data assigned to them 

– ci = 1/(ni)  x  Ci x 

• algorithm terminates (finite number of steps) 

– decreases Score(X,C) each iteration membership changes 

• converges to local maxima of Score(X,C) 

– not necessarily the global maxima … 

– different initial centers (seeds) can lead to diff local maxs 



K-means Complexity 

• time complexity: O(I e n k)   << exhaustive’s nk 

– I = number of interations (steps) 

– e = cost of distance computation (e=p for Euclidian dist) 

• speed-up tricks (especially useful in early iterations) 

– use nearest x(i)’s as cluster centers instead of mean 

• reuse of cached dists from size n2 dist mat D (lowers effective “e”) 

• k-medoids: use one of x(i)’s as center because mean not defined 

– recompute centers as points reassigned 

• useful for large n (like online neural nets) & more cache efficient 

– PCA: reduce effective “e” and/or fit more of X in RAM 

– “condense”: reduce “n” by replace group with prototype 

– even more clever data structures (see work by Andrew Moore, CMU) 



K-means example (courtesy of  
Andrew Moore, CMU) 



K-means 

1. Ask user how many 
clusters they’d like. 
(e.g. K=5)  



K-means 

1. Ask user how many 
clusters they’d like. 
(e.g. K=5)  

2. Randomly guess K 
cluster Center 
locations 



K-means 

1. Ask user how many 
clusters they’d like. 
(e.g. K=5)  

2. Randomly guess K 
cluster Center 
locations 

3. Each datapoint finds 
out which Center it’s 
closest to. (Thus each 
Center “owns” a set of 
datapoints) 



K-means 

1. Ask user how many 
clusters they’d like. 
(e.g. k=5)  

2. Randomly guess k 
cluster Center 
locations 

3. Each datapoint finds 
out which Center it’s 
closest to. 

4. Each Center finds the 
centroid of the points 
it owns 



K-means 

1. Ask user how many 
clusters they’d like. (e.g. 
k=5)  

2. Randomly guess k 
cluster Center locations 

3. Each datapoint finds out 
which Center it’s closest 
to. 

4. Each Center finds the 
centroid of the points it 
owns 

5. New Centers => new 
boundaries 

6. Repeat until no change! 



K-means 

1. Ask user how many 
clusters they’d like. (e.g. 
k=5)  

2. Randomly guess k 
cluster Center locations 

3. Each datapoint finds out 
which Center it’s closest 
to. 

4. Each Center finds the 
centroid of the points it 
owns… 

5. …and jumps there 

6. …Repeat until 
terminated! 



Accelerated Computations 

Example generated by Pelleg and 
Moore’s accelerated k-means 

Dan Pelleg and Andrew Moore. 
Accelerating Exact k-means 
Algorithms with Geometric 
Reasoning. Proc. Conference 
on Knowledge Discovery in 
Databases 1999, (KDD99) 
(available on 
www.autonlab.org/pap.html) 



K-means continues… 



K-means continues… 



K-means continues… 



K-means continues… 



K-means continues… 



K-means continues… 



K-means continues… 



K-means continues… 



K-means terminates 



K-means clustering of RGB (3 value) pixel 
color intensities, K = 11 segments 

(courtesy of David Forsyth, UC Berkeley) 

Image Clusters on color 



Issues in K-means clustering 
• Simple, but useful 

– tends to select compact “isotropic” cluster shapes 

– can be useful for initializing more complex methods 

– many algorithmic variations on the basic theme 

• Choice of distance measure 

– Euclidean distance 

– Weighted Euclidean distance 

– Many others possible 

• Selection of K 

– “screen diagram”  - plot SSE versus K, look for knee 

• Limitation: may not be any clear K value 

 

 



Expectation Maximization (EM) 

Μάθημα: Εξόρυξη γνώσης από Βάσεις Δεδομένων και τον Παγκόσμιο 
Ιστό 
Ενότητα # 4: Unsupervised Learning (Clustering) 
Διδάσκων: Μιχάλης Βαζιργιάννης 
Τμήμα: Προπτυχιακό Πρόγραμμα Σπουδών “Πληροφορικής” 
 
 
 



Expectation Maximization 

• (EM) algorithm is an iterative method for finding maximum 
likelihood estimates of parameters in statistical models that 
depend on unobserved latent variables. 

