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The Simplex Method

• Designed by Dantzig (1947)

– One of the most important algorithms of the 20th

century

– An algorithm that behaves extremely well in practice 
despite its exponential complexity in worst case

– The design of the algorithm  and the quest for better 
algorithms also contributed to building a rich theory 
around linear programming
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Polyhedra
• Simplex is trying to optimize a linear function over a 

polyhedron
• Definition: In Rn, a polyhedron is defined by a set of 

linear inequalities on n variables
P = {x: Ax ≤ b}

– Where x Î Rn, b Î Rm, and A is an mxn matrix

• We will usually consider polyhedra in the form
P = {x: Ax ≤ b, x ≥ 0 }

• A polyhedron is
– Infeasible, if its feasible region is empty
– Bounded, if there exists M, such that for every x in the feasible 

region, ||x||2 ≤ M
– Unbounded, if it is not bounded 3



A Geometric Interpretation
• Simplex is an algebraic procedure

• However, it is important to understand its geometric 
motivation

• Assume the polyhedron is non-empty and bounded

– Then, an optimal solution always exists for any linear objective 
function

– A bounded polyhedron is also called polytope

• To illustrate the geometry of simplex, we will use 
Example 2 from Lecture 1 as a representative example 
in 2 dimensions
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A Geometric Interpretation
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Example 2: A polytope in R2

• Constraint boundaries: correspond to the 5 sides of the polygon
• Corner point feasible (CPF) solutions: points at the intersection of 

constraint boundaries
• Also called extreme point solutions or vertices of the polytope

6

4 x1

x2

2x2 = 12

3x1 + 2x2 = 18

x1 = 4

Feasible 
region

5 corner point solutions here:
(0, 0), 
(0, 6), 
(2, 6),
(4, 3),
(4, 0)

-

-

-

- -

max 3x1 + 5x2



A Geometric Interpretation
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Example 2: A polytope in R2

• Each corner point solution lies at the intersection of 2 constraint 
boundaries

• In 2 dimensions: how do we find each CPF solution? 
– System of 2 equations in 2 variables
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4 x1

x2

2x2 = 12

3x1 + 2x2 = 18

x1 = 4

Feasible 
region

• We say 2 corner point solutions are 
adjacent if they share 1 constraint 
boundary

• Here, (0, 0) and (0, 6) are adjacent,
• (0, 6) and (2, 6) are also adjacent

-

-

-

- -



A Geometric Interpretation
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Generalization to n dimensions:
In a polyhedron with n variables, 
•a CPF solution is the intersection of n constraint boundaries
•How do we identify them?

- system of n equations in n variables 
- Attention: make sure we have first removed “redundant” 

constraints
- i.e., constraints that can be implied by linear combinations 

of the others (otherwise the system will not have a unique 
solution)

- each group of n linearly independent constraints of the 
polyhedron yields a distinct CPF solution 

•Two CPF solutions are adjacent if they share n-1 constraint 
boundaries



A Geometric Interpretation
Why are we interested in the notion of adjacent solutions?

Optimality test for linear programs:

Consider a LP with at least one optimal solution. If a CPF solution has no 
adjacent CPF solutions that are better, according to the objective 
function, then it must be an optimal solution.
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• Hence, local optimality Þ global optimality

• Extremely important property

- Also generalizes to continuous, convex functions (to be discussed 
in next lectures)

• In our example: (2, 6) is an optimal solution

• (2, 6) is adjacent to (0, 6) and (4, 3)

• None of these achieve a better value for the objective function



A Geometric Interpretation
Outline of the simplex method from a geometric viewpoint

• Initialization: Choose an initial CPF solution

– Usually we set all variables to 0

• Main iteration loop:

– Apply the optimality test to the current CPF solution

– If it is optimal stop, 

– else move to an adjacent solution that achieves the highest rate 
of increase in the objective function
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A Geometric Interpretation
Solving Example 2 with the simplex method
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6

4 x1

x2

2x2 = 12

3x1 + 2x2 = 18

x1 = 4

Feasible 
region-

-

-
- -

• Initialization: 
- we choose (0, 0) as the initial 

CPF solution
- Optimality test: (0, 0) is not an 

optimal solution, there are 
better adjacent solutions 

(0, 0)



A Geometric Interpretation
Solving Example 2 with the simplex method
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4 x1

x2

2x2 = 12

3x1 + 2x2 = 18

x1 = 4

Feasible 
region-

-

-
- -

• Iteration 1: 

- Move from (0, 0) to an adjacent 
solution

- How do we pick one?

