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Χρηματοδότηση 
• Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια 

του εκπαιδευτικού έργου του διδάσκοντα. 

• Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Οικονομικό 
Πανεπιστήμιο Αθηνών» έχει χρηματοδοτήσει μόνο τη 
αναδιαμόρφωση του εκπαιδευτικού υλικού.  

• Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού 
Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και 
συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό 
Κοινωνικό Ταμείο) και από εθνικούς πόρους. 
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Άδειες Χρήσης 

• Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες 
χρήσης Creative Commons.  

• Οι εικόνες προέρχονται … . 
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Σκοποί ενότητας 

Εισαγωγή και εξοικείωση με τις μεθόδους k-nn, 
regression, logistic regression, decision trees. 
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Περιεχόμενα ενότητας 

• Introduction to supervised learning  

• Regression   

• Naïve Bayes 

• K-nn 

• Decision Trees 

• Regression re-visited  
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Introduction to supervised 
learning  
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Prediction.. 

 

 

 

 

 

 

 

 

• Can we predict the price of a house based on its size 
(suface in m^2)  ? 

 

 

 



Prediction.. 

• y continuous value: 
prediction 

•  y  discrete value: 
classification 

 

 



Prediction.. 

• x(i): “input” variables (input features) 
• y(i): “output” or target variable that we are trying to 

predict 
• A pair (x(i), y(i)) is called a training example,  
• The training set - a list of m training examples {(x(i), y(i)); i 

=1, . . . ,m}—is called a training set.  
• X : space of input values, Y : output values.  
• The supervised learning problem:  

– given a training set,  
– learn a function h : X → Y so that h(x) is a “good” predictor for 

the corresponding value of y.  
For historical reasons, this function h is called a hypothesis. 

 
 



Classes of classifiers 

• Class-conditional/probabilistic, based on p( x | ck ),  

– Naïve Bayes (simple, but often effective in high dimensions) 

– Parametric generative models, e.g., Gaussian (can be effective in low-dimensional problems: leads to 
quadratic boundaries in general) 

 

• Regression-based, p( ck | x )  directly 

– Logistic regression: simple, linear in “odds” space 

– Neural network: non-linear extension of logistic, can be difficult to work with 

 

• Discriminative models, focus on locating optimal decision boundaries 

– Linear discriminants, perceptrons: simple, sometimes effective 

– Support vector machines: generalization of linear discriminants, can be quite effective, computational 
complexity is an issue 

– Nearest neighbor: simple, can scale poorly in high dimensions 

– Decision trees: “swiss army knife”, often effective in high dimensionis 



Regression 
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Regression 

• Aims at fitting a line to a set of observations  

•                         there is a straight line y = ax +b.  

 

 



• the individual point error is: 
 
 

• thus the error set is:  
 
 
• the total error is:  

 
 
 
 
 

 
 
 
 
 
 
-------------------------------------------------------------------------------------------------------------------------------------------------- 
Based on notes at: http://www.williams.edu/go/math/sjmiller/public_html/BrownClasses/54/handouts/MethodLeastSquares.pdf 

Regression 

http://www.williams.edu/go/math/sjmiller/public_html/BrownClasses/54/handouts/MethodLeastSquares.pdf


Least Squares method 

• The objective is to minimize 

• Thus to find values α, b such that: 

 

• Differentiation leads to: 

     (proof?) 

   



Least Squares method 

• Thus setting 

• Leads to: 

 

 

 

• Or equivalently:  

    



Least Squares method  

- Or equivalently: 

 

 

 

- Implying:  

  

    



Least Squares method  

 

 

 

Solution exists only if                              is invertible 

 

- i.e. if it determinant is not 0 – prove it! 

 

 

 



Least Squares method  

  

 

 

 

The method is generalized in a straight forward way:  

Assume y = af(x) + bg(x) then the respective result is: 

 

 

 

 

Exercise: Under what conditions is the matrix invertible? 

  

 

 



Naïve Bayes 
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Bayesian Classification: Why? 

• Probabilistic learning:  Calculate explicit probabilities for hypothesis, 
among the most practical approaches to certain types of learning 
problems 

• Incremental: Each training example can incrementally 
increase/decrease the probability that a hypothesis is correct.  Prior 
knowledge can be combined with observed data. 

