OIKONOMIKO ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY
OF ECONOMICS
AND BUSINESS

Information-Centric Networks

Section # 5.2: Content Distribution

Instructor: George Xylomenos

Department: Informatics

Funding

- These educational materials have been developed as part of the instructors educational tasks.
- The "Athens University of Economics and Business Open Courses" project only funded the reformatting of these educational materials.
- The project is being implemented as part of the Operational Program "Instruction and Lifelong Learning" and is cofinanced by the European Union (European Social Fund) and national funds.

Licencing

 These educational materials are subject to a Creative Commons License.

Week 5 / Paper 2

- A survey of peer-to-peer content distribution technologies
 - Stephanos Androutsellis-Theotokis, Diomidis Spinellis
 - ACM Computing Surveys, Volume 36, Issue 4, 2004
- Main point
 - Content distribution is one of many uses of P2P
 - Design decisions influence nonfunctional characteristics
 - A taxonomy of P2P systems for content distribution is given

What is P2P?

- Gnutella? Kazaa? Or Napster?
 - From purely distributed to based on centralized servers
- Some emphasize the use of resources at the edge
 - But Napster also does that, although it relies on servers
- Two defining characteristics
 - Sharing of resources by direct exchange
 - Centralized servers only for specific tasks (e.g. bootstrap)
 - Nodes need to participate in maintenance tasks
 - Instability and variable connectivity is the norm
 - Fault-tolerant and self-organizing capacity
- Definition of P2P based on above characteristics
 - Covers Gnutella and Kazaa but not Napster
 - However Napster is also mentioned as many see it as P2P

Information-Centric Networks

Classification of P2P architectures

- Communication and collaboration
 - Chat and instant messaging
- Distributed computation
 - Use of CPU cycles from the edge
- Internet service support
 - Multicast, indirection, security
- Database systems
- Content distribution
 - Focus of this study
 - Support data exchange in various ways
 - Direct file exchange between nodes (Gnutella)
 - Shared storage media (Oceanstore)

Content distribution with P2P

P2P applications

- Content distribution systems based on P2P technology
- P2P file exchange systems
 - Facilities to search and transfer files between peers
 - Generally best-effort
- P2P content publishing and storage
 - Create a distributed storage medium
 - Generally controlled access to the data

P2P infrastructures

- Not working applications but substrates for them
- Routing and location
- Anonymity
- Reputation management

P2P object location and routing

- P2P nodes form an overlay network
 - Connections between nodes are paths on a physical network
 - Typically the physical (underlay) network is IP with UDP or TCP
- Overlay network centralization types
 - Purely decentralized: all nodes are the same (servents)
 - Partially centralized: some supernodes are more important
 - Hybrid decentralized: central servers facilitate the network
- Network structure
 - Unstructured: content placement unrelated to topology
 - Content location is tricky (flooding or random walks)
 - Structured: pointers to content are algorithmically placed
 - Only works well with exact-match queries
 - Loosely structured: routing hints to simplify content location

- Hybrid decentralized (e.g. Napster, Publius)
 - Central directory server
 - Holds client info and file table
 - Clients report their files to server
 - The server updates its tables
 - Clients send queries to server
 - The server returns query results to clients
 - Clients exchange files directly
 - Inherently non-scalable, easy to take down
 - It is sufficient to take down the centralized components

- Purely decentralized (e.g. Gnutella)
 - All nodes are equal (SERVer ENTIties, servents)
 - Servents exchange 4 messages
 - Ping: probe to a neighbor
 - Pong: response to ping, contains number and size of files
 - Query: search request (string) to neighbor
 - Query Hit: response to query with matching file pointers
 - First locate some hosts via public server, then send pings
 - Then start sending queries
 - Pings and queries are flooded up to a number of hops
 - · Duplicate detection mechanisms also limit flooding
 - Responses are returned via the reverse path
 - Download files directly from the servents having them

- Partially centralized (e.g. Kazaa)
 - Supernodes are dynamically assigned to assist others
 - Supernodes are more powerful than other nodes (CPU, network)
 - Index files shared by peers and proxy queries on their behalf
 - All queries initially sent to supernodes
 - Supernodes make queries much faster
 - But they can be replaced if they fail
- Improving unstructured architectures
 - The biggest problem is scalability
 - Replace flooding by random walks
 - Proactively replicate data
 - Maintain local indices of data