- Choose the direction that 
increases the objective function 
at a faster rate

- Recall: Z = 3x1 + 5x2

- Hence moving along the x2 axis 
is better, stopping at (0, 6)

- Optimality test: (0, 6) is not 
optimal (0, 0)

(0, 6)



A Geometric Interpretation
Solving Example 2 with the simplex method
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4 x1

x2

2x2 = 12

3x1 + 2x2 = 18

x1 = 4

Feasible 
region-

-

-
- -

• Iteration 2: 

- Move from (0, 6) to a better 
adjacent solution

- Moving back is not making 
things better

- Hence, only choice to move to 
(2, 6)

- Optimality test: (2, 6) is better 
than (0, 6) and (4, 3), therefore, 
it is an optimal solution

(0, 0)

(0, 6) (2, 6)



A Geometric Interpretation
Basic features of simplex

• It only examines CPF solutions
– It is guaranteed that there always exists an optimal CPF solution

• Initialization: Whenever feasible, take (0, 0, ..., 0)
– Nonnegativity constraints satisfied

– What if the remaining constraints are violated? To be discussed 
again soon

• Picking the next CPF solution to visit:
– Looking only at adjacent solutions can be easily implemented

– The method only looks at the rate of increase in the objective 
function

– Greedy local choice: we choose the direction with the best 
increase and stop at the adjacent solution in that direction 13



Q: How can we implement all these steps in an automated 
algebraic manner for any polyhedron with n variables?

• We can use the geometric viewpoint only up to n=3 variables
• For n > 3, we need a translation into precise algebraic 

instructions

From Geometry to Algebra
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First step: Transform the standard form into a system of linear 
equations

• Conversion of inequality constraints into equalities by 
introducing slack variables

• For example: consider the inequality x1 ≤ 4 of Example 2
• We can define the slack variable: x3 = 4 – x1
• The constraint then is converted as:

x1 ≤ 4  Þ x1 + x3 = 4

• We can do this for all inequality constraints

Setting up the simplex method
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Conversion of Example 2
• Need 3 slack variables: x3, x4, x5

Setting up the simplex method
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Þ

Original standard form Augmented form

Algebraically, more convenient to work with the augmented form



Some terminology:

•Augmented solution: simply a solution for the original variables 
augmented by the slack variables

– For the feasible solution (3, 2), the augmented solution is (3, 2, 1, 8, 5) 
•Basic Feasible (BF) solution: an augmented CPF solution

– (0, 6) is a CPF solution in the original problem
– (0, 6, 4, 0, 6) is the corresponding BF solution
– From a BF solution, we can get back the CPF solution by simply omitting 

the slack variables
•Understanding how BF solutions look like:

– Example 2: 5 variables in total and 3 constraints
– Hence, 2 degrees of freedom
– If we set “arbitrary values” to 2 variables, then we can solve a linear 

system for the rest
– In simplex: “arbitrary value” = 0

Setting up the simplex method
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• For every BF solution:
– We separate the variables into basic and nonbasic variables
– Number of basic variables = m = number of constraints (excluding the 

nonnegativity constraints)
– Number of nonbasic variables = n
– Nonbasic variables are set to 0
– Basic variables are then computed by solving the system of m linear 

equalities
– The set of basic variables is referred to as the “basis” of the BF solution

• In our example:
– (0, 0, 4, 12, 18) is a BF solution
– Nonbasic variables: x1, x2, both set to 0
– Basis = {x3, x4, x5)
– The values of the basis can be obtained by the constraints, after 

substituting x1 = x2 = 0

Setting up the simplex method
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• Checking adjacency of two BF solutions
– We could check if the corresponding CPF solutions are adjacent
– Easier way: Two BF solutions are adjacent if their bases differ only in 

one variable (which means that all but one of their nonbasic variables 
are also the same)

