#### OIKONOMIKO ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ



ATHENS UNIVERSITY
OF ECONOMICS
AND BUSINESS

#### **Information-Centric Networks**

**Section # 4.3: Routing Issues** 

**Instructor:** George Xylomenos

**Department:** Informatics





# **Funding**

- These educational materials have been developed as part of the instructors educational tasks.
- The "Athens University of Economics and Business Open Courses" project only funded the reformatting of these educational materials.
- The project is being implemented as part of the Operational Program "Instruction and Lifelong Learning" and is cofinanced by the European Union (European Social Fund) and national funds.



## Licencing

 These educational materials are subject to a Creative Commons License.



## Week 4 / Paper 3

- A Survey of BGP Security Issues and Solutions
  - Kevin Butler, Toni Farley, Patrick McDaniel, and Jennifer Rexford
  - Proceedings of the IEEE, 98(1):100--122, January 2010
- Main point
  - BGP is the glue that holds the Internet together
  - It is however highly vulnerable
  - It does not adequately address security
  - Review of proposed improvements

#### Introduction

- Serious security incidents
  - A misconfigured router in Florida became a black hole
    - It advertised incorrect routes (too good)
    - But nobody validates these routes
  - Pakistan Telecom hid YouTube
    - Attempt to close access to local customers
  - Spammers introduce fake prefixes
    - Avoid spam registries by exploiting unused addresses
  - Snoopers introduce fake routes to snoop on traffic
- Operational and security concerns
  - Interrelated to a high degree
- Survey of current practice and research

Information-Centric Networks 04c-5

#### IP prefixes and AS numbers

- Addresses are assigned hierarchically
  - IANA to regional authorities, then national authorities, then ISPs
  - Each gets and address block represented as IP/prefix
    - Each block is the allocated further down
    - Longer prefixes indicate smaller address blocks
  - Autonomous System Numbers from IANA
    - Each network has one or more public ASNs
    - Networks with a single upstream provider can have a private ASN
  - BGP paths are expressed in terms of ASNs to a prefix
    - But there is no foolproof way to check the validity of either
    - Announcing prefixes you do not have is prefix hijacking
      - Black holes: data ends up nowhere (maybe just a mistake)
      - Impersonation: the hijacker pretends to offer services
      - Interception: the hijacker inspects traffic

# Using TCP as the transport protocol

- BGP routers communicate via TCP
  - No need to deal with error, flow and congestion control
    - But TCP in itself is quite insecure
  - Attacks against confidentiality
    - Eavesdropping on multi hop connections
  - Attacks against message integrity
    - Various types of man in the middle attacks
    - Message replays, forged messages, resets
  - Denial of service attacks
    - More feasible from off path intruders
    - Link cutting to force use of alternative paths

## Routing policy & route attributes

- BGP employs route attributes to enforce policy routing
  - Local preference: select routes inside an AS
  - AS path length: prepending an AS number inflates route length
  - Origin type: routes learned from within the AS are preferred
  - Multi-exit discriminator: select one of many connections
  - Route filtering also allows complex policies to be enforced
    - Which routes are propagated and which are not
  - The problem is that advertised routes may be fake!
    - A route may be truncated to become more attractive
    - A route may be extended to seem valid
    - A route may be edited to hide undesirable ASes

# Cryptographic techniques for BGP

- Basic security limitation: the system is decentralized
  - Localized solutions are far more practical
- Cryptographic techniques applicable to BGP
  - Pairwise keying: relies on shared secret keys
  - Cryptographic hash functions: to produce digests
  - Message authentication codes: to verify signed digests
  - Diffie-Hellman key negotiation: jointly select secret keys
  - Public key infrastructure: allows public key cryptography
  - Public key cryptography: simplifies authentication
  - Certificates and attestations: allows building chains of trust

# Protecting BGP sessions

- Integrity protection: use of MACs for sensitive data
  - MD5 or arbitrary digests and digital signatures
- Session and message protection
  - Encryption and numbering of BGP messages
- Hop integrity protocols
- Generalized TTL security mechanism (GTSM)
  - Drops packets with TTL lower than expected
  - Limited protection for a limited surrounding area
- IPsec: lower level session encryption
  - Extensively used for VPNs, therefore widely available

## Defensive filtering

- Filtering rules for suspicious routes
  - Using special address prefixes or private AS numbers
    - These should never exit an AS
  - Using unallocated prefixes
    - · Requires a service that knows what is allocated
  - More aggressive filtering for customers
    - You know what to expect from a customer
  - Rewriting rules for malformed routes
  - Good practice but inherently limited
    - Can only catch obvious errors

# Routing registries

- A global view of routing would prevent many attacks
  - An accurate routing registry would be invaluable
    - Prefix ownership, AS-level connectivity, routing policies
  - But ASes do not want to expose their policies
  - And the registry is also a target for attacks
- Unfortunately even address registrars are inaccurate
  - Registries allocate addresses to networks
  - But address delegations change and are not updated
- Many approaches also require a PKI
  - Essentially a registry for public keys
  - Also for certificate revocation lists

## Securing router management

- The BGP router interface has to resist attacks
  - Gaining access to the CLI allows lots of attacks
  - Physical and network security required
  - Management interfaces need to be secured
  - Only secure management connections should be allowed
  - Physical redundancy to guard against DoS attacks
  - General security hardening is even more important for BGP
    - Bringing down router connections allows more attacks

#### BGP security solution issues

- Implementing security solutions is a scalability issue
  - 40000 AS numbers have been allocated to regional registries
  - 35000 have been allocated to institutions
  - 32000 are being routed
  - Advertised routing prefixes increase continuously
- Many security solutions exist
  - Some have been implemented, some proposed
  - But they are not widely deployed and accepted
- Routing registries
  - Too much information to keep accurate
- Computational complexity
  - Overload of BGP servers due to cryptography

#### **End of Section #4.3**

Course: Information-Centric Networks, Section # 4.3: Routing Issues

**Instructor:** George Xylomenos, **Department:** Informatics



