OIKONOMIKO
MANENIETHMIO

AOHNAON

ATHENS UNIVERSITY
OF ECONOMICS
AND BUSINESS

E¢opuén yvwonc amo Baoelc
Aebopevwyv kat tov NMNaykoopo loto

Evotnta # 3: Supervised learning
Awdaokwv: MuaAnc Badllpylavvng
TuApa: Mpormtuylako MNpoypappa 2Zmouvdwv

ﬂ?\npocboptknc
[@ocof -

ENIX Y IAKO TTPOTPAMMA
EKﬂAlAEYZH KAI AIA BIOY MAOHZH

YHU\P EIQ NAIAEIAL & GPHEKEYMATON, OTIEMOY & ABAHTIEMOY
Evpwnai ngwn EIAIKH YNHPEXIA AIAXEIPIZHE

Evpwnaixé K




Xpnupatodotnon

e To mopoVv ekMALSEUTLKO UALKO €XEL avamtuxOel ota mAailola
Tou ekmatdevtikol £pyou tou dldaokovta.

* To €pyo «Avoilkta Akadnuaika Madnpata oto OLKOVOULKO
NavermotApo ABnvwv» £xeL XpNUOTOdOTHOEL LOVO TN
avadlapopPpwaon tou ekmatdeutikol VALKOU.

* To €pyo vAoroleital oto nAaiolo tou Emuxelpnotokou
Mpoypappoatog «Eknaidbevon kat Ao Biov Mabnon» kot

ocuvyxpnuatodoteital ano tnv Evpwnaikn Evwon (Evpwrmaiko
Kowvwviko Tapelo) kat armo eBvikol ¢ opouc.

EMIXEIPHYIAKO [TPOTPAMMA
EKIMAIAEYZH KAI AlA BIOY MAGHZH Ez rIA

= m npéypappa yia v avdnt§n

YNIOYPTEI MAIAEIAT & BPHEKEYMATON, MOAITIEMOY & ABAHTIEMOY
EvpwmaikiiEvwon EI!AIKH YMHPEZIA AIAXEIPIZHE

Eupwmnaiké Kowvwviko Tapeio 2 : e
Me tn ouyxpnpatrodotnon tn¢ EAAadag kai tn¢ Evpwmnaikng ‘Evwong



Abdeleg Xpnong

* To apOV eKTIALOEVUTLKO UALKO UTIOKELTOL OE AOELEC
xpnonc Creative Commons.

e OL €ELKOVEC TtpOEPYOVTAL ... .

©OE0



2KOTtOL EVOTNTOC

Elcaywyn Kot e€okelwon pe tic pebodouc k-nn,
regression, logistic regression, decision trees.



MepLexopeva evotntoC

Introduction to supervised learning
Regression

Naive Bayes

K-nn

Decision Trees

Regression re-visited



ATHENS UNIVERSITY
OF ECONOMICS
AND BUSINESS

OIKONOMIKO
MANENIETHMIO
AOHNAON

Introduction to supervised
learning

MaOnpa: E€0puén yvwong amno Baoelg Aedopévwy Kot Tov MaykoouLo
loto

Evotnta # 3: Supervised learning

Adaockwv: MixaAnc BadllpyLtavvng

TuApa: Npormtuylako Mpoypappa 2rovdwv “MAnpodopiknc”



Prediction..
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Prediction..
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Prediction..

X(i): “input” variables (input features)

y(i): “output” or target variable that we are trying to
predict

A pair (x(i), y(i)) is called a training example,

The training set - a list of m training examples {(x(i), y(i)); i
=1, ...,m}—is called a training set.

X : space of input values, Y : output values.

The supervised learning problem:

— given a training set,

— learn a function h : X = Y so that h(x) is a “good” predictor for
the corresponding value of y.

For historical reasons, this function h is called a hypothesis.



Classes of classifiers

. Class-conditional/probabilistic, based on p( x | ¢, ),
— Naive Bayes (simple, but often effective in high dimensions)

— Parametric generative models, e.g., Gaussian (can be effective in low-dimensional problems: leads to
quadratic boundaries in general)

. Regression-based, p( ¢, | x) directly
— Logistic regression: simple, linear in “odds” space

— Neural network: non-linear extension of logistic, can be difficult to work with

. Discriminative models, focus on locating optimal decision boundaries
— Linear discriminants, perceptrons: simple, sometimes effective

— Support vector machines: generalization of linear discriminants, can be quite effective, computational
complexity is an issue

— Nearest neighbor: simple, can scale poorly in high dimensions

— Decision trees: “swiss army knife”, often effective in high dimensionis
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Regression

e Aims at fitting a line to a set of observations
{(zLm), .. (v}, there is a straight line y = ax +b.

