OIKONOMIKO ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY
OF ECONOMICS
AND BUSINESS

Information-Centric Networks

Section # 5.1: Content Distribution

Instructor: George Xylomenos

Department: Informatics

Funding

- These educational materials have been developed as part of the instructors educational tasks.
- The "Athens University of Economics and Business Open Courses" project only funded the reformatting of these educational materials.
- The project is being implemented as part of the Operational Program "Instruction and Lifelong Learning" and is cofinanced by the European Union (European Social Fund) and national funds.

Licencing

 These educational materials are subject to a Creative Commons License.

Week 5 / Paper 1

- On the use and performance of content distribution networks
 - Balachander Krishnamurthy, Craig Wills, Yin Zhang
 - IMC Workshop, 2001
- Main point
 - CDNs offload work from origin servers
 - How are CDNs used?
 - DNS redirection and URL rewriting
 - How do CDNs perform?
 - DNS lookups may not be worthwhile
 - Note: things have changed a lot since 2001!

Introduction

- Content Distribution Network (CDN)
 - A collection of servers for content delivery
 - May be collocated with origin server or widespread
 - The origin server's is cached/replicated at CDN servers
 - The CDN tries to locate a server "close" to the client
 - Origin servers are aware of CDNs
- CDNs use mostly proprietary algorithms
 - What techniques are employed?
 - How much are CDNs used?
 - What kind of content is offloaded?
 - How can their performance be measured?
 - How do CDNs perform against each other and the origin server?

CDN techniques

- How to direct a client to the right CDN server?
- DNS redirection: select server during DNS resolution
 - The CDN controls the authoritative DNS server
 - Decides based on load and proximity
 - Full-site: origin server is hidden behind the CDN
 - Partial-site: URLs embedded in pages modified for the CDN
 - www.foo.com/bar.gif->foo.cdn.net/www.foo.com/bar.gif
- URL rewriting: dynamic rewriting of embedded URLs
 - The returned page has the selected IP addresses replaced
- Mixed mode
 - First URL rewriting with DNS name of CDN server
 - Then DNS redirection depending on load and location

Use of CDNs

- How much are CDNs used?
 - This study is 10 year old, around when CDN use exploded
 - 17-30% of popular sites were found to use CDNs
 - Found either CDN DNS names or CDN DNS servers
 - Most sites used Akamai at that time
 - A custom list of sites was created to reflect other CDNs
- Change characteristics of content
 - Less than 1% of the returned content changed
 - CDNs are used mostly for static content (images)
- Nature of requested content
 - 96-98% of objects were images
 - 40-60% of bytes were images
 - CDN cached images had a 20-30% higher hit rate

Information-Centric Networks

Measurement methodology

- Client-side study of image content delivery
 - Response latency and download time
- Content for study: the canonical page
 - A large set of pages was analyzed
 - A page with 18 images of specific sizes was chosen
 - A similar page was found in each CDN
 - Similar pages were found in sites that do not use a CDN
- Study description
 - Record DNS lookup time
 - Use httperf to download all images so as to prime the CDN
 - Fetch all images (from the CDN) and record the download time
 - Clients from the NIMI measurement infrastructure, no caching
 - Measurements were repeated one year later

Response time results

- Total DNS plus download time results
 - CDNs performed better than origin servers
 - CDNs improved during the second measurement period
 - One CDN had problems with high DNS lookup times
 - URL rewriting CDNs avoid additional DNS lookups
 - DNS redirection CDNs worked best overall
 - But they also had the highest number of servers!
- Download time only
 - Isolates the results of CDN server selection
 - Akamai was the most inconsistent!

DNS load balancing

- DNS load balancing versus CDN server selection
 - CDNs return low TTLs to allow timely selection of servers
 - Is this worth the trouble of the additional lookups?
 - Modified test to remember CDN returned IP address
 - Mixed results for download time
 - Some times the new IP address is not better (may even be worse)
 - Bad results for total response time
 - Even if download time is OK, the extra DNS lookup has a cost
 - Result: the small TTL is not generally a good idea!
 - It may lead to small or no gains in download time
 - Plus it requires an extra DNS lookup
 - Also, it overloads DNS (but CDNs do not really care)
 - But, again, this is a 10 year old study

End of Section #5.1

Course: Information-Centric Networks, Section # 5.1: Content Distribution

Instructor: George Xylomenos, **Department:** Informatics

