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2KOTtOL EVOTNTOC

Elcaywyn kot e€olkelwon pe tic pebodouc,
Clustering, K-means, Expectation Maximization
(EM), Spectral Clustering.



MepLexopeva evotntoC

e Clustering
e K-means
e Expectation Maximization (EM)

e Spectral Clustering
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Supervised vs. Unsupervised
Learning

* Unsupervised learning (clustering)
— The class labels of training data are unknown

— Given a set of measurements, observations, etc. establish the existence of

clusters in the data
» Supervised learning (classification)

— Supervision: The training data (observations, measurements, etc.) are

accompanied by labels indicating the class of the observations
— New data is classified based on the training set
 Semi-supervised clustering
— Learning approaches that use user input (i.e. constraints or labeled data)

— Clusters are defined so that user-constraints are satisfied



Clustering

* “automated detection of group structure in data”

* Typically: partition N data points into K groups
(clusters) such that the points in each group are
more similar to each other than to points in
other groups

* descriptive technique (contrast with predictive)

e for real-valued vectors, clusters can be thought
of as clouds of points in p-dimensional space
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Why is Clustering useful?

 “Discovery” of new knowledge from data
— Contrast with supervised classification (where labels are known)
— Long history in the sciences of categories, taxonomies, etc
— Can be very useful for summarizing large data sets

* For large n and/or high dimensionality

* Applications of clustering
— Discovery of new types of galaxies in astronomical data
— Clustering of genes with similar expression profiles
— Cluster pixels in an image into regions of similar intensity
— Segmentation of customers for an e-commerce store
— Clustering of documents produced by a search engine

— ... Many more



General Issues in Clustering

Representation:
— What types of clusters are we looking for?
Score:
— The criterion to compare one clustering to another
Optimization
— Generally, finding the optimal clustering is NP-hard
* Greedy algorithms to optimize score are widely used

Other issues

— Distance function, D(x(i),x(j)) critical aspect of clustering, both
» distance of pairs of objects
» distance of objects from clusters

— How is K selected?

— Different types of data
* Real-valued versus categorical
 Attribute-valued vectors vs. n? distance matrix



Clustering Methods

Partitional algorithms
— K-Means, PAM, CLARA, CLARANS [Ng and Han, VLDB 1994]
Hierarchical algorithms

— CURE [Guha et al, SIGMOD’98], BIRCH [Zhang et al, SIGMOD’96], CHAMELEON [IEEE Computer,
1999]

Density based algorithms
— DENCLUE [Hinneburg, Keim, KDD’98], DBSCAN [Ester et al, KDD 96]
Subspace Clustering

— CLIQUE [Agrawal et al, SIGMOD’98], PROCLUS [Agrawal et al, SIGMOD’99], ORCLUS: [Aggarwal,
and Yu, SIGMOD' 00], DOC: [Procopiuc, Jones, Agarwal, and Murali, SIGMOD'02]

Locally adaptive clustering techniques
— LAC
Spectral clustering

— [Ng, Jordan, Weiss], [Shi/Malik], [Scott/Longuet-Higgins], [Perona/ Freeman]



Partitional Algorithms: Basic Concept

= Partitional method:

= Partition the data set into a set of k disjoint partitions

(clusters).

= Problem Definition:

= Given an integer k, find a partitioning of k clusters that

optimizes the chosen partitioning criterion
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K-means Clustering

* basicidea:
— Score = wc(C) = sum-of-squares within cluster distance
— start with randomly chosen cluster centers c; ... ¢,
— repeat until no cluster memberships change:
* assign each point x to cluster with nearest center
— find smallest d(x,c,), over all ¢, ... ¢,
* recompute cluster centers over data assigned to them
- =1/(n) 2, c X
e algorithm terminates (finite number of steps)
— decreases Score(X,C) each iteration membership changes
* converges to local maxima of Score(X,C)
— not necessarily the global maxima ...