100+

80




Regression

* the individual point error is: y—(ax+b)

* thusthe error setis: {yr —(azy +0), ..., yv — (azy +B)}.
N
| | o,
* the total error is: E(a,b) = Z (Yn — (az, + D))" .
n=1

Based on notes at: http://www.williams.edu/go/math/similler/public_html/BrownClasses/54/handouts/MethodLeastSquares.pdf



http://www.williams.edu/go/math/sjmiller/public_html/BrownClasses/54/handouts/MethodLeastSquares.pdf

Least Squares method

N
* The objective is to minimize £(@b) = Z]wn—{ﬂrn—bilf-

 Thus to find values a, b such that: fi_E _ 0. % _o
N O
08 N3 (g (a4 1) - (—z2)
. . . n £ \Yn —\aTy R e
e Differentiation leads to: da —
D .. N
(prOOf. ) % = Zg{yn — (az, + b}] - 1.

n=1



Least Squares method

. OF OE
* Thussetting - =0 - =0

N
Y (o —(azn +8) -z, = 0
n=1

e Leads to:
N
Z {yi‘t — (ﬂrn + E:‘}J = (.
n=1

* Or equivalently:

N N \1 N
(Z ;ri) a + (Z :rn/ b = Z Tl
n=1 n:i{ \1 r:;l
(Z )a+ (Zl/} b = Zyn.



Least Squares method

- Or equivalently:

( Zr?:l Ii Zirzl;rn ) ( 0 ) ( Zilefn.yn )
N N . a N
Zn:l L'n Zn:l 1 b Zn:l Un

- Implying:

N N —1 N
( a ) ( Zn:l Ii Zi’t:l In ) ( Zn:l Lnln )
a N N . N
b Zn:l T Zn:l l anl Un



Least Squares method

N N -1 N
( a ) ( Zn:] I;-: Zrt:] L' ) ( Zn:l Lnln )
- N N o N
b Zn:] Tn Zn:l l Zn:l Un
N ‘ N
Zn:] Ti Zrt:] In

. . )isinvertible
Yon=1Tn D op=1l

Solution exists only if (

- i.e. if it determinant is not O — prove it!



Least Squares method

The method is generalized in a straight forward way:
Assume y = af(x) + bg(x) then the respective result is:

( Z;:':] f[j_‘n}i Z::] fl:.l'n}ﬂ[-rn} ) ( (1 ) ( Zi‘?:l f':;;rnjyn )
Z::] f[-l'i-t }g[l‘n} Z::] g{;'{"n ]lj b Z:‘:l .'I:.-I'I{J-1n ]yn

Exercise: Under what conditions is the matrix invertible?
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Bayesian Classification: Why?

Probabilistic learning: Calculate explicit probabilities for hypothesis,
among the most practical approaches to certain types of learning
problems

Incremental: Each training example can incrementally
increase/decrease the probability that a hypothesis is correct. Prior
knowledge can be combined with observed data.

Probabilistic prediction: Predict multiple hypotheses, weighted by
their probabilities

Standard: Even when Bayesian methods are computationally
intractable, they can provide a standard of optimal decision making
against which other methods can be measured




Bayesian classification

The classification problem may be formalized using
a-posteriori probabilities:

P(C|X) = prob. that the sample tuple
X=<Xy,...,X, > is of class C.

E.g. P(class=N | outlook=sunny,windy=true,...)

ldea: assign to sample X the class label C such that
P(C|X) is maximal



Estimating a-posteriori probabilities

Bayes theorem:

P(C|X) = P(X|C)-P(C) / P(X)

P(X) is constant for all classes
P(C) = relative freq of class C samples

C such that P(C| X) is maximum =
C such that P(X|C)-P(C) is maximum

Problem: computing P(X|C) is unfeasible!



