
Εξόρυξη γνώσης από Βάσεις
Δεδομένων και τον Παγκόσμιο Ιστό

Ενότητα # 4: Unsupervised Learning (Clustering)

Διδάσκων: Μιχάλης Βαζιργιάννης

Τμήμα: Προπτυχιακό Πρόγραμμα Σπουδών
“Πληροφορικής”

Χρηματοδότηση
• Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια

του εκπαιδευτικού έργου του διδάσκοντα.

• Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Οικονομικό
Πανεπιστήμιο Αθηνών» έχει χρηματοδοτήσει μόνο τη
αναδιαμόρφωση του εκπαιδευτικού υλικού.

• Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού
Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και
συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό
Κοινωνικό Ταμείο) και από εθνικούς πόρους.

2

Άδειες Χρήσης

• Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
χρήσης Creative Commons.

• Οι εικόνες προέρχονται … .

3

Σκοποί ενότητας

Εισαγωγή και εξοικείωση με τις μεθόδους,
Clustering, K-means, Expectation Maximization
(EM), Spectral Clustering.

4

Περιεχόμενα ενότητας

• Clustering

• K-means

• Expectation Maximization (EM)

• Spectral Clustering

5

Clustering

Μάθημα: Εξόρυξη γνώσης από Βάσεις Δεδομένων και τον Παγκόσμιο
Ιστό
Ενότητα # 4: Unsupervised Learning (Clustering)
Διδάσκων: Μιχάλης Βαζιργιάννης
Τμήμα: Προπτυχιακό Πρόγραμμα Σπουδών “Πληροφορικής”

Supervised vs. Unsupervised
Learning

• Unsupervised learning (clustering)

– The class labels of training data are unknown

– Given a set of measurements, observations, etc. establish the existence of

clusters in the data

• Supervised learning (classification)

– Supervision: The training data (observations, measurements, etc.) are

accompanied by labels indicating the class of the observations

– New data is classified based on the training set

• Semi-supervised clustering

– Learning approaches that use user input (i.e. constraints or labeled data)

– Clusters are defined so that user-constraints are satisfied

• “automated detection of group structure in data”

• Typically: partition N data points into K groups
(clusters) such that the points in each group are
more similar to each other than to points in
other groups

• descriptive technique (contrast with predictive)

• for real-valued vectors, clusters can be thought
of as clouds of points in p-dimensional space

Clustering

Sometimes easy

Sometimes impossible

and sometimes in between

Clustering

Why is Clustering useful?
• “Discovery” of new knowledge from data

– Contrast with supervised classification (where labels are known)

– Long history in the sciences of categories, taxonomies, etc

– Can be very useful for summarizing large data sets

• For large n and/or high dimensionality

• Applications of clustering

– Discovery of new types of galaxies in astronomical data

– Clustering of genes with similar expression profiles

– Cluster pixels in an image into regions of similar intensity

– Segmentation of customers for an e-commerce store

– Clustering of documents produced by a search engine

– …. many more

General Issues in Clustering
• Representation:

– What types of clusters are we looking for?

• Score:

– The criterion to compare one clustering to another

• Optimization

– Generally, finding the optimal clustering is NP-hard

• Greedy algorithms to optimize score are widely used

• Other issues

– Distance function, D(x(i),x(j)) critical aspect of clustering, both

• distance of pairs of objects

• distance of objects from clusters

– How is K selected?

– Different types of data

• Real-valued versus categorical

• Attribute-valued vectors vs. n2 distance matrix

• Partitional algorithms

– K-Means, PAM, CLARA, CLARANS [Ng and Han, VLDB 1994]

• Hierarchical algorithms

– CURE [Guha et al, SIGMOD’98], BIRCH [Zhang et al, SIGMOD’96], CHAMELEON [IEEE Computer,

1999]

• Density based algorithms

– DENCLUE [Hinneburg, Keim, KDD’98], DBSCAN [Ester et al, KDD 96]

• Subspace Clustering

– CLIQUE [Agrawal et al, SIGMOD’98], PROCLUS [Agrawal et al, SIGMOD’99], ORCLUS: [Aggarwal,

and Yu, SIGMOD’ 00], DOC: [Procopiuc, Jones, Agarwal, and Murali, SIGMOD’02]

• Locally adaptive clustering techniques

– LAC

• Spectral clustering

– [Ng, Jordan, Weiss], [Shi/Malik], [Scott/Longuet-Higgins], [Perona/ Freeman]

Clustering Methods

 Partitional method:

 Partition the data set into a set of k disjoint partitions

(clusters).