• Illustration:
– Adjacent CPF solutions: (0, 0) and (0, 6)
– Corresponding BF solutions: S1 = (0, 0, 4, 12, 18) and S2 = (0, 6, 4, 0, 6)
– In S1, nonbasic variables = {x1, x2}, basis = {x3, x4, x5}
– In S2, nonbasic variables = {x1, x4}, basis = {x2, x3, x5}
– Going from S1 to S2, variable x2 switches from nonbasic to basic and 

variable x4 leaves the basis
• Hence: very simple way of moving from one adjacent solution 

to another

Setting up the simplex method
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Final step before running simplex: 
• It becomes convenient to also treat the objective function as 

another equality constraint

Setting up the simplex method
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• No need for a slack variable since we have equality to begin with
• We will not really treat Z as a new variable



Initialization:

• We need to choose an initial BF solution
– In our example, setting x1 = 0 and x2 = 0 is feasible 
– Augmented solution: (0, 0, 4, 12, 18)
– Hence, initial basis = {x3, x4, x5}, nonbasic variables: x1, x2

• Optimality test:
– Initial value of the objective function: Z = 0
– Recall Z = 3x1 + 5x2, expressed as a function of the nonbasic variables
– Coefficient for each nonbasic variable: rate of improvement for Z, if that 

variable were to be increased. 
– Here the rates of improvement are positive, which means the current 

BF solution is not optimal
– Hence: simple way to answer the optimality test

Algebraic description of the simplex 
method
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Iteration 1:

• We need to determine the direction of movement towards an 
adjacent BF solution
– Coefficient of x2 in Z > coefficient of x1
– We pick x2 as the variable to increase
– Variable x2 will enter the basis (referred to as the entering basic 

variable)
• How much shall we increase x2 ?

– For as long as we do not violate the constraints!

Algebraic description of the simplex 
method
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(1)   x1 + x3 = 4                Þ x3 = 4
(2)2x2 + x4 = 12             Þ x4 = 12 - 2x2

(3)3x1 + 2x2 + x5 = 18   Þ x5 = 18 – 2x2

And now use the 
nonnegativity constraints!



Iteration 1:

(1)   x1 + x3 = 4                Þ x3 = 4
(2)2x2 + x4 = 12             Þ x4 = 12 - 2x2

(3)3x1 + 2x2 + x5 = 18   Þ x5 = 18 – 2x2

Algebraic description of the simplex 
method
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x3 ≥ 0   Þ no upper bound on x2

x4 ≥ 0   Þ 12 - 2x2 ≥ 0 Þ x2 ≤ 6
x5 ≥ 0   Þ 18 – 2x2 ≥ 0  Þ x2 ≤ 9

• We pick the minimum value implied by the upper bounds
• Increasing x2 beyond the value of 6 would result in an infeasible 

solution
• Hence, we stop at x2 = 6



Iteration 1:
• Can we arrive at x2 = 6 with a more automated way?
• Minimum Ratio Test:

– For each constraint, divide the constant term by the coefficient of x2
– The minimum such ratio tells us how much to increase x2

(1)   x1 + x3 = 4                Þ ratio = 4/0 = +∞ (0 coefficient of x2)
(2) 2x2 + x4 = 12             Þ ratio = 12/2 = 6
(3) 3x1 + 2x2 + x5 = 18   Þ ratio = 18/2 = 9

Algebraic description of the simplex 
method
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• Setting x2 = 6 makes variable x4 drop to 0
• x4 is called the leaving basic variable



Iteration 1:
• Summarize what we have done so far:

Algebraic description of the simplex 
method
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• Final step of Iteration 1:
• Convert the system of equations according to the new basis
• Express the objective function in terms of the new nonbasic 

variables 
• Compute the missing values in the new BF solution (for x3 and x5)

Initial BF solution New BF solution

Nonbasic variables x1 = 0, x2 = 0 x1 = 0, x4 = 0

Basis x3 = 4, x4 = 12, x5 = 18 x2 = 6, x3 = ?, x5 = ?