Naive Bayesian Classification

Naive assumption: attribute independence
P(Xy,..-, X | C) = P(x;]|C)-...-P(x, | C)

If i-th attribute is categorical: . . . .
Pl(xi | C) is estimated as the relative freq of samples having value x; as i-th attribute in
class C

If i-th attribute is continuous:
— Real-valued variables discretized to create nominal versions

— P(x;|C) is estimated thru a Gaussian density function

Computationally feasible in both cases

Generative probabilistic model with conditional independence assumption
on p(x|c),i.e.

o(x1c) =11 p(x1¢)

Typically used with nominal variables

— (alternative is to model each p(x; | ¢, ) with a parametric model — less widely used)



Naive Bayes Classifiers

e Comments:

— Simple to train (just estimate conditional probabilities for
each feature-class pair)

— Often works surprisingly well in practice

* e.g., state of the art for text-classification, basis of many widely
used spam filters

— Feature selection can be helpful, e.g., information gain

— Note that even if Cl assumptions are not met, it may still
be able to approximate the optimal decision boundaries
(seems to happen in practice)

— However.... on most problems can usually be beaten with
a more complex model (plus more work)



Play-tennis example: estimating
P(x;]| C)

Outlook Temperature Humidity Windy Class

sunny  hot high false N
sunny  hot high true N P(sunny|p) = 2/9 P(sunny|n) =3/5
overcast hot high false P
rain mild high false P P(overcast|p) = 4/9 P(overcast|n) =0
rain cool normal false P . .
rain cool normal true N P(rain I p) = 3/9 P(rain I n) = 2/5
overcast cool normal true P
sunny  mild high false N
sunny cool normal false P
rain mild normal false P P(hot|p) = 2/9 P(hot|n) = 2/5
sunny  mild normal true P : — : -
overcast mild high true P P(mild I p) 4/9 P(mild I n) 2/5
overcast hot normal false P P(cool|p) = 3/9 P(cool|n) = 1/5
P(high|p) = P(high|n) =
P(p) = 9/14 (high|p) =3/9 (high[n) = 4/5
P(normal|p) = 6/9 P(normal|n) =2/5
P(n) =5/14

P(true|p) =3/9 P(true|n) =3/5

P(false|p) =6/9 P(false|n) =2/5




Play-tennis example: classifying X

An unseen sample X = <rain, hot, high, false>

P(X|p)-P(p) =
P(rain|p)-P(hot|p)-P(high|p)-P(false|p)-P(p) =
3/9-2/9-3/9-:6/9-9/14 = 0.010582

P(X|n)-P(n) =
P(rain|n)-P(hot|n)-P(high|n)-P(false|n)-P(n) =
2/5-2/5-4/5-2/5-5/14 = 0.018286

Sample X is classified in class n (don’ t play)



The independence hypothesis...

... makes computation possible
... yields optimal classifiers when satisfied

... but is seldom satisfied in practice, as attributes (variables) are often
correlated.

Attempts to overcome this limitation:

— Bayesian networks, that combine Bayesian reasoning with causal
relationships between attributes

— Decision trees, that reason on one attribute at the time, considering
most important attributes first
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Linear Discriminant Classifiers

* Linear Discriminant Analysis (LDA)

— Earliest known classifier (1936, R.A. Fisher)

— See section 10.4 for math details

— Find a projection onto a vector such that means for each class (2 classes) are separated
as much as possible (with variances taken into account appropriately)

— Reduces to a special case of parametric Gaussian classifier in certain situations

— Many subsequent variations on this basic theme (e.g., regularized LDA)

e Other linear discriminants
— Decision boundary = (p-1) dimensional hyperplane in p dimensions
— Perceptron learning algorithms (pre-dated neural networks)
« Simple “error correction” based learning algorithms

— SVMs: use a sophisticated “margin” idea for selecting the hyperplane



Nearest Neighbor Classifiers

kNN: select the k nearest neighbors to x from the training data and select the majority
class from these neighbors

k is a parameter:
— Small k: “noisier” estimates, Large k: “smoother” estimates

— Best value of k often chosen by cross-validation

Comments
— Virtually assumption free

— Interesting theoretical properties:
Bayes error < error(kNN) < 2 x Bayes error (asymptotically)

Disadvantages
— Can scale poorly with dimensionality: sensitive to distance metric
— Requires fast lookup at run-time to do classification with large n

— Does not provide any interpretable “model”



Local Decision Boundaries

Boundary? Points that are equidistant ;
between points of class 1 and 2 |
Note: locally the boundary is ;
(1) linear (because of Euclidean distance)

(2) halfway between the 2 class points 1\,\
(3) at right angles to connector 2
Feature2 4
1 "
2
? 2
1

Feature 1

v



Finding the Decision Boundaries

Feature 2

Feature 1



Finding the Decision Boundaries
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Feature 1



Finding the Decision Boundaries
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Overall Boundary = Piecgwise Linear

Feature 2

Decision Region

Decision Region
for Class 1

for Class 2

v

Feature 1
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Decision Tree Classifiers