• Assume X the data observed - We assume the data are 
produced by K different classes/processes represented by       
respective weights there fore 

 
f (x) = wk fk(x |qk)

k

å

kw



Gaussian Mixture Models (GMM) 
• Assume the the components are normal distrubutions  N(k,k) 

– often assume diagonal covariance: jj = j
2 

,
 ij = 0 

– or sometimes even simpler:             jj = 2 
,
 ij = 0 

 

• f(x) = k=1…K wk fk(x;k) with k = <k , k> or <k ,k> 

 

• generative model: 

– - randomly choose a component  

– selected with probability wk 

– - generate x ~ N(k,k) 

– - note: k & k both d-dim vectors 



Learning Mixture Models from Data 

• Score function Log-likelihood L()  

– L() = log p(X|) = log H p(X,H|) 

– H = hidden variables (cluster memberships of each x) 

– L() cannot be optimized directly  

 

• EM Procedure 

– General technique for maximizing log-likelihood with missing data 

– For mixtures 

• E-step:  compute “memberships” p(k | x) = wk fk(x;k) / f(x) 

• M-step: pick a new  to max expected data log-likelihood 

• Iterate: guaranteed to climb to (local) maximum of L()  



Expectation maximization (EM)     
The Expectation-maximization algorithm computes missing memberships of  data points in a chosen 
distribution model.  

• Expectation step 

• initial guesses for the parameters in our mixture model,  

• compute "partial membership" of each data point in each constituent distribution.  

• By calculating expectation for the membership variables of each data point.  

• Example.  

• Data set resulting from a sum of two Gaussian distributions. 

 

•       f is the mixing coefficient in (0,1], assume σ is known and constant.  

• For each data point i, compute a membership value for each of the two Gaussians  

 

• and similarly for y2,i  

P(xi ) = (1- f )N(xi |m1,s )+ f N(xi |m2,s )

y1,i (xi ) =
(1- f )N(xi | m1,s )

(1- f )N(xi | m1,s )+ f N(xi | m2,s )

http://en.wikipedia.org/wiki/Expectation-maximization_algorithm
http://en.wikipedia.org/wiki/Expectation-maximization_algorithm
http://en.wikipedia.org/wiki/Expectation-maximization_algorithm


Expectation maximization (EM)     
• The maximization step 

• With expectation values for group membership 

• - Re-compute estimates of distribution parameters.  

 

 

 

 

 

– N is the total number of data points. 

• - back to the Expectation step: Re-compute new membership values.  

• - repeated until change in the mixture model parameters below 
threshold  

 



The EM  Step 

Current K clusters 
and parameters 

n data 
points 

E step: Compute memberships p(xi|θk) 

New parameters for 
the K clusters 

n data 
points 

M step: Compute qι, given n data points and memberships 



Comments on Mixtures and EM 
Learning 

• - Complexity of each EM iteration 

– Depends on the probabilistic model being used 

• e.g., for Gaussians, E-step: O(nK),  M-step: O(Knp2) 

– Sometimes E or M-step is not closed form 

• => can requires numerical methods at each iteration 

 

• - K-means interpretation 

– Gaussian mixtures with isotropic (diagonal, equi-variance) k ‘s  

– Approximate the E-step by choosing most likely cluster (instead of 
using membership probabilities) 
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EM ITERATION 3



47 19/10/2015 

3.3 3.4 3.5 3.6 3.7 3.8 3.9 4
3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

Red Blood Cell Volume

R
e

d
 B

lo
o

d
 C

e
ll
 H

e
m

o
g

lo
b

in
 C

o
n

c
e

n
tr

a
ti
o

n

EM ITERATION 5



3.3 3.4 3.5 3.6 3.7 3.8 3.9 4
3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

Red Blood Cell Volume

R
e

d
 B

lo
o

d
 C

e
ll
 H

e
m

o
g

lo
b

in
 C

o
n

c
e

n
tr

a
ti
o

n

EM ITERATION 10



3.3 3.4 3.5 3.6 3.7 3.8 3.9 4
3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