— different initial centers (seeds) can lead to diff local maxs



K-means Complexity

* time complexity: O(l e n k) << exhaustive’s nk
— | = number of interations (steps)
— e = cost of distance computation (e=p for Euclidian dist)
* speed-up tricks (especially useful in early iterations)
— use nearest x(i)’s as cluster centers instead of mean
* reuse of cached dists from size n? dist mat D (lowers effective “e”)
* k-medoids: use one of x(i)’s as center because mean not defined
— recompute centers as points reassigned
» useful for large n (like online neural nets) & more cache efficient
— PCA: reduce effective “e” and/or fit more of X in RAM
— “condense”: reduce “n” by replace group with prototype

— even more clever data structures (see work by Andrew Moore, CMU)



K-means example (courtesy of
Andrew Moore, CMU)
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K-means
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1. Ask user how many

clusters they’d like.
(e.g. K=5)
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cluster Center
locations
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K-means

= fAuton’s Graphics =
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Ask user how many
clusters they’d like.
(e.g. k=5)

Randomly guess k
cluster Center
locations

Each datapoint finds
out which Center it’s
closest to.

Each Center finds the
centroid of the points
it owns

K-means
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Ask user how many
clusters they’d like. (e.g.
k=5)

Randomly guess k
cluster Center locations

Each datapoint finds out
which Center it’s closest
to.

Each Center finds the
centroid of the points it
owns

New Centers => new
boundaries

Repeat until no change!

K-means
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K-means
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Accelerated Computations

Example generated by Pelleg and
Moore’s accelerated k-means

Dan Pelleg and Andrew Moore.
Accelerating Exact k-means
Algorithms with Geometric
Reasoning. Proc. Conference
on Knowledge Discovery in
Databases 1999, (KDD99)
(available on
www.autonlab.org/pap.html)




K-means continues...
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K-means continues...




K-means continues...
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K-means continues...
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K-means terminates




Clusters on color

K-means clustering of RGB (3 value) pixel
color intensities, K = 11 segments
(courtesy of David Forsyth, UC Berkeley)



Issues in K-means clustering

* Simple, but useful
— tends to select compact “isotropic” cluster shapes
— can be useful for initializing more complex methods
— many algorithmic variations on the basic theme
e Choice of distance measure
— Euclidean distance
— Weighted Euclidean distance
— Many others possible
e Selection of K
— “screen diagram” - plot SSE versus K, look for knee

* Limitation: may not be any clear K value
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Expectation Maximization

* (EM) algorithm is an iterative method for finding maximum
likelihood estimates of parameters in statistical models that
depend on unobserved latent variables.

 Assume X the data observed - We assume the data are
produced by K different classes/processes represented by
respective weights there fore w,

f(X)=awf,(x|q)
k



Gaussian Mixture Models (GMM)

* Assume the the components are normal distrubutions N(,,2,)
— often assume diagonal covariance: ;= ¢ 3;,=0

— or sometimes even simpler: 2j=0* 2.,=0

o ) =2k W fl(X; 8) with = <g, 2> or <p, 0>

¥

e generative model:

— -randomly choose a component

— selected with probability w, « X @
— - generate X ~ N(4, ;) 3

— -note: y, & o, both d-dim vectors




Learning Mixture Models from Data

» Score function Log-likelihood L(6)
— L(6) =log p(X|6) = log 2, p(X,H|6)
— H = hidden variables (cluster memberships of each X)

— L(6) cannot be optimized directly

* EM Procedure
— General technique for maximizing log-likelihood with missing data
— For mixtures
* E-step: compute “memberships” p(k | x) = w, f(x;0,) / f(x)
* M-step: pick a new 0 to max expected data log-likelihood

 Iterate: guaranteed to climb to (local) maximum of L(0)



Expectation maximization (EM)

The Expectation-maximization algorithm computes missing memberships of data points in a chosen
distribution model.

* Expectation step
e initial guesses for the parameters in our mixture model,
e compute "partial membership" of each data point in each constituent distribution.

e By calculating expectation for the membership variables of each data point.

