

ATHENS UNIVERSITY
OF ECONOMICS
AND BUSINESS

Information-Centric Networks

Section # 10.3: Publish/Subscribe

Instructor: George Xylomenos

Department: Informatics

Funding

- These educational materials have been developed as part of the instructors educational tasks.
- The "Athens University of Economics and Business Open Courses" project only funded the reformatting of these educational materials.
- The project is being implemented as part of the Operational Program "Instruction and Lifelong Learning" and is cofinanced by the European Union (European Social Fund) and national funds.

Licencing

 These educational materials are subject to a Creative Commons License.

Week 10 / Paper 3

- Illustrating a publish-subscribe Internet architecture
 - Nikos Fotiou, Dirk Trossen, George C. Polyzos:
 - Telecommunication Systems (to appear)
- Main point
 - PSIRP = Publish-Subscribe Internet Routing Paradigm
 - Totally clean slate architecture
 - Supports availability, security and mobility
 - Opportunities for innovative applications

Introduction

- The Internet has not changed a lot since its inception
 - Still reminiscent of the telephone network
 - · Connect two endpoints via the network infrastructure
- User needs have changed a lot in the meantime
 - Endpoints do not trust each other
 - Receivers cannot avoid sender traffic
 - Content is delivered via CDNs and P2P applications
 - Applications do not care which endpoint provides the content
 - Middleboxes try to fix each problem separately
- The publish-subscribe paradigm
 - Centered on information, not endpoints
 - Receivers only get what they asked for (via subscriptions)

Introduction

- Components of a publish-subscribe system
 - Publishers: feed information to the system
 - Subscribers: consume published information
 - Brokers: forward data from publishers to subscribers
 - Rendezvous Nodes: match publications with subscriptions
 - Initiation of delivery from publishers to subscribers
- Advantages of publish-subscribe
 - Publishers and subscribers are decoupled in time and space
 - Publishers are not aware of subscribers and vice versa
 - Publications and subscriptions are not synchronized
 - Multicast can be taken advantage of
- PSIRP: EU funded project that builds a pub-sub system
 - Continued by PURSUIT

The PSIRP architecture

Publications

- Information becomes available via publications
 - Any size, from data chunks to entire movies
- Identified by a Rendezvous Identifier (RId)
 - Flat and unique within a scope

Scopes

- Containers for publications
 - Any type of grouping, from social networks to network areas
- Identified by a Scope Identifier (SId)
 - Flat and unique within a scope
- Hierarchical organization of scopes
- Access control is based on scopes
 - Who can issue or access publications within a scope?

The PSIRP architecture

Publishing data

- A RId is derived by an application specific function
- The proper SId is selected to organize and control information
- The responsible Rendezvous Node for the scope is contacted
 - This node is called the Rendezvous Point (RP) for the scope
- The publication metadata is sent to the RP
 - Metadata can indicate that a publication is divided into pieces
 - The RId's for the pieces may be algorithmically related

Subscribing to data

- Need to know the SId/RId of the publication
- The RP for the scope is contacted
- The RP initializes forwarding from publisher to subscriber

The PSIRP architecture

Forwarding in PSIRP

- A topology formation function creates delivery paths
- A path is denoted by a Forwarding Identifier (FId)
- The RP makes sure the FId is sent to the subscriber
- The Publisher sends the publication with the FId
- Brokers forward the publication using the FId

Caching in PSIRP

- Any node can cache publications it is forwarding
- It then becomes a source for these publications

Multicasting

When multiple subscribers exist, publications are multicast

Current solutions

- Note: this reflects the current PURSUIT status
- Rendezvous
 - Use of a hierarchical DHT to assign scopes to RPs
 - Ideally the RP should be close to the publisher
 - DHTs have a tendency to violate routing policies though!
- Forwarding
 - Use of the LIPSIN source routing mechanism
 - Unicast is a special case of multicast
 - How are interdomain paths handled?
- Topology management
 - Link-state protocol (like OSPF) for topology discovery
 - Dijkstra's algorithm for intra-domain shortest paths
 - How do multiple domains co-ordinate routing?

Application development issues

- Many open issues at the fundamental level
- Publication identifiers
 - Not obvious how the RId can be determined
 - It has to be unique within a scope (or more!)
 - How will algorithmic identifiers work?
 - Does the network know how they are generated?
- Publication scoping
 - How visible are scopes to applications?
 - They may be used only at a low level
- Trust in transactions
 - Which nodes can be trusted to provide services?
 - Which RP is the correct one?

Development status

- Two prototypes available
 - Blackhawk: node prototype for FreeBSD
 - Blackadder: network code prototype for Linux
 - Both migrating to use the Click modular router framework
 - Click is portable and can run in user or kernel space
 - Both available on an open source basis
- Many things are being tested
 - Rendezvous: different DHTs for inter-domain rendezvous
 - Forwarding: inter-domain and large group solutions
 - Topology: inter-domain topology formation
 - Transport: pull-based protocols with multiple sources
 - Caching: on-path and off-path solutions
 - Mobility: exploit caching to hide disconnections

OIKONOMIKO ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY
OF ECONOMICS
AND BUSINESS

End of Section # 10.3

Course: Information-Centric Networks, Section # 10.3: Publish/Subscribe

Instructor: George Xylomenos, **Department:** Informatics