 Problem Definition:

 Given an integer k, find a partitioning of k clusters that

optimizes the chosen partitioning criterion

Partitional Algorithms: Basic Concept

K-means

Μάθημα: Εξόρυξη γνώσης από Βάσεις Δεδομένων και τον Παγκόσμιο
Ιστό
Ενότητα # 4: Unsupervised Learning (Clustering)
Διδάσκων: Μιχάλης Βαζιργιάννης
Τμήμα: Προπτυχιακό Πρόγραμμα Σπουδών “Πληροφορικής”

K-means Clustering
• basic idea:

– Score = wc(C) = sum-of-squares within cluster distance

– start with randomly chosen cluster centers c1 … ck

– repeat until no cluster memberships change:

• assign each point x to cluster with nearest center

– find smallest d(x,ci), over all c1 … ck

• recompute cluster centers over data assigned to them

– ci = 1/(ni) x Ci x

• algorithm terminates (finite number of steps)

– decreases Score(X,C) each iteration membership changes

• converges to local maxima of Score(X,C)

– not necessarily the global maxima …

– different initial centers (seeds) can lead to diff local maxs

K-means Complexity

• time complexity: O(I e n k) << exhaustive’s nk

– I = number of interations (steps)

– e = cost of distance computation (e=p for Euclidian dist)

• speed-up tricks (especially useful in early iterations)

– use nearest x(i)’s as cluster centers instead of mean

• reuse of cached dists from size n2 dist mat D (lowers effective “e”)

• k-medoids: use one of x(i)’s as center because mean not defined

– recompute centers as points reassigned

• useful for large n (like online neural nets) & more cache efficient

– PCA: reduce effective “e” and/or fit more of X in RAM

– “condense”: reduce “n” by replace group with prototype

– even more clever data structures (see work by Andrew Moore, CMU)

K-means example (courtesy of
Andrew Moore, CMU)

K-means

1. Ask user how many
clusters they’d like.
(e.g. K=5)

K-means

1. Ask user how many
clusters they’d like.
(e.g. K=5)

2. Randomly guess K
cluster Center
locations

K-means

1. Ask user how many
clusters they’d like.
(e.g. K=5)

2. Randomly guess K
cluster Center
locations

3. Each datapoint finds
out which Center it’s
closest to. (Thus each
Center “owns” a set of
datapoints)

K-means

1. Ask user how many
clusters they’d like.
(e.g. k=5)

2. Randomly guess k
cluster Center
locations

3. Each datapoint finds
out which Center it’s
closest to.

4. Each Center finds the
centroid of the points
it owns

K-means

1. Ask user how many
clusters they’d like. (e.g.
k=5)

2. Randomly guess k
cluster Center locations

3. Each datapoint finds out
which Center it’s closest
to.

4. Each Center finds the
centroid of the points it
owns

5. New Centers => new
boundaries

6. Repeat until no change!

K-means

1. Ask user how many
clusters they’d like. (e.g.
k=5)

2. Randomly guess k
cluster Center locations

3. Each datapoint finds out
which Center it’s closest
to.

4. Each Center finds the
centroid of the points it
owns…

5. …and jumps there

6. …Repeat until
terminated!

