OIKONOMIKO ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY
OF ECONOMICS
AND BUSINESS

M.Sc. Program in Data Science Department of Informatics

Optimization Techniques Convex Optimization

Instructor: G. ZOIS georzois@aueb.com

Outline

- Convex sets
 - Definitions and basic concepts
- Convex functions
 - Equivalent definitions
 - Advantages when optimizing convex functions
- Convex optimization problems
 - Unconstrained optimization
 - Descent methods
 - Constrained optimization
 - Lagrange duality and the KKT conditions
 - Algorithms

Our goals

- Formulate problems where the objective function or the constraints are non linear
- Understand when can we have efficient algorithms for solving "non-linear" programs
 - What assumptions are needed for the type of constraints or for the objective function?
- Generalize LP duality theory/sensitivity analysis?

Introduction to convex sets and convex functions

We focus on subsets of R^n for some dimension $n \ge 1$

- Points here correspond to n-dimensional vectors
- But intuition from low dimensions very useful
- Given 2 points $x, y \in \mathbb{R}^n$, a point z lies on the line that connects x and y if and only if

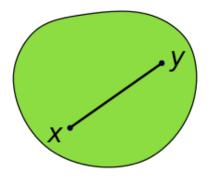
$$z = ax + (1-a) y for some a \in [0, 1]$$

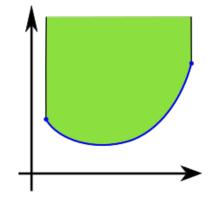
Definition: A set $C \subseteq \mathbb{R}^n$ is convex if for any 2 points $x, y \in \mathbb{C}$, and for any $a \in [0, 1]$, we have that $ax + (1-a)y \in \mathbb{C}$

 In geometric terms: the line connecting any 2 points of C, must entirely belong to C

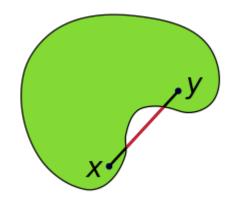
Examples

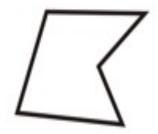
Convex sets:





Nonconvex sets:





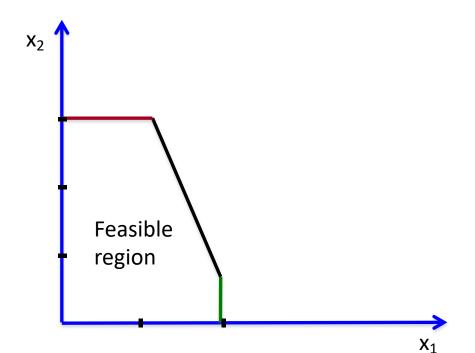


Further examples of convex sets

- 1.All of R^n , for any dimension $n \ge 1$
- 2. The nonnegative orthant: points with all coordinates nonnegative
 - Since ax + (1-a)y will also have nonnegative coordinates
- 3. The set of points contained within a ball
 - E.g. $\{x: ||x||_2 \le 1\}$
 - Since $||ax + (1-a)y||_2 \le ||ax||_2 + ||(1-a)y||_2 \le a||x||_2 + (1-a)||y||_2 \le 1$
- 4.Intersections of convex sets

Further examples of convex sets

- 5. Feasible region of a linear program
 - Convex polygon in 2 dimensions (when it is bounded)
 - Convexity follows since it is an intersection of halfspaces



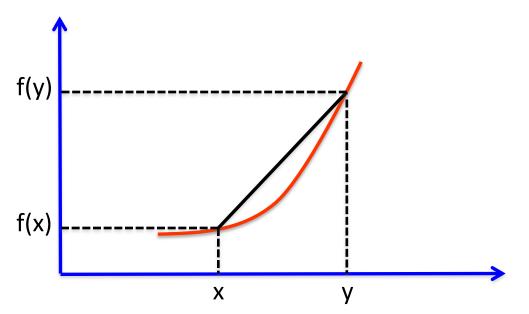
Examples that do not involve Rⁿ

 The exact same definition of convexity can be applied for elements that are not points of Rⁿ