• Probabilistic prediction:  Predict multiple hypotheses, weighted by 
their probabilities 

• Standard: Even when Bayesian methods are computationally 
intractable, they can provide a standard of optimal decision making 
against which other methods can be measured 



Bayesian classification 

• The classification problem may be formalized using 
a-posteriori probabilities: 

•   P(C|X)  = prob. that the sample tuple    
 X=<x1,…,xk> is of class C. 

 

• E.g. P(class=N | outlook=sunny,windy=true,…) 

 

• Idea: assign to sample X the class label C such that 
P(C|X) is maximal 



Estimating a-posteriori probabilities 

• Bayes theorem: 

P(C|X) = P(X|C)·P(C) / P(X) 

• P(X) is constant for all classes 

• P(C) = relative freq of class C samples 

• C such that P(C|X) is maximum =  

C such that P(X|C)·P(C) is maximum 

• Problem: computing P(X|C) is unfeasible! 



Naïve Bayesian Classification 
• Naïve assumption: attribute independence 

P(x1,…,xk|C) = P(x1|C)·…·P(xk|C) 

• If i-th attribute is categorical: 
P(xi|C) is estimated as the relative freq of samples having value xi as i-th attribute in 
class C 

• If i-th attribute is continuous: 

– Real-valued variables discretized to create nominal versions 

– P(xi|C) is estimated thru a Gaussian density function 

 

• Computationally feasible in both cases 

• Generative probabilistic model with conditional independence assumption  

on p( x | ck ), i.e. 

                                p( x | ck ) = P p( xj | ck ) 

 

• Typically used with nominal variables 

– (alternative is to model each p( xj | ck ) with a parametric model – less widely used) 

 

 



Naïve Bayes Classifiers 
• Comments: 

– Simple to train (just estimate conditional probabilities for 
each feature-class pair) 

– Often works surprisingly well in practice 

• e.g., state of the art for text-classification, basis of many widely 
used spam filters 

– Feature selection can be helpful, e.g., information gain 

– Note that even if CI assumptions are not met, it may still 
be able to approximate the optimal decision boundaries 
(seems to happen in practice) 

– However…. on most problems can usually be beaten with 
a more complex model (plus more work) 



Play-tennis example: estimating 
P(xi|C) 

Outlook Temperature Humidity Windy Class

sunny hot high false N

sunny hot high true N

overcast hot high false P

rain mild high false P

rain cool normal false P

rain cool normal true N

overcast cool normal true P

sunny mild high false N

sunny cool normal false P

rain mild normal false P

sunny mild normal true P

overcast mild high true P

overcast hot normal false P

rain mild high true N

outlook 

P(sunny|p) = 2/9 P(sunny|n) = 3/5 

P(overcast|p) = 4/9 P(overcast|n) = 0 

P(rain|p) = 3/9 P(rain|n) = 2/5 

temperature 

P(hot|p) = 2/9 P(hot|n) = 2/5 

P(mild|p) = 4/9 P(mild|n) = 2/5 

P(cool|p) = 3/9 P(cool|n) = 1/5 

humidity 

P(high|p) = 3/9 P(high|n) = 4/5 

P(normal|p) = 6/9 P(normal|n) = 2/5 

windy 

P(true|p) = 3/9 P(true|n) = 3/5 

P(false|p) = 6/9 P(false|n) = 2/5 

P(p) = 9/14 

P(n) = 5/14 



Play-tennis example: classifying X 

• An unseen sample X = <rain, hot, high, false> 

 

• P(X|p)·P(p) =  
P(rain|p)·P(hot|p)·P(high|p)·P(false|p)·P(p) = 
3/9·2/9·3/9·6/9·9/14 = 0.010582 

• P(X|n)·P(n) =  
P(rain|n)·P(hot|n)·P(high|n)·P(false|n)·P(n) = 
2/5·2/5·4/5·2/5·5/14 = 0.018286 

 

• Sample X is classified in class n (don’t play) 
 



The independence hypothesis… 

• … makes computation possible 

• … yields optimal classifiers when satisfied 

• … but is seldom satisfied in practice, as attributes (variables) are often 

correlated. 