Example.

Data set resulting from a sum of two Gaussian distributions.
P(x)=(1- TINO; | m8)+ IN(x [ m,5)

fis the mixing coefficient in (0,1], assume o is known and constant.

For each data point i, compute a membership value for each of the two Gaussians
_ 1- N(X [77.5)
Yo (%)=
1L- F)NOG | m,s)+TN(X |m,s)

. and similarly for y, ;


http://en.wikipedia.org/wiki/Expectation-maximization_algorithm
http://en.wikipedia.org/wiki/Expectation-maximization_algorithm
http://en.wikipedia.org/wiki/Expectation-maximization_algorithm

Expectation maximization (EM)

The maximization step
With expectation values for group membership
- Re-compute estimates of distribution parameters.

2 i &i,z
N

- f=

0y — 2 Uil
~ 2 i gil

— N is the total number of data points.
- back to the Expectation step: Re-compute new membership values.

- repeated until change in the mixture model parameters below
threshold



The EM Step

E step: Compute memberships p(x;[/$,)
@)

n data
points

Current K clusters
and parameters

M step: Compute q, given n data points and memberships
(@)

(@)
h data \‘0 New parameters for

points the K clusters




Comments on Mixtures and EM
Learning

- Complexity of each EM iteration
— Depends on the probabilistic model being used
* e.g., for Gaussians, E-step: O(nK), M-step: O(Knp?)
— Sometimes E or M-step is not closed form

e =>can requires numerical methods at each iteration

- K-means interpretation
— Gaussian mixtures with isotropic (diagonal, equi-variance) 2, ‘s

— Approximate the E-step by choosing most likely cluster (instead of
using membership probabilities)



ANEMIA PATIENTS AND CONTROLS
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EM ITERATION 1
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EM ITERATION 3
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EM ITERATION 5
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EM ITERATION 10
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EM ITERATION 15
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EM ITERATION 25
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LOG-LIKELIHOOD AS A FUNCTION OF EM ITERATIONS
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Hierarchical Clustering

Two basic approaches:
* merging smaller clusters into larger ones (agglomerative),
« splitting larger clusters (divisive)

visualize both via “dendograms”
* shows nesting structure

* merges or splits = tree nodes

Step O SitEpl S|te|o2 S|te|o3 S|te'o4 , agglomerative

A

divisive



Hierarchical Clustering: Complexity

20

« Quadratic algorithms

« Running time can be improved

15

using

— sampling

10

[Guha et al, SIGMOD 1998]

[Kollios et al, ICDE 2001]

or using the triangle inequality
(when it holds) H

o
[(a N4t —-—r
[aY]

*based on slides by Padhraic Smyth UC, Irvine



K-Means Clustermg

Task

1

Representation

1

Score Function

1

Search/Optimization

Data
Management

1

Models,
Parameters

Clustering

1

Partition based on K centers

Within-c{uster sum of
squared errors

v
Iterative greedy search

v
None specified

1

K centers

_______________________________________________



Probabilistic Model Based Clustermg

Task

1

Representation

v
Score Function

v
Search/Optimization

Data
Management

1

Models,
Parameters

Clustering

|

Mixture of Probability
Components

!

Log-likelihood

— 1

EM (iterative)

1

None specified

1

Probability model

_______________________________________________



Task

1

Representation

\ 4
Score Function

v
Search/Optimization

Data
Management

1

Models,
Parameters

Single-Link Hierarchical CIusterlng

Clustering

1

Tree of nested groupings

!

No global score

. \ :
Iterative merging of nearest !
ngighbors |

v
None specified

1

Dendrogram

_______________________________________________
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What Is Association Mining?

- Association rule mining:

— Finding frequent patterns, associations, correlations, or
causal structures among sets of items or objects in
transaction databases, relational databases, and other

information repositories.

- Applications:
— Basket data analysis, cross-marketing, catalog design, loss-
leader analysis, clustering, classification, etc.

