

ATHENS UNIVERSITY
OF ECONOMICS
AND BUSINESS

Information-Centric Networks

Section # 6.3: Evolved Naming & Resolution

Instructor: George Xylomenos

Department: Informatics

Funding

- These educational materials have been developed as part of the instructors educational tasks.
- The "Athens University of Economics and Business Open Courses" project only funded the reformatting of these educational materials.
- The project is being implemented as part of the Operational Program "Instruction and Lifelong Learning" and is cofinanced by the European Union (European Social Fund) and national funds.

Licencing

 These educational materials are subject to a Creative Commons License.

Week 6 / Paper 3

- Middleboxes No Longer Considered Harmful
 - Michael Walfish, Jeremy Stribling, Maxwell Krohn, Hari Balakrishnan, Robert Morris, Scott Shenker
 - Operating Systems Design & Implementation (OSDI), 2004

Main point

- Middleboxes are everywhere
- Internet purists scorn middleboxes (with reason)
- But middleboxes offer valuable functionality
- How can we retain the functionality without the side-effects?
- The answer: Delegation Oriented Architecture (DOA)
- Subset of the "layered naming architecture"

Introduction

- Two Internet tenets are often disobeyed
 - Every Internet entity has a unique network level identifier
 - NAT and host mobility prevent this
 - Network elements should not process other's packets
 - Caches, firewalls, NATs regularly look inside passing packets
- Layer violations make lead to real problems
 - SIP and P2P systems are hindered by IP address translation
 - Hard to deploy new applications
- But middleboxes offer useful functions
 - It would be even better if they could be located off-path
- The Delegation Oriented Architecture (DOA)
 - Globally unique identifiers in a flat namespace
 - Senders and receivers can indicate multiple such identifiers

NATs, NAPTs and Firewalls

NAT and NAPT

- Hide networks with private addresses behind a public address
- NAPT looks at address and port, NAT only at address
 - NAT nearly always means NAT, so we only use this term
- Convenience and flexibility in internal addressing
- Security since only outbound connections are allowed
- Static configuration needed to handle inbound connections
- No way to use the same port for two applications

Firewalls

- Inspect inbound and outbound packets
- Enforce filtering rules
- Need to be on the path to the endpoint

Architectural overview

- Desired architectural properties
 - Packets should contain global identifiers
 - As used to be the case with IP
 - Application-independent way to express delegation
 - Delegates should not have to be on the direct path
- EIDs: endpoint identifiers
 - Must be independent of network topology
 - Can carry cryptographic meaning
 - 160 bit flat EIDs were chosen
 - Carried in a header between TCP and IP
- EIDs can be resolved to two things
 - An IP address (could be the delegate's)
 - One or more EIDs, as in a loose source route

Information-Centric Networks

Architectural overview

- DOA and the two Internet tenets
 - EIDs are globally unique identifiers
 - Packets sent to EIDs actually reach the hosts with these EIDs
 - Network elements only process packets with their own IP
 - A delegate can see that the EID does not match its own
 - It then resorts to local state to further forward the packet
 - No need for complex configuration at NATs
 - Just send the packet to the host with the right EID
- DOA and Internet evolvability
 - DOA allows managed service provision
 - · You select your firewall provider and delegate packets to it

Detailed DOA design

- Header format
 - DOA header inserted between TCP and IP headers
 - TCP uses EIDs for checksum calculations
 - Carries at least one source and one destination EID
 - Can be extended
- Resolution and invoking intermediaries
 - The EID is resolved to an erecord containing:
 - EID being resolved
 - Target: IP or one or more EIDs
 - Hint (optional)
 - TTL: caching time
 - Transport connections are bound to the last EID
 - The others need to be traversed on the way to the destination

Detailed DOA design

- Security and Integrity
 - Anyone fetching an erecord must be able to verify its EID
 - Only the owner of an EID should update its erecord
 - A sender must not be able to forge an erecord
- EIDs are the hash of a public key
 - The erecord is signed with the corresponding private key
 - Does not prevent source EID spoofing
 - The receiver resolves the EID again to return responses
- Host software
 - Modified socket calls using a sockaddr_ein struct
 - Connect() and sendto() may require EID lookups
 - Accept() will return an EID
 - Hosts need to be bootstrapped with an EID resolver

Information-Centric Networks

Network extension boxes

- Network Extension Box (NEB): akin to a NAT
 - Offers some kind of delegated functionality
 - Preserve headers, using the EID to demultiplex packets
 - Simply insert the right IP address for the EID in the packet
 - End-to-end communication possible
 - Ports are not overloaded
 - VPNs can work around NEBs
 - NEBs can be configured automatically
- Configuration of cascaded NEBs
 - The endpoint must know what to put in its erecord
 - State must be established at NEBs or in the resolvers
 - This state must not be modified by attackers
 - Assume that each NEB only trusts the upstream NEB

Network extension boxes

EID maps to EID

- Each NEB adds an erecord from its EID to its parent's EID
- Each NEB holds a mapping from its children's EIDs to their IPs
- Incoming packets are resolved to a sequence of EIDs
- As they pass NEBs they are sent to the next IP address

EID maps to EID and a hint

- As above, but the erecord also holds the IP address in the Hint
- The IP addresses are included in the header
- Each NEB can find the next IP address without internal state

EID maps to IP address

- Three round protocol to establish state at all NEBs
- More complex, but the one actually implemented
- Only requires a single EID to IP lookup by the sender

Network filtering boxes

- Network Filtering Box (NFB): akin to a firewall
 - Essentially remote packet filters
 - No need to be on the path to the endpoint
 - The NFB can work in statefull or stateless mode (as with NEBs)
 - The NFB receives packets and checks its rule base
 - Packets that pass the rules are attested
 - The NFB hashes the passed packet and signs the hash
 - A secret key shared between NFB and endpoint is used
 - Carried in an extension header
 - The endpoint only accepts packets attested by the NFB
 - Of course NEB and NFB can be combined in a chain
 - Can also be combined with an on-path middlebox
 - That middlebox can then check that packets are attested

Implementation

- User level software and Click modules in Linux
 - Click is a modular router building toolkit
 - Runs at both user and kernel levels
 - Allows mature implementations to migrate to the kernel
 - User level daemon (doad) resolves EIDs to erecords
 - Queries the DHT infrastructure
 - Inserts the EID to IP mapping in Click with a private IP
 - Returns the private IP to the client application
 - The client sends the packet with the private IP
 - Click rewrites the packet with the real IP and EID
- NEB prototype: user level implementation
- NFB pototype: user level and Click modules
 - Click module for clients to verify attested packets

Evaluation

Round-trip times

- A DNS and a DHT lookup are needed for resolution
- DNS lookups take from 70 to 190 ms depending on caching
- Median DHT lookups require 138 ms: needs improvement
 - Proactive caching as in Beehive
 - DNS names could also return erecords
 - Hosts could include their erecords in messages

Packet size overhead

- 68 byte header (44 fixed and 24 for security extension)
 - For large packets small overhead, for small packets quite high

Processing time

- DOA to IP translation does not take a lot
- Filtering and verification take far more time

OIKONOMIKO ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY
OF ECONOMICS
AND BUSINESS

End of Section #6.3

Course: Information-Centric Networks, Section # 6.3: Evolved Naming & Resolution

Instructor: George Xylomenos, **Department:** Informatics