Red Blood Cell Volume

R
e

d
 B

lo
o

d
 C

e
ll
 H

e
m

o
g

lo
b

in
 C

o
n

c
e

n
tr

a
ti
o

n

EM ITERATION 15



3.3 3.4 3.5 3.6 3.7 3.8 3.9 4
3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

Red Blood Cell Volume

R
e

d
 B

lo
o

d
 C

e
ll
 H

e
m

o
g

lo
b

in
 C

o
n

c
e

n
tr

a
ti
o

n

EM ITERATION 25



0 5 10 15 20 25
400

410

420

430

440

450

460

470

480

490
LOG-LIKELIHOOD AS A FUNCTION OF EM ITERATIONS

EM Iteration

L
o

g
-L

ik
e

li
h

o
o

d



3.3 3.4 3.5 3.6 3.7 3.8 3.9 4
3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

Red Blood Cell Volume

R
e

d
 B

lo
o

d
 C

e
ll
 H

e
m

o
g

lo
b

in
 C

o
n

c
e

n
tr

a
ti
o

n

ANEMIA DATA WITH LABELS



Hierarchical Clustering 

Step 0 Step 1 Step 2 Step 3 Step 4 

b 

d 
c 

e 

a a b 

d e 
c d e 

a b c d e 

Step 4 Step 3 Step 2 Step 1 Step 0 

agglomerative 

divisive 
 

•  Two basic approaches:  

•  merging smaller clusters into larger ones (agglomerative), 

•  splitting larger clusters (divisive)  

•  visualize both via “dendograms” 

• shows nesting structure 

• merges or splits = tree nodes  



Hierarchical Clustering: Complexity 

• Quadratic algorithms 
 

• Running time can be improved 

using  

– sampling  

     [Guha et al, SIGMOD 1998]  

      [Kollios et al, ICDE 2001] 

  or using the triangle inequality 

(when it holds) 

*based on slides by Padhraic Smyth UC, Irvine 



K-Means Clustering 

Task  

Representation  

Score Function  

Search/Optimization  

Data 
Management 

Models, 
Parameters 

 Clustering 

Partition based on K centers 

Within-cluster sum of 
squared errors 

   Iterative greedy search  

None specified 

K centers 



Probabilistic Model-Based Clustering 

Task  

Representation  

Score Function  

Search/Optimization  

Data 
Management 

Models, 
Parameters 

 Clustering 

Log-likelihood 

EM (iterative)  

None specified 

Probability model 

 Mixture of Probability  
Components 



Single-Link Hierarchical Clustering 

Task  

Representation  

Score Function  

Search/Optimization  

Data 
Management 

Models, 
Parameters 

 Clustering 

Tree of nested groupings 

No global score 

 Iterative merging of   nearest 
neighbors  

None specified 

Dendrogram 



Association Rules 

Μάθημα: Εξόρυξη γνώσης από Βάσεις Δεδομένων και τον Παγκόσμιο 
Ιστό 
Ενότητα # 5: Unsupervised Learning (Clustering) 
Διδάσκων: Μιχάλης Βαζιργιάννης 
Τμήμα: Προπτυχιακό Πρόγραμμα Σπουδών “Πληροφορικής” 
 
 
 



What Is Association Mining? 

• Association rule mining: 

– Finding frequent patterns, associations, correlations, or 
causal structures among sets of items or objects in 
transaction databases, relational databases, and other 
information repositories. 

• Applications: 

– Basket data analysis, cross-marketing, catalog design, loss-
leader analysis, clustering, classification, etc. 

• Examples.  

– Rule form:  “Body ead [support, confidence]”. 

– buys(x, “diapers”)  buys(x, “beers”) [0.5%, 60%] 

– major(x, “CS”) ^ takes(x, “DB”) grade(x, “A”) [1%, 75%] 



Association Rule: Basic Concepts 

• Given: (1) database of transactions, (2) each transaction is a list of 
items (purchased by a customer in a visit) 

• Find: all rules that correlate the presence of one set of items with that 
of another set of items 

– E.g., 98% of people who purchase tires and auto accessories also 
get automotive services done 

• Applications 

– *    Maintenance Agreement (What the store should do to boost 
Maintenance Agreement sales) 

– Home Electronics   *  (What other products should the store 
stocks up?) 