- Examples.
— Rule form: “Body — Head [support, confidence]”.
— buys(x, “diapers”) — buys(x, “beers”) [0.5%, 60%]
— major(x, “CS”) " takes(x, “DB”) — grade(x, “A”) [1%, 75%]



Association Rule: Basic Concepts

Given: (1) database of transactions, (2) each transaction is a list of
items (purchased by a customer in a visit)

Find: all rules that correlate the presence of one set of items with that
of another set of items

— E.g., 98% of people who purchase tires and auto accessories also
get automotive services done

Applications

— * = Maintenance Agreement (What the store should do to boost
Maintenance Agreement sales)

— Home Electronics = * (What other products should the store
stocks up?)

— Attached mailing in direct marketing
— Detecting “ping-pong”ing of patients, faulty “collisions”



Rule Measures: Support and

Transaction ID
2000
1000
4000
5000

ltems Bought

A,B,C
A,C
A,D
B,E,F

Confidence
Cust
bﬁ:,:n;:, Customer ¢ Find all the rules X & Y = Z with
uys diaper | minimum confidence and support
— support, s, probability that a
transaction contains {X & Y & Z}
— confidence, c, conditional
Customer probability that a transaction having
buys beer {X & Y} also contains Z

Let minimum support 50%, and minimum
confidence 50%, we have

= A= C (50%, 66.6%)
= C= A (50%, 100%)



Mining Association Rules—An Example

Transaction ID |ltems Bought Min. support 50%
2000 A,B,C Min. confidence 50%
1000 A,C

4000 A.D Earfquent ltemset Sup$5oor/t
B.E,F >
=000 — *{B} 50%
{C} 50%
Forrule A= C: {A,C} 0%

support = support({A = C}) = 50%
confidence = support({A = C})/support({A}) = 66.6%
The Apriori principle:

Any subset of a frequent itemset must be frequent




Mining Frequent Itemsets: the Key
Step

Find the frequent itemsets: the sets of items that have minimum
support

— A subset of a frequent itemset must also be a frequent
itemset

* i.e., if {AB}is a frequent itemset, both {A} and {B} should
be a frequent itemset

— lteratively find frequent itemsets with cardinality from 1 to k
(k-itemset)

Use the frequent itemsets to generate association rules.



The Apriori Algorithm

Join Step: C, is generated by joining L,_,with itself

Prune Step: Any (k-1)-itemset that is not frequent cannot be a subset
of a frequent k-itemset

Pseudo-code:
C.: Candidate itemset of size k
L. : frequent itemset of size k

L, = {frequent items};
for (k =1; L, |=; k++) do begin
C..; = candidates generated from L,;
for each transaction t in database do
increment the count of all candidates in C,,,
that are contained in t
L.,;, =candidates in C,,; with min_support
end
return U, L,;



The Apriori Algorithm — Example

temsetsup. L, [Itemset sup.
{1} 2 (13} >
{2} 3 .| {2 3
REIINE -
4 1
(5t | 3 BF |3
itemset| sup ¢, [ltemset
{12} 1 Scan D {1 2}
{13} | 2 {1 3}
{15} | 1 {1 5}
{23} | 2 {2 3}
{25} | 3 {2 5}
{35} | 2 {3 5}
Scan D L; litemset| sup

Database D
TID |ltems C,
100|134
200|235 >can D
3001235
400 (2 5
CZ
L, |itemset|sup
{13} | 2
{23} | 2 | +—
{25} | 3
@ {35} | 2
G [itemset
{2 35}

{2 35)




Example of Generating Candidates

L,={abc, abd, acd, ace, bcd}

Self-joining: L,*L,

— abcd from abc and abd
— acde from acd and ace
* Pruning:

— acde is removed because ade is not in L,

C,={abcd}
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Spectral Clustering

Given Graph G=(V,E) undirected:

Vertex Set V={v,,.....v,}, Edge ¢; between v;and v,
we assume weight w;>0 for g;