Accelerated Computations

Example generated by Pelleg and
Moore’s accelerated k-means

Dan Pelleg and Andrew Moore.
Accelerating Exact k-means
Algorithms with Geometric
Reasoning. Proc. Conference
on Knowledge Discovery in
Databases 1999, (KDD99)
(available on
www.autonlab.org/pap.html)

K-means continues…

K-means continues…

K-means continues…

K-means continues…

K-means continues…

K-means continues…

K-means continues…

K-means continues…

K-means terminates

K-means clustering of RGB (3 value) pixel
color intensities, K = 11 segments

(courtesy of David Forsyth, UC Berkeley)

Image Clusters on color

Issues in K-means clustering
• Simple, but useful

– tends to select compact “isotropic” cluster shapes

– can be useful for initializing more complex methods

– many algorithmic variations on the basic theme

• Choice of distance measure

– Euclidean distance

– Weighted Euclidean distance

– Many others possible

• Selection of K

– “screen diagram” - plot SSE versus K, look for knee

• Limitation: may not be any clear K value

Expectation Maximization (EM)

Μάθημα: Εξόρυξη γνώσης από Βάσεις Δεδομένων και τον Παγκόσμιο
Ιστό
Ενότητα # 4: Unsupervised Learning (Clustering)
Διδάσκων: Μιχάλης Βαζιργιάννης
Τμήμα: Προπτυχιακό Πρόγραμμα Σπουδών “Πληροφορικής”

Expectation Maximization

• (EM) algorithm is an iterative method for finding maximum
likelihood estimates of parameters in statistical models that
depend on unobserved latent variables.

• Assume X the data observed - We assume the data are
produced by K different classes/processes represented by
respective weights there fore

f (x) = wk fk(x |qk)

k

å

kw

Gaussian Mixture Models (GMM)
• Assume the the components are normal distrubutions N(k,k)

– often assume diagonal covariance: jj = j
2

,
 ij = 0

– or sometimes even simpler: jj = 2
,
 ij = 0

• f(x) = k=1…K wk fk(x;k) with k = <k , k> or <k ,k>

• generative model:

– - randomly choose a component

– selected with probability wk

– - generate x ~ N(k,k)

– - note: k & k both d-dim vectors

Learning Mixture Models from Data

• Score function Log-likelihood L()

– L() = log p(X|) = log H p(X,H|)

– H = hidden variables (cluster memberships of each x)

– L() cannot be optimized directly

• EM Procedure

– General technique for maximizing log-likelihood with missing data

– For mixtures

• E-step: compute “memberships” p(k | x) = wk fk(x;k) / f(x)

• M-step: pick a new to max expected data log-likelihood

• Iterate: guaranteed to climb to (local) maximum of L()

Expectation maximization (EM)
The Expectation-maximization algorithm computes missing memberships of data points in a chosen
distribution model.

• Expectation step

• initial guesses for the parameters in our mixture model,

• compute "partial membership" of each data point in each constituent distribution.

• By calculating expectation for the membership variables of each data point.

• Example.

• Data set resulting from a sum of two Gaussian distributions.

• f is the mixing coefficient in (0,1], assume σ is known and constant.

• For each data point i, compute a membership value for each of the two Gaussians

• and similarly for y2,i

P(xi) = (1- f)N(xi |m1,s)+ f N(xi |m2,s)

y1,i (xi) =
(1- f)N(xi | m1,s)

(1- f)N(xi | m1,s)+ f N(xi | m2,s)

http://en.wikipedia.org/wiki/Expectation-maximization_algorithm
http://en.wikipedia.org/wiki/Expectation-maximization_algorithm
http://en.wikipedia.org/wiki/Expectation-maximization_algorithm

Expectation maximization (EM)
• The maximization step

• With expectation values for group membership

• - Re-compute estimates of distribution parameters.

– N is the total number of data points.

• - back to the Expectation step: Re-compute new membership values.

• - repeated until change in the mixture model parameters below
threshold

The EM Step

Current K clusters
and parameters

n data
points

E step: Compute memberships p(xi|θk)

New parameters for
the K clusters

n data
points

M step: Compute qι, given n data points and memberships

Comments on Mixtures and EM
Learning

• - Complexity of each EM iteration

– Depends on the probabilistic model being used

• e.g., for Gaussians, E-step: O(nK), M-step: O(Knp2)

– Sometimes E or M-step is not closed form

• => can requires numerical methods at each iteration

• - K-means interpretation

– Gaussian mixtures with isotropic (diagonal, equi-variance) k ‘s

– Approximate the E-step by choosing most likely cluster (instead of
using membership probabilities)

