
M.Sc. Program in Data Science
Department of Informatics

Optimization Techniques
Linear Programming – The Simplex

Method

Instructor: G. ZOIS
georzois@aueb.com

The Simplex Method

• Designed by Dantzig (1947)

– One of the most important algorithms of the 20th

century

– An algorithm that behaves extremely well in practice
despite its exponential complexity in worst case

– The design of the algorithm and the quest for better
algorithms also contributed to building a rich theory
around linear programming

2

Polyhedra
• Simplex is trying to optimize a linear function over a

polyhedron
• Definition: In Rn, a polyhedron is defined by a set of

linear inequalities on n variables
P = {x: Ax ≤ b}

– Where x Î Rn, b Î Rm, and A is an mxn matrix

• We will usually consider polyhedra in the form
P = {x: Ax ≤ b, x ≥ 0 }

• A polyhedron is
– Infeasible, if its feasible region is empty
– Bounded, if there exists M, such that for every x in the feasible

region, ||x||2 ≤ M
– Unbounded, if it is not bounded 3

A Geometric Interpretation
• Simplex is an algebraic procedure

• However, it is important to understand its geometric
motivation

• Assume the polyhedron is non-empty and bounded

– Then, an optimal solution always exists for any linear objective
function

– A bounded polyhedron is also called polytope

• To illustrate the geometry of simplex, we will use
Example 2 from Lecture 1 as a representative example
in 2 dimensions

4

A Geometric Interpretation

5

Example 2: A polytope in R2

• Constraint boundaries: correspond to the 5 sides of the polygon
• Corner point feasible (CPF) solutions: points at the intersection of

constraint boundaries
• Also called extreme point solutions or vertices of the polytope

6

4 x1

x2

2x2 = 12

3x1 + 2x2 = 18

x1 = 4

Feasible
region

5 corner point solutions here:
(0, 0),
(0, 6),
(2, 6),
(4, 3),
(4, 0)

-

-

-

- -

max 3x1 + 5x2

A Geometric Interpretation

6

Example 2: A polytope in R2

• Each corner point solution lies at the intersection of 2 constraint
boundaries

• In 2 dimensions: how do we find each CPF solution?
– System of 2 equations in 2 variables

6

4 x1

x2

2x2 = 12

3x1 + 2x2 = 18

x1 = 4

Feasible
region

• We say 2 corner point solutions are
adjacent if they share 1 constraint
boundary

• Here, (0, 0) and (0, 6) are adjacent,
• (0, 6) and (2, 6) are also adjacent

-

-

-

- -

A Geometric Interpretation

7

Generalization to n dimensions:
In a polyhedron with n variables,
•a CPF solution is the intersection of n constraint boundaries
•How do we identify them?

- system of n equations in n variables
- Attention: make sure we have first removed “redundant”

constraints
- i.e., constraints that can be implied by linear combinations

of the others (otherwise the system will not have a unique
solution)

- each group of n linearly independent constraints of the
polyhedron yields a distinct CPF solution

•Two CPF solutions are adjacent if they share n-1 constraint
boundaries

A Geometric Interpretation
Why are we interested in the notion of adjacent solutions?

Optimality test for linear programs:

Consider a LP with at least one optimal solution. If a CPF solution has no
adjacent CPF solutions that are better, according to the objective
function, then it must be an optimal solution.

8

• Hence, local optimality Þ global optimality

• Extremely important property

- Also generalizes to continuous, convex functions (to be discussed
in next lectures)

• In our example: (2, 6) is an optimal solution

• (2, 6) is adjacent to (0, 6) and (4, 3)

• None of these achieve a better value for the objective function

A Geometric Interpretation
Outline of the simplex method from a geometric viewpoint

• Initialization: Choose an initial CPF solution

– Usually we set all variables to 0

• Main iteration loop:

– Apply the optimality test to the current CPF solution

– If it is optimal stop,

– else move to an adjacent solution that achieves the highest rate
of increase in the objective function

9

A Geometric Interpretation
Solving Example 2 with the simplex method

10

6

4 x1

x2

2x2 = 12

3x1 + 2x2 = 18

x1 = 4

Feasible
region-

-

-
- -

• Initialization:
- we choose (0, 0) as the initial

CPF solution
- Optimality test: (0, 0) is not an

optimal solution, there are
better adjacent solutions

(0, 0)

A Geometric Interpretation
Solving Example 2 with the simplex method

11

6

4 x1

x2

2x2 = 12

3x1 + 2x2 = 18

x1 = 4

Feasible
region-

-

-
- -

• Iteration 1:

- Move from (0, 0) to an adjacent
solution

- How do we pick one?

