OIKONOMIKO ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY
OF ECONOMICS
AND BUSINESS

Information-Centric Networks

Section # 4.2: Routing Issues

Instructor: George Xylomenos

Department: Informatics

Funding

- These educational materials have been developed as part of the instructors educational tasks.
- The "Athens University of Economics and Business Open Courses" project only funded the reformatting of these educational materials.
- The project is being implemented as part of the Operational Program "Instruction and Lifelong Learning" and is cofinanced by the European Union (European Social Fund) and national funds.

Licencing

 These educational materials are subject to a Creative Commons License.

Week 4 / Paper 2

- Understanding BGP Misconfiguration
 - Rahil Mahajan, David Wetherall, Tom Anderson
 - ACM SIGCOMM 2002
- Main point
 - BGP misconfiguration can disrupt Internet connectivity
 - How often does it occur? Why does it occur?
 - Observation from multiple vantage points
 - 200-1200 prefixes misconfigured each day
 - Users are affected by very few of them

Introduction

- Focus on two types of misconfiguration
 - Accidental injection of routes into BGP tables
 - Accidental export of routes in violation of policy
- Goals of the study
 - How often are misconfigurations?
 - What is their impact on connectivity and load?
 - Why do they occur?
 - How can they be reduced?
- Observation study
 - 23 vantage points during 21 days
 - Use of simple heuristics to identify errors
 - Polling of operators to verify causes

Misconfiguration

- Focus on two types of BGP misconfiguration
 - Origin misconfiguration: erroneous injection in BGP tables
 - Failure to summarize prefixes
 - Announcing someone else's address space
 - Propagation of private prefixes
 - Export misconfiguration: advertisement of policy violating routes
 - There are many other types of misconfiguration
 - These are externally visible and clearly against policy
- Adverse impacts of misconfiguration
 - Increase of routing load due to unnecessary updates
 - Partial or global connectivity disruption
 - Routing policy violations

Methodology

- Analysis of data from the RouteViews BGP listener
 - 45% of new routes last for less than a day
 - 30% of new routes last for more than 7 days
 - Inference: misconfigurations last for less than a day
 - Requires verification by operator polling
 - Result: a lower bound on actual misconfigurations
- Origin misconfiguration analysis
 - Examination of new routes (not reappearing ones)
 - Self deaggregation: possible aggregation error
 - Related origin: possible backup route
 - Foreign origin: possible address hijacking
 - Look for routes that disappear quickly
 - More likely to be an error that was noticed

Methodology

- Export misconfiguration analysis
 - Paths are normally valley free
 - Up to the core, through the core and down to the destination
 - We can only infer the AS relationships via BGP tables
 - Result: a lower bound on actual misconfigurations
 - Types of misconfiguration
 - Provider->AS->Provider
 - Provider->AS->Peer
 - Peer->AS->Provider
 - Peer->AS->Peer
- Verification: email to operator and connectivity testing
 - Emails often bounced due to erroneous data in registries
 - Test reachability of suspect AS's from multiple vantage points

Results

- Origin misconfiguration
 - Short lived routes were clustered into incidents
 - Sets of prefixes from the same AS that appear/disappear together
 - Up to 72% of new routes seen in a day are misconfigurations
 - Extrapolation from the e-mail answers for incidents
 - Connectivity tests matched well with e-mail responses
 - 13% of the incidents impact connectivity
 - Some of the connectivity problems were not noticed by operators!
 - Extrapolation: 25 incidents per day disrupt connectivity
 - 50% of misconfigurations last less than 10 minutes
 - 80% less than an hour, 90% less than 10 hours
 - Connectivity disruptions are fixed sooner

Results

- Export misconfiguration
 - Segments with policy violations were clustered into incidents
 - Most incidents do not affect connectivity, only load
 - Provider->AS->Provider is the most common violation
 - Followed by Provider->AS->Peer
 - Impact on load is normally low
 - But it can even double load in some incidents

Causes

- Classification of human errors
 - Slips: errors in executing a correct plan
 - Mistakes: correct execution of an erroneous plan
- Origin misconfigurations
 - Mistakes
 - Initialization bugs: bug in a specific vendor's product
 - Reliance on upstream filtering: response to attacks of load balancing
 - Old configuration: unsaved changes or backup routers
 - Slips
 - Redistribution: of internal routes
 - Community: incorrect scoping of routes
 - Hijack: of addresses prefixes (attack or typing error)
 - Forgotten filter: error in filtering
 - Incorrect summary: larger or smaller address blocks

Causes

- Export misconfigurations
 - Mistakes
 - Prefix based configuration: a backup path leads to transit violations
 - Old configuration: as in origin misconfigurations
 - Initialization bug: as in origin misconfigurations
 - Slips
 - Bad ACL or route map: obvious
 - Typo: obvious
 - Forgotten filter: as in origin misconfigurations
 - Community: as in origin misconfigurations

Discussion

- What can we do to reduce misconfigurations?
- User interface design
 - Many CLIs are problematic and should be improved
 - Often operators do not really understand the CLI
- High-level languages and checking
 - Router configuration is a very low level task
 - At least high level configuration checking would be good
- Database consistency and replication
 - Registries are very outdated, leading to errors
- Protocol extensions
 - Secure BGP guards against hijacks
 - Better error reporting would reveal many other errors

End of Section # 4.2

Course: Information-Centric Networks, Section # 4.2: Routing Issues

Instructor: George Xylomenos, **Department:** Informatics