44 19/10/2015

3.3 3.4 3.5 3.6 3.7 3.8 3.9 4
3.7

3.8

3.9

4

4.1

4.2

4.3

4.4
ANEMIA PATIENTS AND CONTROLS

Red Blood Cell Volume

R
e
d
 B

lo
o
d
 C

e
ll

H
e
m

o
g
lo

b
in

 C
o
n
c
e
n
tr

a
ti
o
n

45 19/10/2015

3.3 3.4 3.5 3.6 3.7 3.8 3.9 4
3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

Red Blood Cell Volume

R
e

d
 B

lo
o

d
 C

e
ll
 H

e
m

o
g

lo
b

in
 C

o
n

c
e

n
tr

a
ti
o

n

EM ITERATION 1

46 19/10/2015

3.3 3.4 3.5 3.6 3.7 3.8 3.9 4
3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

Red Blood Cell Volume

R
e

d
 B

lo
o

d
 C

e
ll
 H

e
m

o
g

lo
b

in
 C

o
n

c
e

n
tr

a
ti
o

n

EM ITERATION 3

47 19/10/2015

3.3 3.4 3.5 3.6 3.7 3.8 3.9 4
3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

Red Blood Cell Volume

R
e

d
 B

lo
o

d
 C

e
ll
 H

e
m

o
g

lo
b

in
 C

o
n

c
e

n
tr

a
ti
o

n

EM ITERATION 5

3.3 3.4 3.5 3.6 3.7 3.8 3.9 4
3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

Red Blood Cell Volume

R
e

d
 B

lo
o

d
 C

e
ll
 H

e
m

o
g

lo
b

in
 C

o
n

c
e

n
tr

a
ti
o

n

EM ITERATION 10

3.3 3.4 3.5 3.6 3.7 3.8 3.9 4
3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

Red Blood Cell Volume

R
e

d
 B

lo
o

d
 C

e
ll
 H

e
m

o
g

lo
b

in
 C

o
n

c
e

n
tr

a
ti
o

n

EM ITERATION 15

3.3 3.4 3.5 3.6 3.7 3.8 3.9 4
3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

Red Blood Cell Volume

R
e

d
 B

lo
o

d
 C

e
ll
 H

e
m

o
g

lo
b

in
 C

o
n

c
e

n
tr

a
ti
o

n

EM ITERATION 25

0 5 10 15 20 25
400

410

420

430

440

450

460

470

480

490
LOG-LIKELIHOOD AS A FUNCTION OF EM ITERATIONS

EM Iteration

L
o

g
-L

ik
e

li
h

o
o

d

3.3 3.4 3.5 3.6 3.7 3.8 3.9 4
3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

Red Blood Cell Volume

R
e

d
 B

lo
o

d
 C

e
ll
 H

e
m

o
g

lo
b

in
 C

o
n

c
e

n
tr

a
ti
o

n

ANEMIA DATA WITH LABELS

Hierarchical Clustering

Step 0 Step 1 Step 2 Step 3 Step 4

b

d
c

e

a a b

d e
c d e

a b c d e

Step 4 Step 3 Step 2 Step 1 Step 0

agglomerative

divisive

• Two basic approaches:

• merging smaller clusters into larger ones (agglomerative),

• splitting larger clusters (divisive)

• visualize both via “dendograms”

• shows nesting structure

• merges or splits = tree nodes

Hierarchical Clustering: Complexity

• Quadratic algorithms

• Running time can be improved

using

– sampling

 [Guha et al, SIGMOD 1998]

 [Kollios et al, ICDE 2001]

 or using the triangle inequality

(when it holds)

*based on slides by Padhraic Smyth UC, Irvine

K-Means Clustering

Task

Representation

Score Function

Search/Optimization

Data
Management

Models,
Parameters

 Clustering

Partition based on K centers

Within-cluster sum of
squared errors

 Iterative greedy search

None specified

K centers

Probabilistic Model-Based Clustering

Task

Representation

Score Function

Search/Optimization

Data
Management

Models,
Parameters

 Clustering

Log-likelihood

EM (iterative)

None specified

Probability model

 Mixture of Probability
Components

Single-Link Hierarchical Clustering

Task

Representation

Score Function

Search/Optimization

Data
Management

Models,
Parameters

 Clustering

Tree of nested groupings

No global score

 Iterative merging of nearest
neighbors

None specified

Dendrogram

Association Rules

Μάθημα: Εξόρυξη γνώσης από Βάσεις Δεδομένων και τον Παγκόσμιο
Ιστό
Ενότητα # 5: Unsupervised Learning (Clustering)
Διδάσκων: Μιχάλης Βαζιργιάννης
Τμήμα: Προπτυχιακό Πρόγραμμα Σπουδών “Πληροφορικής”

What Is Association Mining?