V| : number of vertlces
d. degree of v,: d, = Zv ev W;

v(V) = Z d,

vEV
forAcVA=V-A
GivenA,BcV&ANB=Q0w(4,B) = YveavjeB Wi
D: Diagonal matrix where D(i,i)=d.
W: Adjacency matrix W(i,j)=w;



Graph-Cut

* For k clusters:

 undirected graph:1/2 we count twice each edge

* Min-cut: Minimize the edges’ weight a cluster shares with the rest
of the graph



Min-Cut

* Easy for k=2 : Mincut(AA,)
— Stoer and Wagner: “A Simple Min-Cut Algorithm”
* |n practice one vertex is separated from the rest

— The algorithm is drawn to outliers




Normalized Graph Cuts

We can normalize by the size of the cluster (size
of sub-graph) :
number of Vertices (Hagen and Kahng, 1992):

Ratiocut(4,, ... Ak) = §c=1cutlﬁil,,qi)

sum of weights (Shi and Malik, 2000) :

_ wk cut(4iA)
Ncut(Aq, ...Ak) = Yi—4 o)

Optimizing these functions is NP-hard

Spectral Clustering provides solution to a relaxed
version of the above




From Graph Cuts to Spectral

Clustering
For simplicity assume k=2:
Define f:V — R for Graph G :

1 vV, EA
fl: 1 —

Optimizing the original cut is equivalent to
an optimization of:

Ej=1wij(fi — f))?



Graph Laplacian

How is the previous useful in Spectral
clustering?

n
Z wy(f: — fJ)?
i,j=1
Zl} 1Wf2 l] lwzjflf]-l_zlj 1W11f2

Z df?—2 Z Wuflfj-l—zu 3

i,j=1 i,j=1

= 2 (Z:j=1diifi Z wijfifj)

,j=1
=2(f'Df — fTWF) =2fT(D —W)f = 2fTLf
f: a single vector with the cluster assignments of the vertices




Properties of L

Lis
Symmetric
Positive

Semi-definite (xT Lx, x is a non negative vector)

The smallest eigenvalue of Lis O

The corresponding eigenvector is 1

L has n non-negative, real valued eigenvalues
0=A4,<A, << A,



Two Way Cut from the Laplacian

We could solve minf'Lf where f € {—1,1}"

NP-Hard for discrete cluster assignments
Relax the constraintto f € R™:
min f'Lf subject to fif=n
Solution: (Rayleigh-Ritz Theorem)

- the eigenvector corresponding to smallest
eigenvalue: 0 TRIVIA as it offers no information

- we use the second eigenvector as an
approximation (fi>0 vertex belongs to cluster A,
fi<0 to the other cluster V-A)



Example

Adjacency Matrix

S

2nd Eigenvector
0.3r

0.25-

0.2-

0.15r

01r

0.05-

0 30 100 150 200



Ratio Cut

k N
cut(Ai, A,
Ratiocut(Ay, ... Ak) = Z |(Ai| )

=1

Define f:V — R for Graph G :

([
w viEeA
|A]

4] —
- |= v, EA
L+ 1
Zn . — /IZI Al
(f. — 2 = — i
i,j=1W”(f£ i) Zcut(A,A)( ] + |Z| + 2

= 2|V|Ratiocut(A, A)

fi= 3




Ratio Cut

We have min f'Lf subject to

ff1 =0, fTf =n

fm_z Z\]E —\/:% |A|‘/|;—|A|‘/7
fTf = Zf2—|A|+|A|—n

The second smallest eigenvalue of Lf =
Af approximates the solution



Normalized Cut

m Ncut(A,,..Ak) =X 1cuz((f_’)A‘)

B Define f:V — Rfor Graph G :
O

v(4) .
m vVieA

fi=H

— @ vieA
v(Z)
l} 1WL](f
v(A v(A
ZCut(A A) o T v T 2

= Zv(V)Ncut(A A)