Iteration 1:
Initial constraints

(0)  Z - 3x1 - 5x2 = 0
(1)  x1 + x3 = 4
(2) 2x2 + x4 = 12
(3) 3x1 + 2x2 + x5 = 18

Algebraic description of the simplex 
method
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• We need x2 to disappear from (0), (1) and (3)
• Start with row (2): row (2) /2  Þ x2 + 1/2 x4 = 6
• We can then 

• multiply a row by a constant
• Add/subtract multiples of a row to/from another row
• For example: row (0) := row (0) + 5 × row (2)



Iteration 1:
Final set of constraints at the end of the iteration

(0)  Z – 3x1 + 5/2 x4 = 30
(1)  x1 + x3 = 4
(2) x2 + 1/2 x4 = 6
(3) 3x1 – x4 + x5 = 6 

Algebraic description of the simplex 
method
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• Procedure for obtaining the new form of the constraints: the 
Gauss-Jordan method

• Hence, assignment of values in the new BF solution:
• x1 = 0, x4 = 0, x2 = 6, x3 = 4, x5 = 6

• Optimality test:
• Z  = 30 + 3x1 - 5/2x4, positive coefficient for x1 Þ not optimal
• Hence, we need to move to an adjacent BF solution



Iteration 2:

• Which variable should now enter the basis? 
– Unique choice: Coefficient of x1 is the only positive coefficient in Z
– Variable x1 is now the new entering basic variable

• How much shall we increase x1 ?
– Apply the Minimum Ratio Test
– Set x1 := 2 due to equation (3)

• Which variable exits the basis?
– Again, from the Minimum Ratio Test, x5 will be the leaving variable

• New basis: {x1, x2, x3}
– Nonbasic variables: x4 = x5 = 0
– New BF solution: (2, 6, 2, 0, 0)

Algebraic description of the simplex 
method

28



Iteration 2:
Substituting using the Gauss-Jordan method:

(0)  Z + 3/2 x4 + x5 = 36
(1)  x3 + 1/3 x4 – 1/3 x5 = 2
(2) x2 + ½ x4 = 6
(3) x1 – 1/3 x4 + 1/3 x5 = 2 

Algebraic description of the simplex 
method
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• Optimality test:
• Z  = 36 – 3/2 x4 – x5
• There is no direction of improvement, increasing x4 or x5 will 

decrease the objective function
• Current BF solution is optimal
• Solution of the original linear program: x1 = 2, x2 = 6 and Z = 36



• So far we have managed to transform our geometric intuition 
into an algebraic procedure

• Operations used pretty simple
• Nevertheless, we can make the process even more automated
• Simplex tableau: A tabular representation of the constraints 

and the current BF solution
• All we need to know: the basis and the coefficients in each row

Tabular form of the simplex method
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Algebraic form vs tableau:
Let us revisit the initialization in our Example:

Tabular form of the simplex method
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Basis
Coefficients Right

sideZ x1 x2 x3 x4 x5

Z 1 -3 -5 0 0 0 0

x3 0 1 0 1 0 0 4

x4 0 0 2 0 1 0 12

x5 0 3 2 0 0 1 18

Corresponding tableau form

(0)  Z - 3x1 - 5x2 = 0
(1)  x1 + x3 = 4
(2) 2x2 + x4 = 12
(3) 3x1 + 2x2 + x5 = 18

Algebraic form

rows = number of 
constraints + 1



• For notational convenience: treat Z also as a 
basic variable

• Optimality test in a tableau: 
– We have reached an optimal solution when the 

coefficients in row (0) are all nonnegative

Tabular form of the simplex method
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Basis
Coefficients Right

sideZ x1 x2 x3 x4 x5

Z 1 -3 -5 0 0 0 0

x3 0 1 0 1 0 0 4

x4 0 0 2 0 1 0 12

x5 0 3 2 0 0 1 18



Iteration 1:
• Which variable should enter the basis? 

– The nonbasic variable with the most negative coefficient 
in row (0), hence x2

– Column of x2: pivot column
• Minimum Ratio Test

– How do we run it? 
– Information we need is the right side column and the 

column of x2

Tabular form of the simplex method
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Basis
Coefficients Right

sideZ x1 x2 x3 x4 x5

Z 1 -3 -5 0 0 0 0

x3 0 1 0 1 0 0 4

x4 0 0 2 0 1 0 12

x5 0 3 2 0 0 1 18
12/2 = 6
18/2 = 9



Iteration 1:
• Outcome of the Minimum Ratio Test

– Minimum achieved at row of x4
– Leaving variable: x4, i.e., the basic variable corresponding 

to that row
– Row of x4: the pivot row
– Intersection of pivot row and pivot column: pivot 

element (=2 in this iteration)