• Association rule mining:

– Finding frequent patterns, associations, correlations, or
causal structures among sets of items or objects in
transaction databases, relational databases, and other
information repositories.

• Applications:

– Basket data analysis, cross-marketing, catalog design, loss-
leader analysis, clustering, classification, etc.

• Examples.

– Rule form: “Body ead [support, confidence]”.

– buys(x, “diapers”) buys(x, “beers”) [0.5%, 60%]

– major(x, “CS”) ^ takes(x, “DB”) grade(x, “A”) [1%, 75%]

Association Rule: Basic Concepts

• Given: (1) database of transactions, (2) each transaction is a list of
items (purchased by a customer in a visit)

• Find: all rules that correlate the presence of one set of items with that
of another set of items

– E.g., 98% of people who purchase tires and auto accessories also
get automotive services done

• Applications

– * Maintenance Agreement (What the store should do to boost
Maintenance Agreement sales)

– Home Electronics * (What other products should the store
stocks up?)

– Attached mailing in direct marketing

– Detecting “ping-pong”ing of patients, faulty “collisions”

Rule Measures: Support and
Confidence

• Find all the rules X & Y Z with
minimum confidence and support

– support, s, probability that a
transaction contains {X & Y & Z}

– confidence, c, conditional
probability that a transaction having
{X & Y} also contains Z

Transaction ID Items Bought

2000 A,B,C

1000 A,C

4000 A,D

5000 B,E,F

Let minimum support 50%, and minimum
confidence 50%, we have

 A C (50%, 66.6%)

 C A (50%, 100%)

Customer

buys diaper

Customer

buys both

Customer

buys beer

Mining Association Rules—An Example

For rule A C:

support = support({A C}) = 50%

confidence = support({A C})/support({A}) = 66.6%

The Apriori principle:

Any subset of a frequent itemset must be frequent

Transaction ID Items Bought

2000 A,B,C

1000 A,C

4000 A,D

5000 B,E,F

Frequent Itemset Support

{A} 75%

{B} 50%

{C} 50%

{A,C} 50%

Min. support 50%
Min. confidence 50%

Mining Frequent Itemsets: the Key
Step

• Find the frequent itemsets: the sets of items that have minimum

support

– A subset of a frequent itemset must also be a frequent

itemset

• i.e., if {AB} is a frequent itemset, both {A} and {B} should

be a frequent itemset

– Iteratively find frequent itemsets with cardinality from 1 to k

(k-itemset)

• Use the frequent itemsets to generate association rules.

The Apriori Algorithm

• Join Step: Ck is generated by joining Lk-1with itself

• Prune Step: Any (k-1)-itemset that is not frequent cannot be a subset
of a frequent k-itemset

• Pseudo-code:
Ck: Candidate itemset of size k
Lk : frequent itemset of size k

L1 = {frequent items};
for (k = 1; Lk !=; k++) do begin
 Ck+1 = candidates generated from Lk;
 for each transaction t in database do

 increment the count of all candidates in Ck+1
that are contained in t

 Lk+1 = candidates in Ck+1 with min_support
 end
return k Lk;

The Apriori Algorithm — Example

TID Items

100 1 3 4

200 2 3 5

300 1 2 3 5

400 2 5

Database D itemset sup.

{1} 2

{2} 3

{3} 3

{4} 1

{5} 3

itemset sup.