Normalized Cut

Similarly we come to : min.f'Lf
subjectto f'D1 =0, fTDf = v(V)

Assume h = Dl/zf
min, hTD~"/2L.D™"/2h subject to
h'D'/21=0, hTh=v(V)
The answer is in the eigenvector of the second smallest eigenvalue

of L, = D~ /2LD "7z
Shi and Malik (2000)

ym 18 the normalized Laplacian

has n non-negative, real valued eigenvalues
0=4,<4,<-<51,

LS



Multi-Way Graph Partition

1 . .
: — Vi €A
Define f; = {\/|AJ| /
0 ot ewih s
we have a vector indicating the cluster a vertex belongs to

e

Similarly to the other equations we can deduce:
fTLf = cu (Ai, A, /|t

Z FILF, = z(FTLF)u = Tr(FTLF)

Where Tr is the Trace of a Matrix

So now the RatioCut becomes:
mi (F'LF) sunjec to FTF = |




Multi-Way Graph Partition

* The solution can now be given by the first k
eigenvectors of L as columns

e The real values need to be converted to cluster

assignments

— We use k-means to cluster the rows

— We can substltute Lwith L,

KI I I\
N

First k
eigeigenvectors

K-means on
the Lines

Each Line
Represents a
Vertex



Algorithm for k>2

Compute Laplacian (L, L,,,).
Compute the first k eigenvectors u,, . . ., u, of L.
Let U € Rk the matrix containing the vectors
ul, ..., ukascolumns.
Fori=1,...,n,

let y, € R* the vector correspondfn’? to the i-th row of U.
Cluster the points y, = 1, ....n € R*with the k-means algorithm into
clusters C1, . .. ,Ck.

Output: Clusters A,, . . ., A, with Ai = {j|v; € Ci}

HOW DO WE CHOOSE k?
We choose the k that maximizes the eigengap:
A, = |A, — Ax_1| (Davis-Kahan Theorem)
Ideally: for k connected components the Laplacian has k 0-eigenvalues



Laplacian-Eigenvectors-EigenValues

Everything sorted according to cluster : block diagonal form Matrix

L follows the same form composed on L,...L,

Each L, has the same properties as L: nx0O min eigenvalues etc..

Each “Second” eigenvector is a cut of C, from the rest of the graph and holds a
mapping (distance) of a vertex to the cluster i



/1100
1100
0011
\0011

/1010
0101
1010
\0101

2 Eigenvectors

(1100) and
(0011)

Mapping vertices
in their clusters

2 Eigenvectors

(1010) and
(0101)

Mapping vertices
to the same
clusters

Simple example

Permutation does not change
the result

The cut remains the same
regardless of the ordering
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Modularity Based Methods

Most of the community evaluation measures (e.g.,
conductance, cut-based measures), quantify the quality of a
community based on

— Internal connectivity (intra-community edges)

— External connectivity (inter-community edges)

Question: Is there any other way to distinguish groups of nodes
with good community structure?

Random graphs are not expected to present inherent
community structure

Idea: Compare the number of edges that lie within a cluster with
the expected one in case of random graphs with the same degree
distribution — modularity measure



Main idea

Modularity function [Newman and Girvan ‘04], [Newman ‘06]

Initially introduced as a measure for assessing the strength of
communities

— Q = (fraction of edges within communities) -
(expected number of edges within communities)
What is the expected number of edges?
Consider a configuration model
— Random graph model with the same degree distribution
— Let Pij = probability of an edge between nodes i and

with degrees ki and kj respectively

— Then Pij=kiki/ 2m, where m = |E| =% 2 ki



Formal definition of modularity

Q 12(’4/7 B il j 5(CHC/)

B 2m< 2m

where
— Ais the adjacency matrix
— ki, kj the degrees of nodes i and j respectively
— m s the number of edges
— Ciis the community of node i

— 8(.) is the Kronecker function: 1 if both nodes i and j belong on
the same community (Ci = Cj), O otherwise