– Attached mailing in direct marketing 

– Detecting “ping-pong”ing of patients, faulty “collisions” 



Rule Measures: Support and 
Confidence 

• Find all the rules X & Y   Z with 
minimum confidence and support 

– support, s, probability that a 
transaction contains {X & Y & Z} 

– confidence, c, conditional 
probability that a transaction having 
{X & Y} also contains Z 

Transaction ID Items Bought

2000 A,B,C

1000 A,C

4000 A,D

5000 B,E,F

Let minimum support 50%, and minimum 
confidence 50%, we have 

 A   C  (50%, 66.6%) 

 C   A  (50%, 100%) 

Customer 

buys diaper 

Customer 

buys both 

Customer 

buys beer 



Mining Association Rules—An Example 

For rule A  C: 

support = support({A  C}) = 50% 

confidence = support({A  C})/support({A}) = 66.6% 

The Apriori principle: 

Any subset of a frequent itemset must be frequent 

Transaction ID Items Bought

2000 A,B,C

1000 A,C

4000 A,D

5000 B,E,F

Frequent Itemset Support

{A} 75%

{B} 50%

{C} 50%

{A,C} 50%

Min. support 50% 
Min. confidence 50% 



Mining Frequent Itemsets: the Key 
Step 

• Find the frequent itemsets: the sets of items that have minimum 

support 

– A subset of a frequent itemset must also be a frequent 

itemset 

• i.e., if {AB} is a frequent itemset, both {A} and {B} should 

be a frequent itemset 

– Iteratively find frequent itemsets with cardinality from 1 to k 

(k-itemset) 

• Use the frequent itemsets to generate association rules. 



The Apriori Algorithm 

• Join Step: Ck is generated by joining Lk-1with itself 

• Prune Step:  Any (k-1)-itemset that is not frequent cannot be a subset 
of a frequent k-itemset 

• Pseudo-code: 
Ck: Candidate itemset of size k 
Lk : frequent itemset of size k 

 
L1 = {frequent items}; 
for (k = 1; Lk !=; k++) do begin 
     Ck+1 = candidates generated from Lk; 
    for each transaction t in database do 

       increment the count of all candidates in Ck+1                            
that are contained in t 

    Lk+1  = candidates in Ck+1 with min_support 
    end 
return k Lk; 



The Apriori Algorithm — Example 

TID Items

100 1 3 4

200 2 3 5

300 1 2 3 5

400 2 5

Database D itemset sup.

{1} 2

{2} 3

{3} 3

{4} 1

{5} 3

itemset sup.

{1} 2

{2} 3

{3} 3

{5} 3

Scan D 

C1 

L1 

itemset

{1 2}

{1 3}

{1 5}

{2 3}

{2 5}

{3 5}

itemset sup

{1 2} 1

{1 3} 2

{1 5} 1

{2 3} 2

{2 5} 3

{3 5} 2

itemset sup

{1 3} 2

{2 3} 2

{2 5} 3

{3 5} 2

L2 

C2 C2 

Scan D 

C3 L3 itemset

{2 3 5}
Scan D itemset sup

{2 3 5} 2



Example of Generating Candidates 

• L3={abc, abd, acd, ace, bcd} 

• Self-joining: L3*L3 

– abcd  from abc and abd 

– acde  from acd and ace 

• Pruning: 

– acde is removed because ade is not in L3 

• C4={abcd} 



Spectral Clustering 

Μάθημα: Εξόρυξη γνώσης από Βάσεις Δεδομένων και τον Παγκόσμιο 
Ιστό 
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Spectral Clustering 



Graph-Cut 

• For k clusters: 

 

• undirected graph:1/2 we count twice each edge 

 

 

 

 

 

 

 

• Min-cut: Minimize the edges’ weight a cluster shares with the rest 
of the graph 

 



Min-Cut 

• Easy for k=2 : Mincut(A1,A2) 

– Stoer and Wagner: “A Simple Min-Cut Algorithm” 

• In practice one vertex is separated from the rest 

– The algorithm is drawn to outliers 
 

 