- Choose the direction that
increases the objective function
at a faster rate

- Recall: Z = 3x1 + 5x2

- Hence moving along the x2 axis
is better, stopping at (0, 6)

- Optimality test: (0, 6) is not
optimal (0, 0)

(0, 6)

A Geometric Interpretation
Solving Example 2 with the simplex method

12

6

4 x1

x2

2x2 = 12

3x1 + 2x2 = 18

x1 = 4

Feasible
region-

-

-
- -

• Iteration 2:

- Move from (0, 6) to a better
adjacent solution

- Moving back is not making
things better

- Hence, only choice to move to
(2, 6)

- Optimality test: (2, 6) is better
than (0, 6) and (4, 3), therefore,
it is an optimal solution

(0, 0)

(0, 6) (2, 6)

A Geometric Interpretation
Basic features of simplex

• It only examines CPF solutions
– It is guaranteed that there always exists an optimal CPF solution

• Initialization: Whenever feasible, take (0, 0, ..., 0)
– Nonnegativity constraints satisfied

– What if the remaining constraints are violated? To be discussed
again soon

• Picking the next CPF solution to visit:
– Looking only at adjacent solutions can be easily implemented

– The method only looks at the rate of increase in the objective
function

– Greedy local choice: we choose the direction with the best
increase and stop at the adjacent solution in that direction 13

Q: How can we implement all these steps in an automated
algebraic manner for any polyhedron with n variables?

• We can use the geometric viewpoint only up to n=3 variables
• For n > 3, we need a translation into precise algebraic

instructions

From Geometry to Algebra

14

First step: Transform the standard form into a system of linear
equations

• Conversion of inequality constraints into equalities by
introducing slack variables

• For example: consider the inequality x1 ≤ 4 of Example 2
• We can define the slack variable: x3 = 4 – x1
• The constraint then is converted as:

x1 ≤ 4 Þ x1 + x3 = 4

• We can do this for all inequality constraints

Setting up the simplex method

15

Conversion of Example 2
• Need 3 slack variables: x3, x4, x5

Setting up the simplex method

16

Þ

Original standard form Augmented form

Algebraically, more convenient to work with the augmented form

Some terminology:

•Augmented solution: simply a solution for the original variables
augmented by the slack variables

– For the feasible solution (3, 2), the augmented solution is (3, 2, 1, 8, 5)
•Basic Feasible (BF) solution: an augmented CPF solution

– (0, 6) is a CPF solution in the original problem
– (0, 6, 4, 0, 6) is the corresponding BF solution
– From a BF solution, we can get back the CPF solution by simply omitting

the slack variables
•Understanding how BF solutions look like:

– Example 2: 5 variables in total and 3 constraints
– Hence, 2 degrees of freedom
– If we set “arbitrary values” to 2 variables, then we can solve a linear

system for the rest
– In simplex: “arbitrary value” = 0

Setting up the simplex method

17

• For every BF solution:
– We separate the variables into basic and nonbasic variables
– Number of basic variables = m = number of constraints (excluding the

nonnegativity constraints)
– Number of nonbasic variables = n
– Nonbasic variables are set to 0
– Basic variables are then computed by solving the system of m linear

equalities
– The set of basic variables is referred to as the “basis” of the BF solution

• In our example:
– (0, 0, 4, 12, 18) is a BF solution
– Nonbasic variables: x1, x2, both set to 0
– Basis = {x3, x4, x5)
– The values of the basis can be obtained by the constraints, after

substituting x1 = x2 = 0

Setting up the simplex method

18

• Checking adjacency of two BF solutions
– We could check if the corresponding CPF solutions are adjacent
– Easier way: Two BF solutions are adjacent if their bases differ only in

one variable (which means that all but one of their nonbasic variables
are also the same)

