

ATHENS UNIVERSITY
OF ECONOMICS
AND BUSINESS

Information-Centric Networks

Section # 6.1: Evolved Naming & Resolution

Instructor: George Xylomenos

Department: Informatics

Funding

- These educational materials have been developed as part of the instructors educational tasks.
- The "Athens University of Economics and Business Open Courses" project only funded the reformatting of these educational materials.
- The project is being implemented as part of the Operational Program "Instruction and Lifelong Learning" and is cofinanced by the European Union (European Social Fund) and national funds.

Licencing

 These educational materials are subject to a Creative Commons License.

Week 6 / Paper 1

- Untangling the Web from DNS
 - Michael Walfish, Hari Balakrishnan and Scott Shenker
 - Networked Systems Design and Implementation (NSDI) 2004
- Main point
 - The Web uses DNS to resolve hostnames to IP addresses
 - DNS limitations influence the Web
 - Web load hurts DS performance
 - Proposal to use semantic free references on the Web
 - Resolution infrastructure based on DHTs

Introduction

- DNS translates machine names to addresses
 - The commercialization of the Internet makes this complex
 - DNS has become a branding mechanism!
 - The Web simply requires a Reference Resolution Service (RRS)
 - Map references (links) to actual locations
 - DNS is not a very good RRS
 - References are tied to hosts, that is, specific machines
 - Makes replication and migration hard
- What should a good RRS offer?
 - Persistent object references: not tied to administrative domains
 - Contention-free references: no legal disputes on ownership
 - Leave the human name to reference translation to others
 - General-purpose infrastructure: not only for the web

Semantic free referencing

- Two key design principles
 - Semantic-free namespace: no explicit semantics
 - No administrative domain or other ties
 - Minimal RRS interface and factored functionality
 - Nothing else beyond reference resolution
 - Human friendly names are dealt with by someone else
- Semantic-free references (SFRs)
 - Today the web is based on human readable URLs
 - With SFR we have a two step process
 - Translate human readable names to SFRs
 - Resolve SFRs to IP addresses or other information
 - Allows migration without changing links
 - Simplifies object replication

SFR challenges

- Scalable resolution
 - Can be based on DHTs, modified to be faster than O(logn)
- Security and integrity
 - Need to avoid collisions in a distributed manner
- Fate sharing
 - Disconnected domains should still function
- Trust and financing
 - Incentives for external nodes to serve my SFRs
- Canonical names (left to higher layers)
 - Need names that users can remember
- Confidence (left to higher layers)
 - Users expect to understand the URLs they use

SFR design

- SFR essentials
 - Uses a DHT to map SFRtags to o-records
 - SFRtags: 160 bit strings identifying objects
 - O-records: metadata associated to SFRtags
 - Location: (ip,port), (DNS,port), SFRtag
 - Oinfo: application specific metadata
 - TTL: time to live, a caching hint
 - Location can contain multiple fields
 - Either IP addresses, DNS names or other SFRtags
 - Allows multiple degrees of indirection
 - Oinfo: transparent to the SFR, only for applications
 - For the web could be protocol (HTTP/HTTPS) or a pathname

SFR model and components

- DNS relies on local servers for local names
 - Not possible to do with SFRs
- SFR requires a common trusted infrastructure
 - Could be provided by NSF, EU
 - Eventually could become commercial and competitive
- The infrastructure is critical
 - Should be well managed and well connected
 - It is not a simple P2P system!
- SFR components
 - A collection of managed nodes, the SFR servers (DHT)
 - SFR relays connect to SFR servers similarly to resolvers
 - SFR client software uses SFR relays to resolve SFRs

Security and integrity

- Creation of SFRs in a distributed manner
 - SFRtag = hash (public key, salt)
 - Send to SFR infrastructure the SFRtag with additional info
 - The o-record with the metadata
 - Public key, salt and version
 - Signature(o-record, salt, version)
 - SFR infrastructure verifies hash and signature
- Lookup of SFRtags
 - Returns all the above information
 - Client can verify that the o-record is valid
 - Does not need a PKI: the public key is tied to the tag and record
- Modifications to keys or o-records
 - Next version number, SFR keeps all previous versions

Latency, fate sharing, scoping

- Three levels of TTL-based caching
 - Clients cache entire o-records
 - SFR servers cache IP addresses of other SFR servers
 - SFR servers cache o-records for load balancing
- Fate sharing and scoping
 - A domain's SFRtags can be stored anywhere
 - A local org-store is used to additionally store local SFRtags
 - All modifications first go to the org-store and then to the DHT
 - If the DHT does not reply, then the change will be sent later
 - Lookups ask the org-store and the DHT in parallel
 - If the DHT does not reply, rely on the org-store
 - If the DHT replies, update the org-store if needed
 - Scoping requires SFRtags to be stored only in the org-store

Web over SFR

- Links have the form sfr://f012120.../optional path
 - The bit string resolves to an o-record
 - The o-record includes location (IP or DNS) and oinfo
 - Oinfo includes the protocol and (maybe) an additional path
 - The optional-path is added at the end of the o-record path
- The web SFRtag can work in different ways
 - The oinfo path may be a full path: entire link in the SFR
 - The oinfo path may be a directory: a set of pages in the SFR
 - The oinfo path may be empty: only the server in the SFR
 - The remaining path is the optional_path in the link
- Replication: simply return many location tuples
 - Can work at any level (page, directory, host), unlike DNS

Human usability challenges

- Canonical names & user confidence
 - Humans are used to human friendly URLs
 - But increasingly we do not type the URLs
 - They come from web pages, e-mails or search engines
 - SFR requires canonicalization services
 - Translation of human friendly names to SFRtags
 - SFR can support different granularities though
 - · Host, page, directory
 - Bootstrap by embedding SFRtags to search engines in browsers
 - Confidence can be enhanced by third parties signing SFRtags
- Pragmatics
 - Relative references: include hints for local SFRtags
 - Avoid going through the SFR infrastructure for relative references

Implementation

- SFR servers use DHash over Chord
 - Applications use an SFR client to get and put o-records
- Web proxy to translate URLs to SFRtags
 - The web client asks the proxy for a URL
 - The proxy translates it to an SFRtag
 - The salt is a hash of the URL
 - The proxy uses the SFR client to ask for the o-record
 - If the o-record does not exist, it is created and entered to the SFR
 - This requires a DNS lookup to discover the information
 - Essentially parts of the DNS are entered into SFR

Evaluation

- Experiments on PlanetLab
 - SFR consists of 130 physical nodes, 390 virtual nodes
 - Web proxies at 3 nodes
 - Aggressive caching makes the DHT very fast (2-3 hops)
 - Latency similar to DNS
- Simulations based on NLANR traces
 - Simulated a 1000 node SFR
 - 2-3 hops per request (similar to DNS)
 - Small changes with a reasonable churn rate
 - The SFR is a managed infrastructure, not a P2P application
 - Churn is expected to be low

OIKONOMIKO ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY
OF ECONOMICS
AND BUSINESS

End of Section #6.1

Course: Information-Centric Networks, Section # 6.1: Evolved Naming & Resolution

Instructor: George Xylomenos, **Department:** Informatics