— Widely used in practice
e Can handle both real-valued and nominal inputs (unusual)

e Good with high-dimensional data

— similar algorithms as used in constructing regression trees

— historically, developed both in statistics and computer
science

* Statistics:
— Breiman, Friedman, Olshen and Stone, CART, 1984

« Computer science:
— Quinlan, ID3, C4.5 (1980 s-1990’ s)



Entropy & Information gain

* Entropy: measures the randomness of a statistical
variable (or otherwise the information the variable
carries)

= pli)log, ( ! ) Zpﬂlcnﬁ
i—1

pli i)

* Information gain is the change in entropy from a prior
state to a state that takes some information as given:

IG(Ex,a) = H(Ex) - H(Ex | a)



Information Gain (ID3/C4.5)

e Select the attribute with the highest information gain

* Assume there are two classes, P and N

— Let the set of examples S contain p elements of class P and n
elements of class N

— The amount of information, needed to decide if an arbitrary

example in S belongs to P or N is defined as

D D n n
I(pn)=——P | ~ " jeg, M
(p.1) D+ 92 p+n p+n 92 D+




Information Gain in Decision
Tree Induction

* Assume that using attribute A a set S will be partitioned into sets
{5,S,,..,5,}

— If S; contains p; examples of P and n; examples of N, the
entropy, or the expected information needed to classify
objects in all subtrees S; is

P+ Th 1(p;, ;)

E(A) =Y

i-1 P+N

 The encoding information that would be gained by branching on A

Gain(A)=1(p,n)—E(A)



Attribute Selection by Information
Gain Computation

B Class P: buys_computer = “yes” 5 4

M Class N: buys_computer = “no” (299 = E (2.3) 14 1(4.0)
B |(p,n)=1(9,5)=0.940 +7,1(32)=0.69
B Compute the entropy for age:
Hence
Gain(age) = 1 (p,n)—E(age)
Similarly
age | pi | N | I(p; ny Gain(income) = 0.029

Gain(student) =0.151
Gain(credit _rating) =0.048




Decision Tree Example
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Decision Tree Example

Debt A

Income > t1
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Decision Tree Example

Debt A

Income > t1
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Decision Tree Example

Debt A

Income > t1

|
|
|
|
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Decision Trees are not stable

st f 1) MOVing jUSt one
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Figure from
Duda, Hart & Stork,
Chap. 8



Decision Tree Pseudocode

node = tree-design (Data = {X,C})
Fori=1tod
quality_variable(i) = quality_score(X,, C)
end
node = {X_split, Threshold } for max{quality variable}
{Data_right, Data_left} = split(Data, X_split, Threshold)

if node == leaf?

return(node)
else
node_right = tree-design(Data_right)
node_left = tree-design(Data_left)
end

end



Binary split selection criteria

Q(t)= N,Q,(t) + N,Q,(t), where tisthe threshold

Let p,, be the proportion of class k points in region 1

Error criterion for a branch
Qy(t) = 1-pye

Gini index:

Qu(t) = 224 py(1- pyy)

Cross-entropy:
Qy(t) = 2 pylog piy

Cross-entropy and Gini work better in general
— Tend to give higher rank to splits with more extreme class distributions

— Consider [(300,100) (100,300)] split versus [(400,0) (200 200)]



Computational Complexity for a
Binary Tree

* At the root node, for each of p variables
— Sort all values, compute quality for each split

— O(pN log N) time for real-valued or ordinal variables

« Subsequent internal node operations each take O(N’ log N")
- e.g., balanced tree of depth K requires
pN log N + 2(pN/2 log N/2) + 4(pN/4 log N/4) + .... 2¥(pN/2X log N/2K)
= pN(logN + log(N/2) + log(N/4) + ...... log N/2K)

e This assumes data are in main memory

— If data are on disk then repeated access of subsets at different nodes may be
very slow (impossible to pre-index)



Splitting on a nominal attribute

* Nominal attribute with m values

— e.g., the name of a state or a city in marketing data

e 2m1possible subsets => exhaustive search is O(2™1)
— For small m, a simple approach is to branch on specific values

— But for large m this may not work well

* Neat trick for the 2-class problem:
— For each predictor value calculate the proportion of class 1’ s
— Order the m values according to these proportions
— Now treat as an ordinal variable and select the best split (linear in m)

— This gives the optimal split for the Gini index, among all possible 2™ splits
(Breiman et al, 1984).



How to Choose the Right-Sized Tree?