• Attempts to overcome this limitation: 

– Bayesian networks, that combine Bayesian reasoning with causal 

relationships between attributes 

– Decision trees, that reason on one attribute at the time, considering 

most important attributes first 



K-nn 
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Linear Discriminant Classifiers 

• Linear Discriminant Analysis (LDA) 

– Earliest known classifier (1936, R.A. Fisher) 

– See section 10.4 for math details 

– Find a projection onto a vector such that means for each class (2 classes) are separated 

as much as possible (with variances taken into account appropriately) 

– Reduces to a special case of parametric Gaussian classifier in certain situations 

– Many subsequent variations on this basic theme (e.g., regularized LDA) 

 

• Other linear discriminants 

– Decision boundary =  (p-1) dimensional hyperplane in p dimensions 

– Perceptron learning algorithms (pre-dated neural networks) 

• Simple “error correction” based learning algorithms 

– SVMs: use a sophisticated “margin” idea for selecting the hyperplane 



Nearest Neighbor Classifiers 

• kNN: select the k nearest neighbors to x from the training data and select the majority 
class from these neighbors 

 

• k is a parameter:  

– Small k: “noisier” estimates, Large k: “smoother” estimates 

– Best value of k often chosen by cross-validation 

 

• Comments 

– Virtually assumption free 

– Interesting theoretical properties:  
         Bayes error < error(kNN) < 2 x Bayes error   (asymptotically) 

 

• Disadvantages 

– Can scale poorly with dimensionality: sensitive to distance metric 

– Requires fast lookup at run-time to do classification with large n 

– Does not provide any interpretable “model” 

 

 



Local Decision Boundaries 

1 

1 

1 

2 

2 
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Feature 1 

Feature 2 

? 

Boundary? Points that are equidistant 
between points of class 1 and 2 
Note: locally the boundary is 
(1) linear (because of Euclidean distance) 
(2) halfway between the 2 class points 
(3) at right angles to connector 



Finding the Decision Boundaries 
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Finding the Decision Boundaries 
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Finding the Decision Boundaries 

1 

1 

1 

2 

2 

2 

Feature 1 

Feature 2 

? 



Overall Boundary = Piecewise Linear 
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Decision Region  
for Class 1 

Decision Region  
for Class 2 



Decision Trees  
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Decision Tree Classifiers 
 

– Widely used in practice 

• Can handle both real-valued and nominal inputs (unusual) 

• Good with high-dimensional data  

 

– similar algorithms as used in constructing regression trees 

 

– historically, developed both in statistics and computer 
science 

• Statistics:  

– Breiman, Friedman, Olshen and Stone, CART, 1984 

• Computer science: 

– Quinlan, ID3, C4.5 (1980’s-1990’s) 

 



Entropy & Information gain 

• Entropy: measures the randomness of a statistical 
variable (or otherwise the information the variable 
carries) 

 

 

 

• Information gain is the change in entropy from a prior 
state to a state that takes some information as given: 

 

  IG(Ex,a) = H(Ex) − H(Ex | a) 



Information Gain (ID3/C4.5) 

• Select the attribute with the highest information gain 

• Assume there are two classes, P  and N 

– Let the set of examples S contain p elements of class P  and n 

elements of class N 

– The amount of information, needed to decide if an arbitrary 

example in S belongs to P  or N is defined as 
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Information Gain in Decision 
Tree Induction 

• Assume that using attribute A a set S will be partitioned into sets 

{S1, S2 , …, Sv}   

– If Si contains pi examples of P and ni examples of N, the 

entropy, or the expected information needed to classify 

objects in all subtrees Si is 

 

 

 

• The encoding information that would be gained by branching on A 
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Attribute Selection by Information 
Gain Computation 

 Class P: buys_computer = “yes” 

 Class N: buys_computer = “no” 

 I(p, n) = I(9, 5) =0.940 

 Compute the entropy for age: 

 

 

 

 

 

 

 

 

 

 

Hence 

 

 

Similarly 

age pi ni I(pi, ni)

<=30 2 3 0.971

30…40 4 0 0

>40 3 2 0.971
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Decision Tree Example 

Income 

Debt 



Decision Tree Example 

t1 Income 

Debt 
Income > t1 

?? 



Decision Tree Example 

t1 

t2 

Income 

Debt 
Income > t1 

Debt > t2 

?? 



Decision Tree Example 

t1 t3 

t2 

Income 

Debt 
Income > t1 

Debt > t2 

Income > t3 



Decision Tree Example 

t1 t3 

t2 

Income 

Debt 
Income > t1 

Debt > t2 

Income > t3 

Note: tree boundaries are piecewise 
linear and axis-parallel 



Figure from  
Duda, Hart & Stork, 
Chap. 8 

Moving just one 
example slightly may 
lead to quite different 
trees and space 
partition! 

 

Lack of stability 
against small 
perturbation of data. 