• Illustration:
– Adjacent CPF solutions: (0, 0) and (0, 6)
– Corresponding BF solutions: S1 = (0, 0, 4, 12, 18) and S2 = (0, 6, 4, 0, 6)
– In S1, nonbasic variables = {x1, x2}, basis = {x3, x4, x5}
– In S2, nonbasic variables = {x1, x4}, basis = {x2, x3, x5}
– Going from S1 to S2, variable x2 switches from nonbasic to basic and

variable x4 leaves the basis
• Hence: very simple way of moving from one adjacent solution

to another

Setting up the simplex method

19

Final step before running simplex:
• It becomes convenient to also treat the objective function as

another equality constraint

Setting up the simplex method

20

• No need for a slack variable since we have equality to begin with
• We will not really treat Z as a new variable

Initialization:

• We need to choose an initial BF solution
– In our example, setting x1 = 0 and x2 = 0 is feasible
– Augmented solution: (0, 0, 4, 12, 18)
– Hence, initial basis = {x3, x4, x5}, nonbasic variables: x1, x2

• Optimality test:
– Initial value of the objective function: Z = 0
– Recall Z = 3x1 + 5x2, expressed as a function of the nonbasic variables
– Coefficient for each nonbasic variable: rate of improvement for Z, if that

variable were to be increased.
– Here the rates of improvement are positive, which means the current

BF solution is not optimal
– Hence: simple way to answer the optimality test

Algebraic description of the simplex
method

21

Iteration 1:

• We need to determine the direction of movement towards an
adjacent BF solution
– Coefficient of x2 in Z > coefficient of x1
– We pick x2 as the variable to increase
– Variable x2 will enter the basis (referred to as the entering basic

variable)
• How much shall we increase x2 ?

– For as long as we do not violate the constraints!

Algebraic description of the simplex
method

22

(1) x1 + x3 = 4 Þ x3 = 4
(2)2x2 + x4 = 12 Þ x4 = 12 - 2x2

(3)3x1 + 2x2 + x5 = 18 Þ x5 = 18 – 2x2

And now use the
nonnegativity constraints!

Iteration 1:

(1) x1 + x3 = 4 Þ x3 = 4
(2)2x2 + x4 = 12 Þ x4 = 12 - 2x2

(3)3x1 + 2x2 + x5 = 18 Þ x5 = 18 – 2x2

Algebraic description of the simplex
method

23

x3 ≥ 0 Þ no upper bound on x2

x4 ≥ 0 Þ 12 - 2x2 ≥ 0 Þ x2 ≤ 6
x5 ≥ 0 Þ 18 – 2x2 ≥ 0 Þ x2 ≤ 9

• We pick the minimum value implied by the upper bounds
• Increasing x2 beyond the value of 6 would result in an infeasible

solution
• Hence, we stop at x2 = 6

Iteration 1:
• Can we arrive at x2 = 6 with a more automated way?
• Minimum Ratio Test:

– For each constraint, divide the constant term by the coefficient of x2
– The minimum such ratio tells us how much to increase x2

(1) x1 + x3 = 4 Þ ratio = 4/0 = +∞ (0 coefficient of x2)
(2) 2x2 + x4 = 12 Þ ratio = 12/2 = 6
(3) 3x1 + 2x2 + x5 = 18 Þ ratio = 18/2 = 9

Algebraic description of the simplex
method

24

• Setting x2 = 6 makes variable x4 drop to 0
• x4 is called the leaving basic variable

Iteration 1:
• Summarize what we have done so far:

Algebraic description of the simplex
method

25

• Final step of Iteration 1:
• Convert the system of equations according to the new basis
• Express the objective function in terms of the new nonbasic

variables
• Compute the missing values in the new BF solution (for x3 and x5)

Initial BF solution New BF solution

Nonbasic variables x1 = 0, x2 = 0 x1 = 0, x4 = 0

Basis x3 = 4, x4 = 12, x5 = 18 x2 = 6, x3 = ?, x5 = ?

Iteration 1:
Initial constraints

(0) Z - 3x1 - 5x2 = 0
(1) x1 + x3 = 4
(2) 2x2 + x4 = 12
(3) 3x1 + 2x2 + x5 = 18

Algebraic description of the simplex
method

26

• We need x2 to disappear from (0), (1) and (3)
• Start with row (2): row (2) /2 Þ x2 + 1/2 x4 = 6
• We can then

• multiply a row by a constant
• Add/subtract multiples of a row to/from another row
• For example: row (0) := row (0) + 5 × row (2)