Predictive
Error

Error on Test Data

Error on Training Data

Size of Decision Tree

+—>

Ideal Range
for Tree Size



Choosing a Good Tree for Prediction

* General idea
— grow a large tree

— prune it back to create a family of subtrees

« “weakest link” pruning

— score the subtrees and pick the best one

* Massive data sizes (e.g., n ~ 100k data points)
— use training data set to fit a set of trees

— use a validation data set to score the subtrees

* Smaller data sizes (e.g., n ~1k or less)
— use cross-validation

— use explicit penalty terms (e.g., Bayesian methods)



Why Trees are widely used in Practice

Can handle high dimensional data

— builds a model using 1 dimension at time

Can handle any type of input variables
— categorical, real-valued, etc

— most other methods require data of a single type (e.g., only real-
valued)

Trees are (somewhat) interpretable

— domain expert can “read off” the tree’ s logic

Tree algorithms are relatively easy to code and test



Limitations of Trees

* Representational Bias
— classification: piecewise linear boundaries, parallel to axes

— regression: piecewise constant surfaces

* High Variance
— trees can be “unstable” as a function of the sample
* e.g.,, small change in the data -> completely different tree
— causes two problems
* 1. High variance contributes to prediction error

* 2. High variance reduces interpretability

— Trees are good candidates for model combining

* Often used with boosting and bagging

* Trees do not scale well to massive data sets (e.g., N in millions)

— repeated random access of subsets of the data
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Prediction — Classification..

Living area (feet®) | Price (1000$s) i
2104 100
1600 330 |
2400 360 S
1416 232
3000 FEN

Training ST .
set
|

Learning

algorithm

|

X—m |, —m predicted y
(living ar=a of {predicted price)
hanase ) af homse)

Ldp O



Learning — linear regression

Living area (feet?) | #bedrooms | Price (1000%s) h.-}lr,ﬂ — B + 0111 + Ha1o
2104 3 400 ' ' T
1600 3 330
2400 3 369 H(6): hypothesis
1416 2 232 O: parameters (weights)
3000 4 B0 o
' ' ' Assume intercept x,=1, hence

Define the cost function:

hiz) = Z'H;.T; — 9z

! =
'Iffi',._;f:;f,':i:'} - H[r’:]'_ﬂ_

r—1

b, |

J(6) =

B | bt

Lab 3



LMS - gradient descent

We want to choose 0 to minimize J(8).

gradient descent algorithm, which starts with some initial 8, and repeatedly performs the
update:

. (!
B =0, —a—J(f).
F o r_,..}{}-.l &

simultaneously performed for all values of j=0, ..., n.
a: learning rate

to implement algorithm: partial derivative term on the right hand side.

for one training example (x, y): ij{iﬁ] — (hglx) — y) T,

ol

Thusupdaterule: 5 . 8, +a I:

(1) r 2 {z)
; y" — hg(z'™)) 2.

o

LMS update rule - also known as the Widrow-Hoff learning rule.
Lab 3



LMS rule properties

. :=8;+a [,i',r"- — hg(z")) r;f:'_

gradient descent always converges (assuming the learning rate a is not too
large) to the global minimum.

- Jis a convex quadratic function.

the magnitude of the update is proportional to the error term

For a training example where prediction nearly matches the actual value
of y(i), small change on the parameters;

if our prediction h(x) has a large error (i.e., if it is very far from y) a
larger change to the parameters will be made



LMS — batch gradient descent

Repeat until convergence {
0, :=0,+ad ", |:Lrn';. — hg(z'¥)) !J’ (for every j).

“m number of training examples
The method looks at every sample for each step

Global optima — hence converges to local minimum

The “a” value should not be too high

Lab 3



LMS — stochastic gradient descent

Loop {
for i=1 to m, {

8; = 0; +a (y'*) — he(z™)) .z'l,!-: (for every j).

o

}

* . .
*"m number of training examples

Parameters are updated for each training example
* Lower complexity
* Converges faster but may oscillate around values

» forlarge training sets , stochastic gradient descent is often preferred
over batch gradient descent.

Lab 3



LMS revisited — normal equations

* Directly minimize J by derivation with respect to 8/’s and setting them to 0

e Some notation:

For a function f : R™*" +— K mapping from m-by-n matrices to the real
numbers, we define the derivative of f with respect to A to be:

0414 O0Aq1n
— !L'il"l!""."-| OAmn

Thus, the gradient V4 f(A) is itself an m-by-n matrix, whose (i, j)-element

15 o f ..-'af_.if‘l;'_]' :

Lab 3



Trace operator properties

* Trace operator: 14 — Z A
—

* Properties |
P ttAB = trBA.

trABC = trCAB =trBCA,
trABCD =trDABC =trCDAB =trBCODA.