{1} 2

{2} 3

{3} 3

{5} 3

Scan D

C1

L1

itemset

{1 2}

{1 3}

{1 5}

{2 3}

{2 5}

{3 5}

itemset sup

{1 2} 1

{1 3} 2

{1 5} 1

{2 3} 2

{2 5} 3

{3 5} 2

itemset sup

{1 3} 2

{2 3} 2

{2 5} 3

{3 5} 2

L2

C2 C2

Scan D

C3 L3 itemset

{2 3 5}
Scan D itemset sup

{2 3 5} 2

Example of Generating Candidates

• L3={abc, abd, acd, ace, bcd}

• Self-joining: L3*L3

– abcd from abc and abd

– acde from acd and ace

• Pruning:

– acde is removed because ade is not in L3

• C4={abcd}

Spectral Clustering

Μάθημα: Εξόρυξη γνώσης από Βάσεις Δεδομένων και τον Παγκόσμιο
Ιστό
Ενότητα # 4: Unsupervised Learning (Clustering)
Διδάσκων: Μιχάλης Βαζιργιάννης
Τμήμα: Προπτυχιακό Πρόγραμμα Σπουδών “Πληροφορικής”

Spectral Clustering

Graph-Cut

• For k clusters:

• undirected graph:1/2 we count twice each edge

• Min-cut: Minimize the edges’ weight a cluster shares with the rest
of the graph

Min-Cut

• Easy for k=2 : Mincut(A1,A2)

– Stoer and Wagner: “A Simple Min-Cut Algorithm”

• In practice one vertex is separated from the rest

– The algorithm is drawn to outliers

Normalized Graph Cuts

From Graph Cuts to Spectral
Clustering

Graph Laplacian

Properties of L

Two Way Cut from the Laplacian

Example

Ratio Cut

Ratio Cut

Normalized Cut

Normalized Cut

Multi-Way Graph Partition

Define 𝑓𝑖𝑗 =
 𝑣𝑖 ∈𝐴𝑗

0 𝑜𝑡 ℎ𝑒𝑤𝑖 𝑠𝑒

we have a vector indicating the cluster a vertex belongs to

Similarly to the other equations we can deduce:
𝑓𝑖

𝑇𝐿𝑓𝑖 = 𝑐𝑢 𝑡(𝐴𝑖,𝐴𝑖)/|𝐴𝑖|

𝑓𝑖
𝑇𝐿𝑓𝑖 = 𝐹𝑇𝐿𝐹 𝑖𝑖 = 𝑇𝑟(𝐹𝑇𝐿𝐹)

Where Tr is the Trace of a Matrix

So now the RatioCut becomes:
𝑚𝑖 𝑛𝐹𝑇𝐿𝐹 𝑠𝑢 𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐹𝑇𝐹 = 𝐼

Multi-Way Graph Partition

Multi-Way Graph Partition
• The solution can now be given by the first k

eigenvectors of L as columns

• The real values need to be converted to cluster
assignments

– We use k-means to cluster the rows

– We can substitute L with Lsym

A11………….…………A1n

A21………….…………A2n

Ak1………….…………Akn

.

.

.

First k
eigeigenvectors

 A11

 Ak1

 A21

 A2n

 Ak1

 Akn

....

.

K-means on
the Lines

Each Line
Represents a
Vertex

Algorithm for k>2

Laplacian-Eigenvectors-EigenValues

C1

C2

Cn

L1
L2

Ln

Everything sorted according to cluster : block diagonal form Matrix
L follows the same form composed on L1…Ln

Each Li has the same properties as L: nx0 min eigenvalues etc..
Each “Second” eigenvector is a cut of Ci from the rest of the graph and holds a
mapping (distance) of a vertex to the cluster i

Simple example

2 Eigenvectors

(1100) and
(0011)

Mapping vertices
in their clusters

2 Eigenvectors

(1010) and
(0101)

Mapping vertices
to the same
clusters

Permutation does not change
the result

The cut remains the same
regardless of the ordering

References

1. UIrike von Luxburg, A Tutorial on Spectral Clustering, Statistics and Computing,
2007

2. Davis, C., W. M. Kahan (March 1970). The rotation of eigenvectors by a
perturbation. III. SIAM J. Numerical Analysis 7

3. Shi, Jianbo, and Jitendra Malik. "Normalized cuts and image
segmentation."Pattern Analysis and Machine Intelligence, IEEE Transactions
on (2000).

