OIKONOMIKO ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY
OF ECONOMICS
AND BUSINESS

Information-Centric Networks

Section # 9.3: Clean Slate

Instructor: George Xylomenos

Department: Informatics

Funding

- These educational materials have been developed as part of the instructors educational tasks.
- The "Athens University of Economics and Business Open Courses" project only funded the reformatting of these educational materials.
- The project is being implemented as part of the Operational Program "Instruction and Lifelong Learning" and is cofinanced by the European Union (European Social Fund) and national funds.

Licencing

 These educational materials are subject to a Creative Commons License.

Week 9 / Paper 3

- VoCCN: Voice Over Content-Centric Networks
 - V. Jacobson, D. K. Smetters, N. H. Briggs, M. F. Plass, P. Stewart, J. D. Thornton, R. L. Braynard
 - ACM ReArch 2009
- Main point
 - Content-centric targets fetching/downloading applications
 - Can it work for other applications, too?
 - E-mail, streaming and (especially) VoIP?
 - VoCCN: Voice over CCN (instead of IP)
 - Based on certain key properties of CCN

Introduction

- Most new architectures place content at the center
 - Good fit for content exchange applications (WWW, P2P)
 - What about conversational applications (VoIP, e-commerce)?
- VoCCN addresses the issue of CCN suitability
 - Real-time, conversational, telephony over CCN
 - Simpler, more secure and more scalable than VoIP
 - Uses SIP and RTP to securely interoperate with VoIP
 - Employs a stateless IP to CCN gateway
 - Model for mapping conversational applications to CCN

Information-Centric Networks

VoIP background

VoIP components

- Endpoints are represented by fixed proxies
 - The endpoints can be mobile or have dynamic IP addresses
- Signaling established via SIP (Session Initiation Protocol)
 - Caller to caller's proxy, to callee's proxy, to callee
 - The proxies must know where the endpoints reside
- Data exchange directly between endpoints
 - The caller's invite indicates its address for RTP data
 - The callee's accept indicates address for RTP data
- Media can be secured via SRTP or tunneling inside DTLS
- Signaling can be secured via DTLS/PKI or MIKEY
 - Authentication and encryption are tricky to setup
 - · Usually everything ends up unencrypted and unathenticated!

- VoIP is harder than it needs to be
 - The caller simply wants to talk to the callee
 - The network requires finding the callee's phone IP address
 - This is where the SIP proxies come into play
 - In content-oriented networking this should be redundant
- VoCCN has to solve a different set of problems
 - Service rendezvous: the callee must offer a contact point
 - In IP this is the TCP/UDP port to which the application listens
 - In CCN we must request content that has not been published
 - The network must route the request to potential publishers
 - · The publishers should then create and publish the content

- VoCCN has to solve a different set of problems
 - The service rendezvous must transition to a conversation
 - In IP the SIP packets contain information in an SDP payload
 - In CCN we need dynamically constructible names
 - Construct the name of a piece of content without being told
- Two requirements for content name construction
 - Deterministic algorithm to produce names
 - Names rely on information available to both endpoints
 - Cannot use (say) content hashes as names
 - Support for partial specification of names
 - Constructing unique names requires prearrangement
 - Partial names allow unique names to be used eventually
 - Structured names can satisfy both requirements

Information-Centric Networks

- In CCN content uses hierarchical naming
 - Interest packets specify a name prefix and some rules
 - The rules specify what matching content to return
 - CCN routers use prefix matching to direct Interests
 - Sent towards content sources that have registered availability
 - Sources do not need to register the exact content, only prefixes
 - Content can be generated on the fly
 - Data packets reverse the path taken by interests
- VoCCN signaling
 - Each VoCCN endpoint has an identity (e.g. alice@ccnx.org)
 - The endpoint registers to offer data in a specific namespace
 - Based on service and identity (e.g. /ccnx.org/sip/alice/invite)

VoCCN signaling

- A caller sends an Interest asking for content from the callee
 - The well-known prefix is extended with unique data
 - A session key encrypted with the callee's public key
 - The SIP invite data encrypted with the session key
- The callee responds with a data packet generated on the fly
 - Uses the name indicated by the caller
 - Includes the SIP accept data encrypted with the session key

VoCCN data exchange

- Uses a sequence of names based on rendezvous information
 - Call-id+endpoint+sequence (e.g. /ccnx.org/alice/call-id/rtp/seqno)
 - Each Interest is matched by a unique data packet
- Can issue many interests to pipeline data flow
 - · As data packets arrive, more interests are generated

Advantages

- Easy location of endpoints
 - In IP the endpoint needs to register its IP address with a proxy
 - With CCN a prefix can be registered at many areas
 - The Interest will be routed to all of them
 - The endpoint will respond from its current location
- Endpoints can prove their identity
 - All the credentials needed are at the endpoint
 - The private key needed to decrypt the session key
 - No need to change identity to IP address mappings
- Advanced services are easy to build
 - Exploits the built-in multipoint routing of CCN
 - Follow call requests or copy and process call contents

VoCCN/VoIP interoperability

- Based on a stateless VoCCN/VoIP gateway
 - SIP and SRTP are used to simplify the exchange
 - The gateway acts as a SIP proxy that translates packets
 - A SIP/SRTP packet is translated to a CCN data packet
 - They match CCN interest packets from VoCCN endpoints
 - The gateway also generates an Interest for the next packet
 - This matches the next data packet from the VoCCN endpoint
 - The VoCCN packet is translated to an IP packet
 - The proxy does not maintain state on conversations
 - Every action is based on received packets
 - Signaling security is provided for the CCN part only
 - The IP part may have its own SIP signaling security mechanism
 - End-to-end data security does not involve the gateway

Implementation

- Implementation data
 - VoCCN client based on Linphone
 - Uses extensible SIP and RTP libraries
 - Simple plugins for the CCN part
 - CCN routers on all routers and endpoints
 - CCN routers communicate over a UDP overlay

Security

- Many ways to get public keys in CCN
 - Ask for /ccnx.org/users/alice/KEY and accept on faith
 - Publish key as CCN content signed by a trusted third party
- VoCCN used MIKEY to secure the data exchange
 - MIKEY is initiated during the SIP signaling exchange
- The signaling exchange is protected with public keys

Implementation

Performance

- Direct exchange between two machines in the same LAN
- Compared stock Linphone with VoCCN version
- No perceptible impact from packet signing with 1024 bit RSA keys
- No packet loss, but some delayed packets in the latter case
- Similar jitter for both versions

OIKONOMIKO ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY
OF ECONOMICS
AND BUSINESS

End of Section #9.3

Course: Information-Centric Networks, Section # 9.3: Clean Slate

Instructor: George Xylomenos, **Department:** Informatics