 Let A, B square matrices and a a real number:

trA = trA” VattAB = BT
tr(A+ B)=trA+trB Varf(A) = (Vaf(AN"
trad = atrA VattABATC = CAB+CTABT
ValAl = |A[(ATHT.

Lab 3



LMS revisited..

e Aim to find the closed form of O that
minimizes J(0)

* Let X the training set of vectors and y the
target values vector

I';,J‘:J:'J-.‘r-

Y
U.Zfﬁ- w:f

[Iz.l'l.'!:l ';I'Jr-

] Hl’:;i:

Lab 3



LMS revisited.. — direct error minimization

_ {.TI 1 '-::|.|r||:_,;l LI'I 13
e As h,-;.f:;r:!:'} — {:}_.I!:‘Jf g then X0—q — E -- B 5
| {;}_':"“:']‘rlﬁj' H:ru:
i Thus: [ .'ri't;{:f.':]]} - .En'll:l:
1 |r ELI":-;' _.r\-'.lr-ll_ }L_H ~ B ]_ 1T _ .F |r _[z'fnl ()42 Jil!l_:rllrﬂ.lr:'!]l}II _ i!j':”!:'
FAe—y) (A¥—y) = EZ“”-" ) — yt*) [ Fial |
=1
— J(0)

* To minimize J, derivatives with respect to 6 (with 2,3):
VarttABATC = BTATCT + BATC
* set the derivatives to O: "?a-ff‘ﬂ = X'Xh- XT,!}'
* normal equations: X'X0 = ITL_"'
* Thus 6 minimizing J(0): 9= (X'X) l"‘r-.i!_,f'.
Lab 3



Regression — probabilistic interpretation

th:zzﬂTﬁii:+_FH:

(i) some error function iid normally distributed

i 1 ()2
NE | = exXp | — -
p(e) = ——exp (5

P 1 (1 2} _ lr;}'f';}..l!'] 2
j:[:!;.z.- .T"r".‘-E” — = exp (_ Y — ,]" )

f:r_

L(8) = L(8; X, ) = p(i1 X; 0)

L = p(y'™ | % g)
Maximize the likelihood: i=1
m 1 “-"II: . I.-j;-'f';r::i:-}f
Assuming independence: - U5 (_ 202 )

Lab 3



Regression — probabilistic interpretation

 Maximize the log likelihood

| 11 1 DR
fl8) = mlos —— — - — (y'®) — g7 £(#)2,
v = w:};ﬁ ﬂ_g E IZJ "I J
* Equivalent to minimize: 1 () _ gT @)
2 ,

* Thisis the J(0).. Solved above..

Lab 3



Evaluating Classification Results (in
general)

Summary statistics:
— empirical estimate of score function on test data, eg.,

error rate ]
Predicted
True email spam
More detailed breakdown > email | 57.3%  4.0%
: : 9207 23 4%
— E.g., “confusion matrices” spam | 5.3% 33.4%

— Can be quite useful in detecting systematic errors

Detection v. false-alarm plots (2 classes)

— Binary classifier with real-valued output for each
example, where higher means more likely to be class 1

— For each possible threshold, calculate

* Detection rate = fraction of class 1 detected

* False alarm rate = fraction of class 2 detected
— Plot y (detection rate) versus x (false alarm rate)

— Also known as ROC, precision-recall,
specificity/sensitivity



Bagging for Combining Classifiers

Training data sets of size N

Generate B “bootstrap” sampled data sets of size N
— Bootstrap sample = sample with replacement

— e.g.B=100

Build B models (e.g., trees), one for each bootstrap sample

— Intuition is that the bootstrapping “perturbs” the data enough to make the models more
resistant to true variability

For prediction, combine the predictions from the B models

— E.g., for classification p(c | x) = fraction of B models that predict ¢

— Plus: generally improves accuracy on models such as trees

— Negative: lose interpretability
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Dashed line: single stage classifier. Green line: combined, boosted classifier

Dotted blue in last two: bagging
(from G. Ratsch, Phd thesis, 2001)
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- Regression & LSE

http://www.williams.edu/go/math/similler/public _html
/BrownClasses/54/mynotes52.htm

- Supervised learning
Andrew NG, Stanford Univ, CS229 - Machine Learning
(http://www.stanford.edu/class/cs229/)
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