4. Mechthild Stoer and Frank Wagner. 1997. A simple min-cut algorithm. J. ACM

5. Ng, Jordan & Weiss, K-means algorithm on the embeded eigen-space, NIPS
2001

6. Hagen, L. Kahng, , "New spectral methods for ratio cut partitioning and
clustering," Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on , 1992

Modularity Based Methods

• Most of the community evaluation measures (e.g.,
conductance, cut-based measures), quantify the quality of a
community based on

– Internal connectivity (intra-community edges)

– External connectivity (inter-community edges)

• Question: Is there any other way to distinguish groups of nodes
with good community structure?

• Random graphs are not expected to present inherent
community structure

• Idea: Compare the number of edges that lie within a cluster with
the expected one in case of random graphs with the same degree
distribution – modularity measure

Main idea

• Modularity function [Newman and Girvan ‘04], [Newman ‘06]

• Initially introduced as a measure for assessing the strength of
communities

– Q = (fraction of edges within communities) –

 (expected number of edges within communities)

• What is the expected number of edges?

• Consider a configuration model

– Random graph model with the same degree distribution

– Let Pij = probability of an edge between nodes i and j

 with degrees ki and kj respectively

– Then Pij = ki kj / 2m, where m = |E| = ½ Σi ki

Formal definition of modularity

where

– A is the adjacency matrix

– ki, kj the degrees of nodes i and j respectively

– m is the number of edges

– Ci is the community of node i

– δ(.) is the Kronecker function: 1 if both nodes i and j belong on
the same community (Ci = Cj), 0 otherwise

 ji
ij

ji
ij CC

m

kk
A

m
Q ,

22

1

[Newman and Girvan ‘04], [Newman ‘06]

Properties of modularity

• Larger modularity Q indicates better communities (more than
random intra-cluster density)

– The community structure would be better if the number of
internal edges exceed the expected number

• Modularity value is always smaller than 1

• It can also take negative values

– E.g., if each node is a community itself

– No partitions with positive modularity No community structure

– Partitions with large negative modularity Existence of
subgraphs with small internal number of edges and large number
of inter-community edges

 ji
ij

ji
ij CC

m

kk
A

m
Q ,

22

1

[Newman and Girvan ‘04], [Newman ‘06], [Fortunato ‘10]

Applications of modularity
• Modularity can be applied:

– As quality function in clustering algorithms

– As evaluation measure for comparison of different partitions or
algorithms

– As a community detection tool itself

Modularity optimization

– As criterion for reducing the size of a graph

Size reduction preserving modularity [Arenas et al.
‘07]

[Newman and Girvan ‘04], [Newman ‘06], [Fortunato ‘10]

• Modularity was first applied as a stopping criterion in the Newman-
Girvan algorithm

• Newman-Girvan algorithm [Newman and Girvan ‘04]

– A divisive algorithm (detect and remove edges that connect vertices of
different communities)

– Idea: try to identify the edges of the graph that are most between other
vertices responsible for connecting many node pairs

– Select and remove edges based to the value of betweenness centrality

– Betweenness centrality: number of shortest paths between every pair of
nodes, that pass through an edge

Modularity-based clustering

Edge betweenness
is higher for edges

that connect
different

communities

Newman-Girvan algorithm (1)
• Basic steps:

1. Compute betweenness centrality for all edges in the graph

2. Find and remove the edge with the highest score

3. Recalculate betweenness centrality score for the remaining
edges

4. Go to step 2

• How do we know if the produced communities are good ones
and stop the algorithm?

– The output of the algorithm is in the form of a dendrogram

– Use modularity as a criterion to cut the dendrogram and
terminate the algorithm (Q ~= 0.3-0.7 indicates good partitions)

• Complexity: O(m2n) (or O(n3) on a sparse graph)

 [Newman and Girvan ‘04], [Girvan and Newman ‘02]

Newman-Girvan algorithm (2)

[Newman and Girvan ‘04]

Zachary’s karate club

M
o

d
u

la
ri

ty

Community structure

Modularity optimization
• High values of modularity indicate good quality of partitions

• Goal: find the partition that corresponds to the maximum value
of modularity

• Modularity maximization problem

– Computational difficult problem [Brandes et al. ‘06]