Definition: A real symmetric $n \times n$ matrix A is called positive semidefinite (PSD) if for every n-dimensional vector z $z^{T} \cdot A \cdot z \ge 0$

Claim: The set of PSD matrices is a convex set i.e., if A and B are PSD matrices, then $\lambda A + (1-\lambda)B$ is also PSD for any $\lambda \in [0, 1]$

Definition: A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if for any 2 points x, y, and for any $a \in [0, 1]$, we have that $f(ax + (1-a)y) \le af(x) + (1-a)f(y)$



 Geometric interpretation: the line connecting any 2 points (x,f(x)) (y,f(y)) must lie on or above the graph of the function

Examples

- With 1 variable:
 - Exponential functions with base > 1: 2^x , e^x , c^x for $c \ge 1$
 - Polynomial functions: x^3 , x^{10} , x^c , for $c \ge 1$
 - Linear functions: we have **exact equality** in the definition
- With many variables
 - Exponential functions: e^{x+y}, e^{x+y+z},
 - Negative of logarithms: log(x + y)
 - The sum of convex functions remains convex

Equivalent definitions

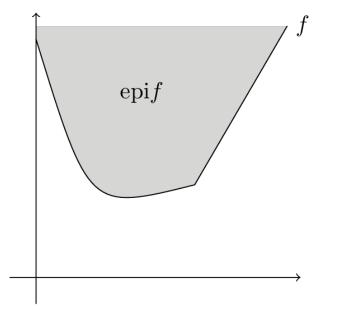
(1)Based on the epigraph

The epigraph of a function f is the set:

epi
$$f = \{ (x, t): t \ge f(x) \}$$

f is convex if and only if the epigraph of f is a convex set

 Geometric interpretation: the set of points that lie on or above the graph of the function should be a convex set



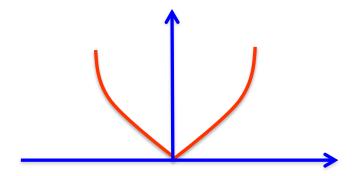
Equivalent definitions

(2) Based on the partial derivatives

Suppose that f is twice differentiable

For functions with 1 variable: f is convex if and only if $f''(x) \ge 0$, for every x

The first derivative is increasing



e.g. for
$$f(x) = x^2$$
, $f''(x) = 2$ for every x

Equivalent definitions

(2) Based on the partial derivatives

For functions with n variables: Define the Hessian of f at point x as the n x n array:

$$H(f,x) = \begin{bmatrix} \frac{\partial^2 f(x)}{\partial^2 x_1} & \frac{\partial^2 f(x)}{\partial x_1 \partial x_2} & \dots & \frac{\partial^2 f(x)}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f(x)}{\partial x_2 \partial x_1} & \frac{\partial^2 f(x)}{\partial^2 x_2} & \dots & \frac{\partial^2 f(x)}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \dots & \vdots \\ \frac{\partial^2 f(x)}{\partial x_n \partial x_1} & \frac{\partial^2 f(x)}{\partial x_n \partial x_2} & \dots & \frac{\partial^2 f(x)}{\partial^2 x_n} \end{bmatrix}$$

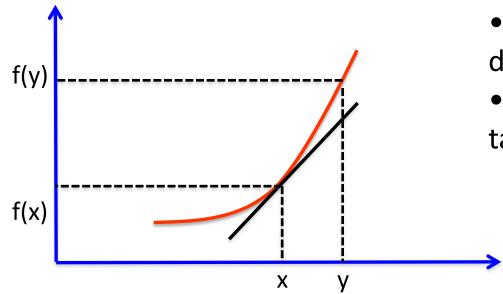
A function f is convex if and only if the Hessian is positive semidefinite for every x

Easy to see from Slide 13 that this holds for 1 dimension

Equivalent definitions

(3) Based on the tangents to the graph of f

f is convex if and only if the graph of f lies on or above all its tangents:



Algebraically in 1 dimension:

- Slope of tangent at x = the derivative of f at x
- Hence, if f lies above all its tangents, then for every x, y:

$$f(y) \ge f(x) + f'(x) (y-x)$$
 (*)

Equivalent definitions

(3) Based on the tangents to the graph of f

For functions with n variables:

Recall the gradient of a function

$$\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \dots, \frac{\partial f(x)}{\partial x_n}\right)$$

- The gradient shows the rate of increase/decrease along each dimension just as the derivative does for one variable
- Generalizing (*) for many variables:

$$f(y) \ge f(x) + \nabla f(x)^{\mathsf{T}} \cdot (y-x) \qquad (**)$$

One of the most important properties of convex functions

Sometimes we may also discuss concave functions

```
Definition: A function f: \mathbb{R}^n \to \mathbb{R} is concave if for any 2 points x, y, and for any a \in [0, 1], we have that f(ax + (1-a)y) \ge af(x) + (1-a)f(y)
```

- If f is concave, -f is convex
- Hence, maximizing a concave function f can be reduced to minimizing a convex function

Convex Optimization Problems

Nonlinear Optimization Problems

General form of optimization problems:

Both equality and inequality constraints present

min
$$f(x)$$

s. t.: $g_i(x) \le 0, \quad i = 1, 2, \dots, m$
 $h_i(x) = 0, \quad i = 1, 2, \dots, p$

We say the above is a convex optimization problem when

- •f(x) is a convex function
- Each g_i is a convex function
- Each h_i is an affine function, $h_i = a_i^T x b_i$

Convex Optimization

Applications of convex optimization:

- Machine learning: linear regression (least squares),
 classification (logistic regression, support vector machines)
- Statistics: parameter estimation
- Control theory
- Signal processing
- And many many more...

Convex Optimization

- For general non-convex problems, almost no hope
- There is no general approach that can work for any arbitrary optimization problem
- Some families of non-convex problems can be handled
- But when working under assumptions like convexity, or related properties (e.g. strong convexity), we can have guarantees for convergence and running time
- Still however not a standard technology, contrary to LP solvers
 - Commercial availability not as large as for LP solving but gradually changing

Unconstrained
Convex Optimization

- We start with the easier version that has no constraints
- Suppose we just want to minimize a function f : Rⁿ → R without any further constraints
 - Still interesting problem with many applications
- Assumption: f is twice continuously differentiable

- Necessary condition for a point x^* to be a minimum is $\nabla f(x^*) = 0$
- BUT: for an arbitrary function f:
 - This is not a sufficient condition, many other points may satisfy this (such as local optima)

- We start with the easier version that has no constraints
- Suppose we just want to minimize a function $f: \mathbb{R}^n \to \mathbb{R}$ without any further constraints
 - Still interesting problem with many applications
- Assumptions from now on (unless otherwise stated)
 - f is convex, and twice continuously differentiable
 - The minimum of f is attained (and \neq +∞ or -∞)

Why is it nice to be convex:

Theorem: For a convex function f, a point x^* is a global minimum of f if and only if $\nabla f(x^*) = 0$

Proof:

Recall the basic property of convex functions, i.e., inequality (**): $f(y) \ge f(x) + \nabla f(x)^T \cdot (y-x)$ for any 2 points x, y

- Suppose there exists x^* for which $\nabla f(x^*) = 0$
- Then for every point y, inequality (**) implies $f(y) \ge f(x^*)$
- Hence x* is a global minimum

Why is it nice to be convex:

- The theorem makes our lives much easier (not trivial however)
 - It suffices to find a point where the derivatives become 0
 - Local minima are global minima, as with linear programs (recall the terminating condition of simplex)
 - If we can solve analytically the system $\nabla f(x) = 0$, then no need for an algorithm
- In many cases convexity helps us exploit the geometric intuition we have from polyhedra or linear programming problems

Algorithms for convex unconstrained optimization:

- Iterative algorithms, updating a current feasible solution
- They produce a sequence of points $x^{(0)}$, $x^{(1)}$,..., $x^{(k)}$ with the property that

$$f(x^{(k)}) \rightarrow p^* \text{ as } k \rightarrow \infty$$

- p^* is what we are after: $p^* = \inf_x f(x)$
- We may never find the actual optimal solution
- But we can get very close, in fact arbitrarily close if we allow enough iterations
- We can view these algorithms as iterative methods for solving the system $\nabla f(x) = 0$

Descent Methods

General form of descent methods

- Make a local update towards an appropriate direction
- Stop when $\nabla f(x)$ is close to 0
- Initialization: k=0, pick a starting point $x^{(0)}$, and a step size α_0
- Update:
 - Check if stopping criterion satisfied
 - If not, $x^{(k+1)} = x^{(k)} + \alpha_k \Delta x^{(k)}$
 - -k++
- Usual stopping criterion: $\|\nabla f(x^{(k)})\|_2 \le \varepsilon$

Terminology:

- Δx: search direction
- • α_k : step size, with $\alpha_k > 0$

Descent Methods

How should we pick the search direction?

- Need to ensure that for every iteration k, $f(x^{(k+1)}) \le f(x^{(k)})$
- Convexity, i.e. using (**), implies we should to enforce that: $\nabla f(x^{(k)})^T \cdot \Delta x^{(k)} < 0$
- Hence: choosing the (negative) gradient itself for the search direction is a safe choice!

The Gradient Descent Method

One of the simplest algorithms in optimization: Descend according to the gradient direction

- Initialization: k=0, pick a starting point $x^{(0)}$, and a step size α_0
- Update:
 - Check if stopping criterion satisfied
 - -If not, $x^{(k+1)} = x^{(k)} \alpha_k \nabla f(x^{(k)})$
 - -k++
- Stopping criterion $\|\nabla f(\mathbf{x}^{(k)})\|_2 \le \varepsilon$
 - If e.g., $||∇f(x^{(k)})||_2 ≤ (2mε)^{1/2}$, where m is a lower bound on the minimum eigenvalue of H(f,x), then f(x) p* ≤ ε

The Gradient Descent Method

How should we pick the step size α_k ?

- First idea: Exact line search
 - Find the minimum value of f along the gradient direction:

$$\alpha_k = \operatorname{argmin}_s f(x^{(k)} - s\nabla f(x^{(k)}))$$

- 1-dimensional problem
- E.g., we could solve it via Newton's method
- But often too time consuming in practice

The Gradient Descent Method

How should we pick the step size α_k ?

- Second idea: Backtracking line search, an approximate solution to the exact line search
 - Try to approximately minimize f along the ray x $s\nabla f(x^{(k)})$
 - Essentially make sure the function decreases "enough"
 - Many variants in the literature, e.g.

Keep setting s:= βs while

$$f(x - s\nabla f(x^{(k)})) > f(x^{(k)}) - \alpha s \cdot ||\nabla f(x^{(k)})||^2_2$$
 for $\beta < 1, \alpha < 1/2$

Works well in practice

Descent Methods

Example 1:

Consider the function $f(x_1, x_2) = x_1^2 + 2x_2^2 - 2x_1x_2$

Execute the first 2 steps of gradient descent with exact line search, starting from $x^{(0)} = (1, 1)$

Descent Methods

Example 2:

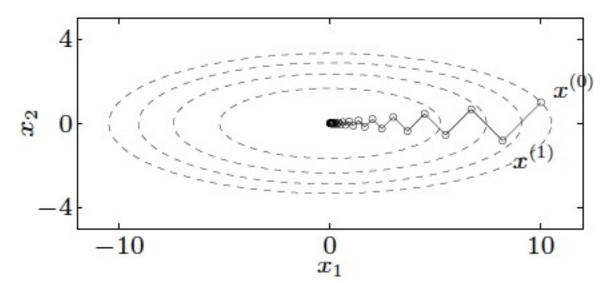
Consider the function
$$f(x_1, x_2) = \frac{1}{2}(x_1^2 + \gamma x_2^2), \quad \gamma > 0$$

Start at $x^{(0)} = (\gamma, 1)$

After k iterations of gradient descent, we get:

$$x^{(k)} = \left(\gamma \left(\frac{\gamma - 1}{\gamma + 1}\right)^k, \left(-\frac{\gamma - 1}{\gamma + 1}\right)^k\right)$$

Run with $\gamma = 10$



Convergence analysis

Can we establish convergence properties for the gradient descent method?