Tabular form of the simplex method
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Basis
Coefficients Right

sideZ x1 x2 x3 x4 x5

Z 1 -3 -5 0 0 0 0

x3 0 1 0 1 0 0 4

x4 0 0 2 0 1 0 12

x5 0 3 2 0 0 1 18
12/2 = 6
18/2 = 9



Iteration 1:
• Final step: Gauss-Jordan method to get the new 

tableau
– Divide first the pivot row by the pivot element
– This makes the coefficient of x2 equal to 1 in the pivot 

row
– Then we can add/subtract appropriate multiples of the 

pivot row to the other rows (just as in the algebraic 
description of simplex)

Tabular form of the simplex method
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Basis
Coefficients Right

sideZ x1 x2 x3 x4 x5

Z 1 -3 -5 0 0 0 0

x3 0 1 0 1 0 0 4

x4 0 0 2 0 1 0 12

x5 0 3 2 0 0 1 18
12/2 = 6
18/2 = 9



End of Iteration 1:
• Optimality test:

– There exists a negative coefficient in row (0)
– Hence, we need to go to the next iteration

Tabular form of the simplex method
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Basis
Coefficients Right

sideZ x1 x2 x3 x4 x5

Z 1 -3 0 0 5/2 0 30

x3 0 1 0 1 0 0 4

x2 0 0 1 0 1/2 0 6

x5 0 3 0 0 -1 1 6

New tableau



Iteration 2:
• Which variable should enter the basis? 

– Only variable x1 has a negative coefficient in row (0)
– Pivot column: The column of x1

• Minimum Ratio Test
– Variable x5 is the leaving variable
– Pivot row: The row of x5

Tabular form of the simplex method
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Basis
Coefficients Right

sideZ x1 x2 x3 x4 x5

Z 1 -3 0 0 5/2 0 30

x3 0 1 0 1 0 0 4

x2 0 0 1 0 1/2 0 6

x5 0 3 0 0 -1 1 6

4/1 = 4

6/3 = 2



End of Iteration 2:
• Optimality test

– No negative coefficient in the row of Z
– Hence we stop at the current BF solution (2, 6, 2, 0, 0) 
– Optimal solution to the original problem: x1 = 2, x2 = 6

Tabular form of the simplex method
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Basis
Coefficients Right

sideZ x1 x2 x3 x4 x5

Z 1 0 0 0 3/2 1 36

x3 0 0 0 1 1/3 -1/3 2

x2 0 0 1 0 1/2 0 6

x1 0 1 0 0 -1/3 1/3 2

New tableau



Summary: Geometric, algebraic and 
tableau form

We have seen 3 different ways of thinking about the same 
algorithm

• Geometric view:
– This is how the algorithm was inspired
– Useful only for 2 or 3 dimensions

• Algebraic description 
– More convenient for learning the logic of the algorithm esp. in higher 

dimensions

• Tableau form
– Equivalent to the algebraic form in terms of operations performed
– However, it organizes the data in a more compact form
– Allows for better automation
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Tie-breaking and other technical 
details

Some issues that may arise

• During the execution:
– Many choices for the entering variable
– Many choices for the leaving variable
– No leaving variable

• At initialization:
– Difficulty in finding an initial feasible solution to begin with

• At termination:
– Multiple optimal solutions
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Tie-breaking and other technical 
details

• Many choices for the entering variable:
– No problem, make an arbitrary choice
– An optimal solution will be reached eventually
– Hard to know in advance which one is the best choice
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Tie-breaking and other technical 
details

•Many choices for the leaving variable:
–This may cause problems
–All such variables will become 0 at the end of the iteration
–Hence, we will have some basic variables with a 0 value
–Such solutions are called degenerate
–They may not allow Z to increase in the next iteration
–The algorithm may get trapped in a loop where some variables enter 
and exit the basis repeatedly and Z gets stuck at the same value
–Bland’s rule: If there are multiple candidate leaving variables, always 
choose the variable with the smallest index
–Also: rarely been observed in practice, almost safe to ignore this

42



Tie-breaking and other technical 
details

•No leaving basic variable:
– This means that the entering variable can be increased indefinitely
– The increase does not yield any negative values to the current basic 

variables
– In the tableau form: all coefficients in pivot column are negative or 0 

(except first row)
– Conclusion: The problem is unbounded, optimal solution is +∞
– Maybe a mistake has occured in the initial formulation of the problem
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Tie-breaking and other technical 
details