- Loosely structured systems (e.g. Freenet)
 - Estimate which node is responsible for content
 - Each node makes a local decision to forward queries
 - In Freenet file names are hashed to produce keys
 - There are 4 types of messages
 - Data insert: includes data and key
 - Data request: includes key and TTL
 - Data reply: includes actual data
 - Data failed: cannot find data
 - On insert, each node estimates where similar keys are stored
 - New files are placed close to files with similar keys
 - Each node maintains a table with routing hints
 - On query, local estimates towards possible targets are used
 - Each successful response leaves behind a chain of pointers

- Chord: uses a ring of nodes and keys
 - Nodes are placed on a ring
 - Each node knows its successor
 - Keys are placed on the same ring
 - Each key is stored at its successor
 - Insertions/deletions of nodes only have local effect
 - Some keys need to move to the next/previous node
 - A finger table is used to speed up lookups
 - Pointers to nodes at exponential distances
 - Allows quick traversal of the ring

- Tapestry (and Pastry, which is very similar)
 - Nodes and keys are treated as n digit numbers
 - Each node has a routing table with n rows
 - In each row there are pointers to nodes with matching prefixes
 - At row k nodes match the first k digits of the present node
 - Routing proceeds by matching one digit at a time
 - There is some leeway in choosing routing entries
 - Any node with a matching prefix will do
 - Normally choose the closest one
 - Extensions allow replication of data

- CAN (Content Addressable Network)
 - Multi-dimensional key space
 - Keys and nodes are mapped to points in the space
 - Nodes split the space between them based on proximity
 - Keys are stored at the node within which their point resides
 - Insertions/deletions of nodes require splitting/merging areas
 - Routing proceeds between neighbor nodes
- Improving structured architectures
 - The biggest problem is inexact matches
 - Various proposals for building indexes on top
 - Insert pointers to files with the right keywords as names
 - Maintenance is also quite heavy
 - At least compared to unstructured architectures

Caching, replication and migration

- Replication improves availability and performance
- Passive replication
 - Occurs as nodes exchange content
- Cache-based replication
 - Cache responses passing through the node
- Active replication
 - Push data proactively
- Introspective replica management
 - Observe traffic to decide on replication
- Dynamic replica management
 - If queries are slow, place additional replicas

Security

- Secure storage of data
- Self-certification
 - File names contain a hash of the content
- Information dispersal
 - Encode the data as m blocks and spread them in the network
 - Require any n<m blocks to retrieve the data
 - Can be extended to secretly share keys
- Anonymous cryptographic relays
 - Data is sent to forwarders with send it to storers
 - The publisher destroys the data and publishes the storers

Security

- Access control, authentication and identity management
 - P2P systems are decentralized
 - The same entity can appear with many names
 - This can subvert content replication, routing, etc.
 - Reputation management also cannot work
 - The use of multiple fake identities is called a Sybil attack
 - Some systems use access control mechanisms
 - Only users with specific keys can access content
 - Other systems use challenges to prevent Sybil attacks
 - Need to spend some CPU cycles to be accepted
 - Small numbers of nodes cannot mount large attacks

Anonymity and deniability

Anonymity

- May refer to publisher, storer, content or query
- Dissassociation of content source and requestor
 - Prevent linking files with origin or destination
- Anonymous connection layers
 - Onion routing and mix routing obscure the routing process
- Censorship resistant lookup

Deniability

- Deniability of stored content
 - Normally based on encryption or steganography
- Deniability of content in transit
 - Via anonymous connection layers

Incentives and accountability

- Trust-based versus trade-based incentive mechanisms
 - Prevent free-rider behavior in decentralized systems
- Reputation mechanisms
 - Need to propagate local reputation estimates globally
 - Quite tricky in a decentralized environment
 - Many simple mechanisms are easily subverted
- Micropayment mechanisms
 - Implement a micro currency scheme
- Resource trading schemes
 - Nodes issue receipts for services offered
 - Receipts indicate the quality of an entity

Content management capabilities

- Content deletion and update
 - Some systems only support immutable files
 - Others search for and remove old copies of files
- Content expiration
 - Easy way to get rid of stale data
- Content versioning
 - Used in Oceanstore for archival storage
- Directory structures
 - Mnemosyne provides UNIX like directories
- Content searching (see structured vs. unstructured)
- Storage and bandwidth management

OIKONOMIKO ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY
OF ECONOMICS
AND BUSINESS

End of Section # 5.2

Course: Information-Centric Networks, Section # 5.2: Content Distribution

Instructor: George Xylomenos, **Department:** Informatics

