OIKONOMIKO ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY
OF ECONOMICS
AND BUSINESS

Information-Centric Networks

Section # 3.2: DNS Issues

Instructor: George Xylomenos

Department: Informatics

Funding

- These educational materials have been developed as part of the instructors educational tasks.
- The "Athens University of Economics and Business Open Courses" project only funded the reformatting of these educational materials.
- The project is being implemented as part of the Operational Program "Instruction and Lifelong Learning" and is cofinanced by the European Union (European Social Fund) and national funds.

Licencing

 These educational materials are subject to a Creative Commons License.

Week 3 / Paper 2

- Comparing DNS Resolvers in the Wild
 - Bernhard Ager, Wolfgang Mühlbauer, Georgios Smaragdakis,
 Steve Uhlig
 - ACM IMC 2010.
- Main point
 - How does ISP DNS compare with Google DNS and OpenDNS?
 - Latency and caching are the main performance factors
 - How do the answers work with CDNs?
 - CDNs use locality info which may be hidden

Introduction

- DNS is a critical part of the Internet and the web
 - Scalability is heavily influence by caching
- DNS is widely (mis)used to map users to content
 - How well does this work?
- Third-party DNS operators have emerged
 - ISP DNS does not always work that well
 - However, it works better for CDNs for location info
- Extensive performance study
 - 50 ISPs in 5 continents and 28 countries
 - Using ISP DNS, Google DNS and OpenDNS

Information-Centric Networks

Domain name system

- DNS is a hierarchical distributed database
 - End hosts query caching resolvers
 - If there is no cached result, root servers are queried
 - Root servers redirect to more specific servers
 - Caching is heavily used to avoid starting from the root
 - All responses are cached according to their TTL parameter
- DNS today is more than it was designed to be
 - CDN load balancing: custom responses that cannot be cached
 - NXDOMAIN catcher: return an ad page instead of an error
- Third-party DNS providers have emerged
 - OpenDNS offers phising protection and claims better server
 - Google DNS does prefetching and load balancing

Measurements

- DNS performance as seen by end users
 - DNS queries for more than 10000 hosts
 - Measuring response time and TTL
 - Also measuring time to DNS server
 - ISP DNS, OpenDNS and Google DNS servers
 - 60 vantage points in 50 ISPs
 - Two queries per host to examine caching and load balancing
 - Different sets of hosts to query
 - Top5000: most popular from Alexa
 - Tail2000: least popular from Alexa
 - Embedded: hosts with content from Alexa top1000 (3500 total)
 - Two special sets of hosts depending on response
 - · Redirected and akamaized

Responsiveness

- What is the latency of DNS replies?
 - It really depends on the ISP
- A good ISP
 - The ISP's DNS servers are the closest to the client
 - Consistently better than OpenDNS and Google DNS
 - The second query is quicker due to caching
- A bad ISP
 - The ISP's DNS server are comparable to third-parties
 - The second query does not improve the local ISP
 - OpenDNS and Google DNS work better with caching
- Results are mixed
 - There are many good, bad and intermediate ISPs

DNS deployment

- How well does caching work in each case?
- A good ISP
 - The second response is nearly constant time
 - In all cases, caching works well
- A bad ISP
 - The second response depends
 - It may work well (nearly constant time)
 - It may not work at all (same time as first query)
 - It may work strange (second query slower than the first)
 - The problem is DNS load balancing!
 - The second response may come from a different server
 - This occurs with both ISP and third-party DNS
 - It implies centralized server infrastructure

DNS answers

- How good is the response of the DNS server?
 - Server load balancing and CDNs may lead to different responses
 - CDNs try to locate a nearby server
- Responses show a lot of diversity
 - 10000 host lookups lead to 36000 different answers!
 - Each query occurs 2x3=6 times
 - How often do you get a server in your ISP?
 - The local DNS usually returns local servers
 - This commonly occurs in ISP hosting CDN servers
 - Especially for the akamaized host set
 - OpenDNS and Google DNS do not return local servers
 - The answer is based on the DNS server address
 - · They may even return servers in different continents

Conclusions

- Two things must be considered
- How well does the ISP manage its DNS?
 - Centralized DNS with load balancing is not good
 - It does not allow caching to work well
 - It is better to use hierarchical DNS servers
 - A good ISP generally outperforms third-party DNS
- How well do CDNs work with DNS?
 - Quite well with the ISP's DNS servers
 - Quite bad with third-party servers
 - DNS needs to be extended with client IP to handle this
 - This simplifies misusing it of course!

OIKONOMIKO ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY
OF ECONOMICS
AND BUSINESS

End of Section # 3.2

Course: Information-Centric Networks, Section # 3.2: DNS Issues

Instructor: George Xylomenos, **Department:** Informatics