- Empirically, it works well on average for convex functions
- Theoretically, upper bounds can be obtained when assuming strong convexity

Definition: A function is strongly convex when there exists m>0 such that for any x,

$$H(f, x) \ge m \cdot I$$

I is the identity matrix

Convergence analysis

- Strong convexity together with (**) implies that there also exists upper bounds on the Hessian
- Hence, there exist m>0 and M>0 such that for every x:

$$m \cdot l \le H(f, x) \le M \cdot l$$

- Convergence results on the number of iterations depend on
 - m and M
 - The initial solution $x^{(0)}$
 - The accuracy parameter in the stopping criterion
- Note: we may not be aware of the values for m and M
 - It might be difficult to estimate for some functions
 - So, we may not know how many iterations we need
- Still, these bounds are conceptually useful
 - They provide a guarantee that the method converges

Convergence analysis

- A relatively loose analysis with exact line search
- Theorem: For strongly convex functions, the number of iterations required by the gradient descent method is bounded by

$$\log((f(x^{(0)}) - p^*)/\epsilon) / \log(1/c)$$

where

- c = 1 m/M < 1
- $p^* = \min_x f(x)$
- ε = accuracy parameter (= final suboptimality)
- $f(x^{(0)}) p^* = initial suboptimality$
- Thus, nominator = log of initial suboptimality to final suboptimality
- Conclusions: The error $f(x^{(k)}) p^*$ converges to 0 at least as fast as a geometric series
 - i.e., linear convergence
- With backtracking line search, slightly worse bounds can also be established

A different descent method with favorable performance

- It is instructive to see first the method in 1 dimension
 - When n=1, we search for a point x, where f'(x) = 0
 - Suppose after k iterations, we have reached a point x_k
 - How shall we move to the next iteration and pick x_{k+1} ?

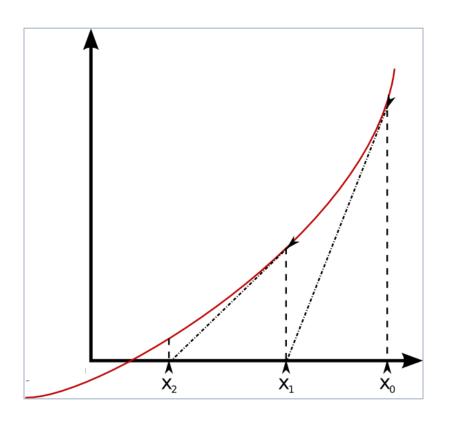
Newton's method for n=1:

$$x_{k+1} = x_k - (f'(x_k)/f''(x_k))$$

Also referred to as the Newton-Raphson method

Newton's method for n=1:

$$x_{k+1} = x_k - (f'(x_k)/f''(x_k))$$



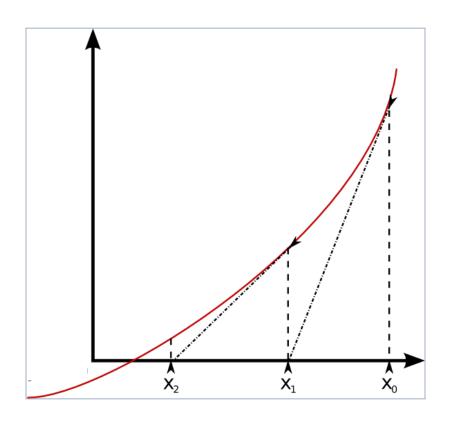
Geometric interpretation:

- Consider the plot of the derivative f'
- By convexity the first derivative is an increasing function
- Draw the tangent at x_k
- •Slope of the tangent = $f''(x_k)$
- •Find the point where the tangent hits the x-axis
- This is given by solving the equation

$$0 = f'(x_k) + f''(x_k)(x - x_k)$$

Newton's method for n=1:

$$x_{k+1} = x_k - (f'(x_k)/f''(x_k))$$



Algebraic intuition:

•Consider the 2nd order Taylor approximation:

$$f(x_{k+1}) = f(x_k) + f'(x_k)(x_{k+1} - x_k) + f''(x_k)(x_{k+1} - x_k)^2/2$$

- •How would we choose to move from x_k to x_{k+1} ?
- •Set derivative (with respect to x_{k+1}) = 0 $\Rightarrow x_{k+1} = x_k - f'(x)/f''(x)$
- X_{k+1} is the minimizer of g
- •If f is close to a quadratic function, then the Newton step is close to the best possible 40

For many variables, we can generalize the same intuition:

- 2nd order Taylor approximation for a function of n variables
- Now x and δ are n-dimensional vectors

$$f(x+\delta) = f(x) + \nabla f(x)^{\mathsf{T}} \cdot \delta + \frac{1}{2} \delta^{\mathsf{T}} \cdot \mathsf{H}(f, x) \cdot \delta$$

If we try to minimize with respect to δ (= Δx), we get that:

$$\delta = -H(f, x)^{-1} \nabla f(x)$$

- Is this a descent direction?
- To be aligned with the convexity of f we need to check that:

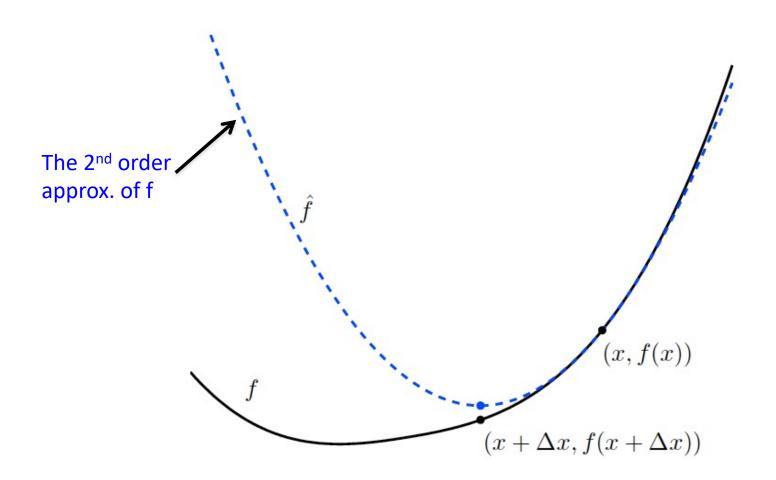
$$-\nabla f(x)^{\mathsf{T}} \cdot (H(f, x)^{-1} \cdot \nabla f(x)) < 0,$$

But the Hessian is a PSD matrix!

Summarizing:

- Initialization: k=0, pick a starting point $x^{(0)}$, and a step size α_0
- Update:
 - Check if stopping criterion satisfied
 - If not, $x^{(k+1)} = x^{(k)} \alpha_k H(f, x^{(k)})^{-1} \cdot \nabla f(x^{(k)})$
 - -k++
- Usual stopping criterion:
 - Let $\lambda := (\nabla f(x^{(k)})^T \cdot H(f, x^{(k)}) \cdot \nabla f(x^{(k)}))^{1/2}$
 - Stop when $1/2\lambda^2 \le ε$
 - λ is called the Newton decrement
 - Useful parameter for the analysis of the method

Progress made using the 2nd order approximation



- Pros
 - It is fast in general
 - Scales well with problem size
 - Performance not depend on problem parameters (?)
- Cons
 - Cost of computing the Hessian
- Convergence analysis
 - Can be established in a similar way as with gradient descent
 - Theoretical upper bound: proportional to $f(x^{(0)}) p^*$