Decision Trees are not stable 



Decision Tree Pseudocode 
node = tree-design (Data = {X,C}) 

 For i = 1 to d 

       quality_variable(i) = quality_score(Xi, C) 

 end 

 node = {X_split, Threshold } for max{quality_variable} 

 {Data_right, Data_left} = split(Data, X_split, Threshold) 

 if node == leaf? 

  return(node) 

 else 

  node_right = tree-design(Data_right) 

  node_left = tree-design(Data_left) 

 end 

end 

  

  

 



Binary split selection criteria 
• Q(t) =   N1Q1(t) + N2Q2(t),   where t is the threshold 

 

• Let p1k be the proportion of class k points in region 1  

 

• Error criterion for a branch 

                       Q1(t)  =  1 - p1k*   

 

• Gini index: 

                 Q1(t)  = Sk p1k (1 - p1k) 
 

• Cross-entropy: 

                 Q1(t)  = Sk p1k log p1k 
 

• Cross-entropy and Gini work better in general 

– Tend to give higher rank to splits with more extreme class distributions   

– Consider [(300,100) (100,300)] split versus [(400,0) (200 200)] 



Computational Complexity for a 
Binary Tree  

• At the root node, for each of p variables 

– Sort all values, compute quality for each split 

– O(pN log N) time for real-valued or ordinal variables 

 

• Subsequent internal node operations each take O(N’ log N’) 

- e.g., balanced tree of depth K requires 

   pN log N  + 2(pN/2 log N/2) + 4(pN/4 log N/4) + …. 2K(pN/2K log N/2K) 

   = pN(logN + log(N/2) + log(N/4) + …… log N/2K) 

 

• This assumes data are in main memory 

– If data are on disk then repeated access of subsets at different nodes may be 
very slow (impossible to pre-index) 

 



Splitting on a nominal attribute 

• Nominal attribute with m values 

– e.g., the name of a state or a city in marketing data 

 

• 2m-1 possible subsets => exhaustive search is O(2m-1) 

– For small m, a simple approach is to branch on specific values 

– But for large m this may not work well 

 

• Neat trick for the 2-class problem: 

– For each predictor value calculate the proportion of class 1’s  

– Order the m values according to these proportions 

– Now treat as an ordinal variable and select the best split (linear in m)  

– This gives the optimal split for the Gini index, among all possible 2m-1 splits 
(Breiman et al, 1984). 



How to Choose the Right-Sized Tree? 

Predictive 
Error 

Size of Decision Tree 

Error on Training Data 

Error on Test Data 

Ideal Range 
for Tree Size 



Choosing a Good Tree for Prediction 

• General idea 

– grow a large tree 

– prune it back to create a family of subtrees  

• “weakest link” pruning 

– score the subtrees and pick the best one 

 

• Massive data sizes (e.g., n ~ 100k data points) 

– use training data set to fit a set of trees 

– use a validation data set to score the subtrees 

 

• Smaller data sizes (e.g., n ~1k or less) 

– use cross-validation 

– use explicit penalty terms  (e.g., Bayesian methods) 



Why Trees are widely used in Practice 

• Can handle high dimensional data 

– builds a model using 1 dimension at time 

 

• Can handle any type of input variables 

– categorical, real-valued, etc 

– most other methods require data of a single type (e.g., only real-
valued) 

 

• Trees are (somewhat) interpretable 

– domain expert can “read off” the tree’s logic 

 

• Tree algorithms are relatively easy to code and test 

 



Limitations of Trees 
• Representational Bias 

– classification: piecewise linear boundaries, parallel to axes 

– regression: piecewise constant surfaces 

 

• High Variance 

– trees can be “unstable” as a function of the sample 

• e.g., small change in the data -> completely different tree 

– causes two problems 

• 1. High variance contributes to prediction error 

• 2. High variance reduces interpretability  

– Trees are good candidates for model combining 

• Often used with boosting and bagging 

 

• Trees do not scale well to massive data sets (e.g., N in millions) 

– repeated random access of subsets of the data 



Regression re-visited 
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Prediction – Classification.. 

Lab 3 



Learning – linear regression 

Lab 3 

H(θ): hypothesis 

Θ: parameters (weights) 
-------------------- 
Assume intercept x0=1, hence 

Define the cost function:  



LMS – gradient descent 

• We want to choose  θ to minimize  J(θ).  

• gradient descent algorithm, which starts with some initial θ, and repeatedly performs the 
update: 

 

 

• simultaneously performed for all values of j = 0, . . . , n.  