• Multiple optimal solutions:
– If there are multiple optimal solutions, there are at least 2 optimal CPF 

solutions
– Any convex combination of these CPF solutions is also an optimal 

solution
– In some problems we may only care to identify one optimal solution 

and stop
– If we care to find more optimal CPF solutions:

• Run more iterations of simplex after we found the first optimal solution
• Choose a nonbasic variable with zero coefficient in the row of Z as the entering 

variable
• There exists such a variable whenever there are multiple optimal solutions
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Tie-breaking and other technical 
details

• Difficulty in finding an initial feasible solution:
– What if the all-0 solution is not feasible? How do we start simplex 

then?
– This can happen when some coefficients bi are negative
– Strategy: Define an auxiliary problem so that

• It is easy to find an initial feasible solution in the auxiliary problem
• The optimal solution of the auxiliary can tell us whether there exists a feasible 

solution in our original problem
– 2-phase simplex method:

• First run simplex on the auxiliary problem
• See whether we can identify an initial basic feasible solution from the optimal 

solution of the auxiliary problem
• If yes, run simplex on our original problem
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Tie-breaking and other technical 
details

• Difficulty in finding an initial feasible solution:
– There are various ways to define the auxiliary problem
– Illustration:

46

max Z = cT x
s.t.

Σj aijxj ≤ bi

xi ≥ 0, i = 1,...,n

Þ

min 1Ty
s.t.

Σj aijxj + yi = bi , i = 1,…n             
xi ≥ 0, yi ≥ 0, i = 1, ...,n

- The auxiliary problem always has a feasible solution
- Set original variables to 0, and y equal to b.

- The original problem has a feasible solution if and only if the optimal 
of the auxiliary is 0



Other variants in 
implementing Simplex

• The revised simplex method
– Based on exploiting fast matrix operations
– Each iteration requires solving 2 systems of linear equations
– But these are not solved from scratch
– Only small updates based on the solution from previous iteration

• The dual simplex method
– Applying simplex to the dual linear program 
– But essentially working with the primal
– Useful tool for sensitivity analysis

• Many other variations have also been suggested over the 
years...
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Complexity of Simplex
•Extremely well-behaved in practice
• Empirically, number of iterations in simplex looks 

proportional to number of constraints, e.g., usually no more 
than 3m

• Can we have a good theoretical upper bound on the number 
of iterations?

• NO! There are examples that need an exponential (2n) 
number of iterations, discovered first by [Klee, Minty ’72]

• Despite that, it is still one of the preferred algorithms for 
solving linear programs!
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Other Algorithms
•The ellipsoid method: The first polynomial time algorithm

– By [Kachiyan ’79], however not well behaved in practice
•Interior point methods: also polynomial time algorithms

– First conceived by Karmarkar [1984]
– Main ideas: 

• Again keep moving from a feasible solution to a better one
• But this time, we move along solutions in the interior of the polytope
• The current solution keeps getting closer and closer to a vertex of the polytope
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Other Algorithms
Types of interior point methods
•Affine scaling algorithms

– One of the simplest interior point algorithms
– Based on approximating polyhedra by “ellipsoids”
– Optimizing over ellipsoids in each iteration
– Non-linear problems but solvable with closed form solutions

•Potential reduction algorithms 
– Do not measure progress by the increase in the objective function
– Instead use a non-linear potential function

•Path following algorithms
– Transforms the initial problem into an unconstrained problem (or a 

problem with equality constraints)
– Incorporates the inequality constraints “xi ≥ 0” into the objective 

function (logarithmic barrier function)
– Solves the resulting non-linear problem with Newton’s method
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Simplex vs Interior Point Algorithms
• Comparisons

– In theory: interior point methods are polynomial time algorithms (for 
any n and m), simplex may need exponential time

– In practice: average case complexity of simplex very low compared to 
worst case

– One iteration of interior point methods needs much more 
computation time than in simplex to decide the next feasible solution

– But: as the number of constraints increases, interior point methods do 
not need much more iterations

– Number of iterations in simplex may increase rapidly as we increase 
the number of variables and constraints

• Interior point methods go through the internal part of the polytope
• Adding more constraints reduces the feasible region, by adding more constraint 

boundaries
• Hence, for problems with many thousands of constraints, interior point methods 

seem to be the best hope
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