[Newman and Girvan ‘04], [Newman ‘06]



Properties of modularity
Q= 12(

2m

£, j5(c,,cj)

2m

e Larger modularity Q indicates better communities (more than
random intra-cluster density)

— The community structure would be better if the number of
internal edges exceed the expected number

 Modularity value is always smaller than 1

* |t can also take negative values
— E.g., if each node is a community itself
— No partitions with positive modularity 2 No community structure

— Partitions with large negative modularity = Existence of
subgraphs with small internal number of edges and large number
of inter-community edges

[Newman and Girvan ‘04], [Newman ‘06], [Fortunato ‘10]



Applications of modularity

 Modularity can be applied:
— As quality function in clustering algorithms

— As evaluation measure for comparison of different partitions or
algorithms

— As a community detection tool itself
dModularity optimization

— As criterion for reducing the size of a graph

(Size reduction preserving modularity [Arenas et al.
‘07]

[Newman and Girvan ‘04], [Newman ‘06], [Fortunato ‘10]



Modularity-based clustering

 Modularity was first applied as a stopping criterion in the Newman-
Girvan algorithm

* Newman-Girvan algorithm [Newman and Girvan ‘04]

A divisive algorithm (detect and remove edges that connect vertices of
different communities)

Idea: try to identify the edges of the graph that are most between other
vertices = responsible for connecting many node pairs

Select and remove edges based to the value of betweenness centrality

Betweenness centrality: number of shortest paths between every pair of

des, that pass through an ed
nodes, that pass through an eage Edge betweenness

is higher for edges
that connect
different

communities ,




Newman-Girvan algorithm (1)

* Basic steps:
1. Compute betweenness centrality for all edges in the graph
2. Find and remove the edge with the highest score

3. Recalculate betweenness centrality score for the remaining
edges

4. Gotostep?2

* How do we know if the produced communities are good ones
and stop the algorithm?

— The output of the algorithm is in the form of a dendrogram

— Use modularity as a criterion to cut the dendrogram and
terminate the algorithm (Q ~= 0.3-0.7 indicates good partitions)

e Complexity: O(m2n) (or O(n3) on a sparse graph)

[Newman and Girvan ‘04], [Girvan and Newman ‘02]



T o = o
(=~ -

Ayseinpo

Zachary’s karate club

Newman-Girvan algorithm (2)

Community structure

[Newman and Girvan ‘04]



Modularity optimization

High values of modularity indicate good quality of partitions

Goal: find the partition that corresponds to the maximum value
of modularity

* Modularity maximization problem
— Computational difficult problem [Brandes et al. ‘06]
— Appoximation techniques and heuristics
* Four main categories of techniques
1. Greedy techniques
2. Spectral optimization
3. Simulated annealing
4

Extremal optimization [Fortunato ‘10]



Greedy techniques

* Newman’s algorithm [Newman '04b]
— Agglomerative (bottom-up) hierarchical clustering algorithm

— ldea: Repeatedly join pairs of communities that achieve the
greatest increase of modularity (dendrogram representation)

1. Initially, each node of the graph belongs on its own cluster (n)
2. Repeatedly, join communities in pairs by adding edges

a. At each step, choose the pairs that achieve the greatest
increase (or minimum decrease) of modularity

b. Consider only pairs of communities between which there
exist edges (merging communities that do not share edges, it
can never improve modularity)

— Complexity: O((m+n) n) (or O(n?) on a sparse graph)



Resolution limit of modularity

e Resolution Limit of modularity [Fortunato and Barthelemy ‘07]

 The method of modularity optimization may not detect communities
with relatively small size, which depends on the total number of
edges in the graph

@ B Km are cliques with m edges (m < sqrt(|E|))
@ @ B Km represent well-defined clusters

However, the maximum modularity
corresponds to clusters formed by two or
more cliques

B |[tis difficult to know if the community
returned by modularity optimization
corresponds to a single community or a
union of smaller communities
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