Normalized Graph Cuts 



From Graph Cuts to Spectral 
Clustering 



Graph Laplacian 



Properties of L 



Two Way Cut from the Laplacian 



Example 



Ratio Cut 



Ratio Cut 



Normalized Cut 



Normalized Cut 



Multi-Way Graph Partition 

Define  𝑓𝑖𝑗 =
        𝑣𝑖 ∈𝐴𝑗

0          𝑜𝑡 ℎ𝑒𝑤𝑖 𝑠𝑒
   

we have a vector indicating the cluster a vertex belongs to 

Similarly to the other equations we can deduce: 
𝑓𝑖

𝑇𝐿𝑓𝑖 = 𝑐𝑢 𝑡(𝐴𝑖,𝐴𝑖)/|𝐴𝑖|  

𝑓𝑖
𝑇𝐿𝑓𝑖 = 𝐹𝑇𝐿𝐹 𝑖𝑖 = 𝑇𝑟(𝐹𝑇𝐿𝐹)  

Where Tr is the Trace of a Matrix 

So now the RatioCut becomes: 
𝑚𝑖 𝑛𝐹𝑇𝐿𝐹 𝑠𝑢 𝑏𝑗𝑒𝑐𝑡   𝑡𝑜  𝐹𝑇𝐹 = 𝐼 

 

Multi-Way Graph Partition 



Multi-Way Graph Partition 
• The solution can now be given by the first k 

eigenvectors of L as columns 

• The real values need to be converted to cluster 
assignments 

– We use k-means to cluster the  rows  

– We can substitute L with Lsym 

 
A11………….…………A1n 

A21………….…………A2n 
 

Ak1………….…………Akn 

. 

. 

. 

First  k  
eigeigenvectors 

 A11 
 
 
 
 
 
 
 
 
 
 
 Ak1 

 A21 
 
 
 
 
 
 
 
 
 
 
 A2n 
 

 Ak1 
 
 
 
 
 
 
 
 
 
 
 Akn 
 

....

. 

K-means on 
the Lines 
 
Each Line 
Represents a 
Vertex 



Algorithm for k>2 



Laplacian-Eigenvectors-EigenValues 

C1 

C2 

Cn 

L1 
L2 

Ln 

Everything sorted according to cluster : block diagonal form Matrix 
L follows the same form composed on L1…Ln 

Each Li has the same properties as L: nx0 min eigenvalues etc.. 
Each “Second” eigenvector is a cut of Ci from the rest of the graph and holds a 
mapping (distance) of a vertex to the cluster i  
 



Simple example 

2  Eigenvectors 
 
(1100) and 
(0011) 
 
Mapping vertices 
in their clusters 

2  Eigenvectors 
 
(1010) and 
(0101) 
 
Mapping vertices 
to the same 
clusters 

Permutation does not change 
the result 
 
The cut remains the same 
regardless of the ordering 
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Modularity Based Methods 

• Most of the community evaluation measures (e.g., 
conductance, cut-based measures), quantify the quality of a 
community based on 

– Internal connectivity (intra-community edges) 

– External connectivity (inter-community edges) 

• Question: Is there any other way to distinguish groups of nodes 
with good community structure? 

• Random graphs are not expected to present inherent 
community structure 

• Idea: Compare the number of edges that lie within a cluster  with 
the expected one in case of random graphs with the same degree 
distribution – modularity measure 



Main idea 

• Modularity function [Newman and Girvan ‘04], [Newman ‘06] 

• Initially introduced as a measure for assessing the strength of 
communities 

– Q = (fraction of edges within communities) –  

    (expected number of edges within communities) 

• What is the expected number of edges? 