– Appoximation techniques and heuristics

• Four main categories of techniques

1. Greedy techniques

2. Spectral optimization

3. Simulated annealing

4. Extremal optimization [Fortunato ‘10]

Greedy techniques
• Newman’s algorithm [Newman ’04b]

– Agglomerative (bottom-up) hierarchical clustering algorithm

– Idea: Repeatedly join pairs of communities that achieve the
greatest increase of modularity (dendrogram representation)

1. Initially, each node of the graph belongs on its own cluster (n)

2. Repeatedly, join communities in pairs by adding edges

a. At each step, choose the pairs that achieve the greatest
increase (or minimum decrease) of modularity

b. Consider only pairs of communities between which there
exist edges (merging communities that do not share edges, it
can never improve modularity)

– Complexity: O((m+n) n) (or O(n2) on a sparse graph)

Resolution limit of modularity
• Resolution Limit of modularity [Fortunato and Barthelemy ‘07]

• The method of modularity optimization may not detect communities
with relatively small size, which depends on the total number of
edges in the graph

Km

Km

Km Km

Km

Km

Km

Km

Km

Km

 Km are cliques with m edges (m ≤ sqrt(|E|))

 Km represent well-defined clusters

 However, the maximum modularity
corresponds to clusters formed by two or
more cliques

 It is difficult to know if the community
returned by modularity optimization
corresponds to a single community or a
union of smaller communities

References (modularity)
• M.E.J. Newman and M. Girvan. Finding and evaluating community structure in networks.

Physical Review E 69(02), 2004.

• M.E.J. Newman. Modularity and community structure in networks. PNAS, 103(23), 2006.

• S.E. Schaeffer. Graph clustering. Computer Science Review 1(1), 2007.

• S. Fortunato. Community detection in graphs. Physics Reports 486 (3-5), 2010.

• M. Coscia, F. Giannotti, and D. Pedreschi. A classification for community discovery
methods in complex networks. Statistical Analysis and Data Mining 4 (5), 2011.

• A. Arenas, J. Duch, A. Fernandez, and S. Gomez. Size reduction of complex networks
preserving modularity. New J. Phys., 9(176), 2007.

• M. Girvan and M.E.J. Newman. Community structure in social and biological networks.
PNAS 99(12), 2002.

• U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer, Z. Nikoloski, and D. Wagner. On
Modularity Clustering. IEEE TKDE 20(2), 2008.

• M.E.J. Newman. Fast algorithm for detecting community structure in networks. Phys.
Rev. E 69, 2004.

• A. Clauset, M.E.J. Newman, and C. Moore. Finding community structure in very large
networks. Phys. Rev. E 70, 2004.

References (modularity)

• M.E.J. Newman. Finding community structure in networks using the eigenvectors of
matrices. Phys. Rev. E 74, 2006.

• R. Guimera, M. Sales-Pardo, L.A.N. Amaral. Modularity from Fluctuations in Random
Graphs and Complex Networks. Phys. Rev. E 70, 2004.

• J. Duch and A. Arenas. Community detection in complex networks using Extremal
Optimization. Phys. Rev. E 72, 2005.

• A. Arenas, J. Duch, A. Fernandez, and S. Gomez. Size reduction of complex networks
preserving modularity. New Journal of Physics 9(6), 2007.

• E.A. Leicht and M.E.J. Newman. Community structure in directed networks. Phys. Rev.
Lett. 100, 2008.

• V. Nicosia, G. Mangioni, V. Carchiolo, and M. Malgeri. Extending the definition of
modularity to directed graphs with overlapping communities. J. Stat. Mech. 03, 2009.

• S. Muff, F. Rao, A. Caflisch. Local modularity measure for network clusterizations. Phys.
Rev. E, 72, 2005.

• S. Fortunato and M. Barthelemy. Resolution limit in community detection. PNAS 104(1),
2007.

Τέλος Ενότητας # 4

Μάθημα: Εξόρυξη γνώσης από Βάσεις Δεδομένων και τον Παγκόσμιο
Ιστό, Ενότητα # 4: Unsupervised Learning (Clustering)

Διδάσκων: Μιχάλης Βαζιργιάννης, Τμήμα: Προπτυχιακό Πρόγραμμα
Σπουδών “Πληροφορικής”