• α: learning rate 

• to implement  algorithm: partial derivative term on the right hand side.  

• for one training example (x, y): 

 

• Thus update rule:   

 

• LMS update rule - also known as the Widrow-Hoff learning rule. 

Lab 3 



LMS rule properties 

•   

 

- gradient descent always converges (assuming the learning rate α is not too 
large) to the global minimum.  

- J is a convex quadratic function. 

•  the magnitude of the update is proportional to the error term 

- For a training example where prediction nearly matches the actual value 
of y(i), small change on the parameters;  

- if our prediction h(x(i)) has a large error (i.e., if it is very far from y(i)) a 
larger change to the parameters will be made  



LMS – batch gradient descent 

 

 

 

• * m number of training examples 

• The method looks at every sample for each step 

• Global optima – hence converges to local minimum 

• The “α” value should not be too high  

 

 

 
Lab 3 



LMS – stochastic gradient descent 

 

 

 

 

•* m number of training examples 

• Parameters are updated for each training example 

• Lower complexity  

• Converges faster but may oscillate around values 

• for large training sets , stochastic gradient descent is often preferred 
over batch gradient descent. 

 

 

 

 

Lab 3 



LMS revisited – normal equations 

• Directly minimize J by derivation with respect to θj’s and setting them to 0 

• Some notation:  

Lab 3 



Trace operator properties 

• Trace operator: 

• Properties 

 

 

 

• Let A, B square matrices and α a real number:   

Lab 3 



LMS revisited.. 

• Aim to find the closed form of θ  that 
minimizes  J(θ) 

• Let X the training set of vectors and y the 
target values vector 

Lab 3 



LMS revisited.. – direct error minimization 

• As                                                        then 

• Thus: 

 

 

 

 

• To minimize J, derivatives with respect to θ (with 2,3): 

 

• set the derivatives to 0:  

• normal equations: 

• Thus θ  minimizing J(θ):   

Lab 3 



Regression – probabilistic interpretation 

 

• ε(i) some error function iid normally distributed 

 

 

 

 

 

• Maximize the likelihood: 

• Assuming independence:  

  
Lab 3 



Regression – probabilistic interpretation 

• Maximize the log likelihood 

                                                (proof) 

 

• Equivalent to minimize:  

 

• This is the J(θ).. Solved above.. 

Lab 3 



Evaluating Classification Results (in 
general) 

• Summary statistics: 

– empirical estimate of score function on test data, eg., 
error rate 

 

• More  detailed breakdown 

– E.g., “confusion matrices” 

– Can be quite useful in detecting systematic errors 

 

• Detection v. false-alarm plots (2 classes) 

– Binary classifier with real-valued output for each 
example, where higher means more likely to be class 1 

– For each possible threshold, calculate 

• Detection rate = fraction of class 1 detected 

• False alarm rate = fraction of class 2 detected 

– Plot y (detection rate) versus x (false alarm rate) 

– Also known as ROC, precision-recall, 
specificity/sensitivity 

 

 

 

 

 



Bagging for Combining Classifiers 

• Training data sets of size N 

 

• Generate B “bootstrap” sampled data sets of size N  

– Bootstrap sample = sample with replacement  

– e.g. B = 100 

 

• Build B models (e.g., trees), one for each bootstrap sample 

– Intuition is that the bootstrapping “perturbs” the data enough to make the models more 
resistant to true variability 

 

• For prediction, combine the predictions from the B models 

– E.g., for classification p(c | x) = fraction of B models that predict c 

 

– Plus: generally improves accuracy on models such as trees 

– Negative: lose interpretability 



green = majority vote 
purple = averaging 
     the probabilities 

From Hastie, Tibshirani, 
And Friedman, 2001 



Illustration of Boosting: 
Color of points = class label 
Diameter of points = weight at each iteration 
Dashed line: single stage classifier.  Green line: combined, boosted classifier 
Dotted blue in last two: bagging   
(from G. Rätsch, Phd thesis, 2001) 
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Τέλος Ενότητας # 3 

Μάθημα: Εξόρυξη γνώσης από Βάσεις Δεδομένων και τον Παγκόσμιο 
Ιστό, Ενότητα # 3: Supervised learning  

Διδάσκων: Μιχάλης Βαζιργιάννης, Τμήμα: Προπτυχιακό Πρόγραμμα 
Σπουδών “Πληροφορικής” 

 