• Consider a configuration model 

– Random graph model with the same degree distribution 

– Let Pij = probability of an edge between nodes i and j 

 with degrees ki and kj respectively 

– Then Pij  = ki kj / 2m,  where  m = |E| = ½ Σi ki 



Formal definition of modularity 
 

 

 

 

where  

– A is the adjacency matrix 

– ki, kj the degrees of nodes i and j respectively 

–  m is the number of edges 

– Ci is the community of node i 

– δ(.) is the Kronecker function: 1 if both nodes i and j belong on 
the same community (Ci = Cj), 0 otherwise 
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[Newman and Girvan ‘04], [Newman ‘06] 



Properties of modularity 

• Larger modularity  Q indicates better communities (more than 
random intra-cluster density) 

– The community structure would be better if the number of 
internal edges exceed the expected number 

• Modularity value is always smaller than 1 

• It can also take negative values 

– E.g., if each node is a community itself 

– No partitions with positive modularity  No community structure 

– Partitions with large negative modularity  Existence of 
subgraphs with small internal number of edges and large number 
of inter-community edges 
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Applications of modularity 
• Modularity can be applied: 

– As quality function in clustering algorithms 

– As evaluation measure for comparison of different partitions or 
algorithms 

– As a community detection tool itself 

Modularity optimization 

– As criterion for reducing the size of a graph 

Size reduction preserving modularity [Arenas et al. 
‘07] 

 

[Newman and Girvan ‘04], [Newman ‘06], [Fortunato ‘10] 



• Modularity was first applied as a stopping criterion in the Newman-
Girvan algorithm 

• Newman-Girvan algorithm [Newman and Girvan ‘04] 

– A divisive algorithm (detect and remove edges that connect vertices of 
different communities) 

– Idea: try to identify the edges of the graph that are most between other 
vertices  responsible for connecting many node pairs 

– Select and remove edges based to the value of betweenness centrality 

– Betweenness centrality: number of shortest paths between every pair of 
nodes, that pass through an edge 

 

Modularity-based clustering 

Edge betweenness 
is higher for edges 

that connect 
different 

communities 



Newman-Girvan algorithm (1) 
• Basic steps: 

1. Compute betweenness centrality for all edges in the graph 

2. Find and remove the edge with the highest score 

3. Recalculate betweenness centrality score for the remaining 
edges 

4. Go to step 2 

• How do we know if the produced communities are  good ones 
and stop the algorithm? 

– The output of the algorithm is in the form of a dendrogram 

– Use modularity as a criterion to cut the dendrogram and 
terminate the algorithm (Q ~= 0.3-0.7 indicates good partitions)  

• Complexity: O(m2n) (or O(n3) on a sparse graph) 

 [Newman and Girvan ‘04], [Girvan and Newman ‘02] 



Newman-Girvan algorithm (2) 

[Newman and Girvan ‘04] 

Zachary’s karate club 
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Community structure 



Modularity optimization 
• High values of modularity indicate good quality of partitions 

• Goal: find the partition that corresponds to the maximum value 
of modularity 

• Modularity maximization problem 

– Computational difficult problem [Brandes et al. ‘06] 

– Appoximation techniques and heuristics 

• Four main categories of techniques 

1. Greedy techniques 

2. Spectral optimization 

3. Simulated annealing 

4. Extremal optimization [Fortunato ‘10] 



Greedy techniques  
• Newman’s algorithm [Newman ’04b] 

– Agglomerative (bottom-up) hierarchical clustering algorithm 

– Idea: Repeatedly join pairs of communities that achieve the 
greatest increase of modularity (dendrogram representation) 

1. Initially, each node of the graph belongs on its own cluster (n) 

2. Repeatedly, join communities in pairs by adding edges 

a. At each step, choose the pairs that achieve the greatest 
increase (or minimum decrease) of modularity  

b. Consider only pairs of communities between which there 
exist edges (merging communities that do not share edges, it 
can never improve modularity) 

– Complexity: O((m+n) n) (or O(n2) on a sparse graph) 

 



Resolution limit of modularity 
• Resolution Limit of modularity [Fortunato and Barthelemy ‘07] 

• The method of modularity optimization may not detect communities 
with relatively small size, which depends on the total number of 
edges in the graph 

 

 

Km 

Km 

Km Km 

Km 

Km 

Km 

Km 

Km 

Km 

 Km are cliques with m edges (m ≤ sqrt(|E|)) 

 Km represent well-defined clusters 

 However, the maximum modularity 
corresponds to clusters formed by two or 
more cliques 

 It is difficult to know if the community 
returned by modularity optimization 
corresponds to a single community or a 
union of smaller communities 
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