Iteration 1:
Final set of constraints at the end of the iteration

(0) Z – 3x1 + 5/2 x4 = 30
(1) x1 + x3 = 4
(2) x2 + 1/2 x4 = 6
(3) 3x1 – x4 + x5 = 6

Algebraic description of the simplex
method

27

• Procedure for obtaining the new form of the constraints: the
Gauss-Jordan method

• Hence, assignment of values in the new BF solution:
• x1 = 0, x4 = 0, x2 = 6, x3 = 4, x5 = 6

• Optimality test:
• Z = 30 + 3x1 - 5/2x4, positive coefficient for x1 Þ not optimal
• Hence, we need to move to an adjacent BF solution

Iteration 2:

• Which variable should now enter the basis?
– Unique choice: Coefficient of x1 is the only positive coefficient in Z
– Variable x1 is now the new entering basic variable

• How much shall we increase x1 ?
– Apply the Minimum Ratio Test
– Set x1 := 2 due to equation (3)

• Which variable exits the basis?
– Again, from the Minimum Ratio Test, x5 will be the leaving variable

• New basis: {x1, x2, x3}
– Nonbasic variables: x4 = x5 = 0
– New BF solution: (2, 6, 2, 0, 0)

Algebraic description of the simplex
method

28

Iteration 2:
Substituting using the Gauss-Jordan method:

(0) Z + 3/2 x4 + x5 = 36
(1) x3 + 1/3 x4 – 1/3 x5 = 2
(2) x2 + ½ x4 = 6
(3) x1 – 1/3 x4 + 1/3 x5 = 2

Algebraic description of the simplex
method

29

• Optimality test:
• Z = 36 – 3/2 x4 – x5
• There is no direction of improvement, increasing x4 or x5 will

decrease the objective function
• Current BF solution is optimal
• Solution of the original linear program: x1 = 2, x2 = 6 and Z = 36

• So far we have managed to transform our geometric intuition
into an algebraic procedure

• Operations used pretty simple
• Nevertheless, we can make the process even more automated
• Simplex tableau: A tabular representation of the constraints

and the current BF solution
• All we need to know: the basis and the coefficients in each row

Tabular form of the simplex method

30

Algebraic form vs tableau:
Let us revisit the initialization in our Example:

Tabular form of the simplex method

31

Basis
Coefficients Right

sideZ x1 x2 x3 x4 x5

Z 1 -3 -5 0 0 0 0

x3 0 1 0 1 0 0 4

x4 0 0 2 0 1 0 12

x5 0 3 2 0 0 1 18

Corresponding tableau form

(0) Z - 3x1 - 5x2 = 0
(1) x1 + x3 = 4
(2) 2x2 + x4 = 12
(3) 3x1 + 2x2 + x5 = 18

Algebraic form

rows = number of
constraints + 1

• For notational convenience: treat Z also as a
basic variable

• Optimality test in a tableau:
– We have reached an optimal solution when the

coefficients in row (0) are all nonnegative

Tabular form of the simplex method

32

Basis
Coefficients Right

sideZ x1 x2 x3 x4 x5

Z 1 -3 -5 0 0 0 0

x3 0 1 0 1 0 0 4

x4 0 0 2 0 1 0 12

x5 0 3 2 0 0 1 18

Iteration 1:
• Which variable should enter the basis?

– The nonbasic variable with the most negative coefficient
in row (0), hence x2

– Column of x2: pivot column
• Minimum Ratio Test

– How do we run it?
– Information we need is the right side column and the

column of x2

Tabular form of the simplex method

33

Basis
Coefficients Right

sideZ x1 x2 x3 x4 x5

Z 1 -3 -5 0 0 0 0

x3 0 1 0 1 0 0 4

x4 0 0 2 0 1 0 12

x5 0 3 2 0 0 1 18
12/2 = 6
18/2 = 9

Iteration 1:
• Outcome of the Minimum Ratio Test

– Minimum achieved at row of x4
– Leaving variable: x4, i.e., the basic variable corresponding

to that row
– Row of x4: the pivot row
– Intersection of pivot row and pivot column: pivot

element (=2 in this iteration)

Tabular form of the simplex method

34

Basis
Coefficients Right

sideZ x1 x2 x3 x4 x5

Z 1 -3 -5 0 0 0 0

x3 0 1 0 1 0 0 4

x4 0 0 2 0 1 0 12

x5 0 3 2 0 0 1 18
12/2 = 6
18/2 = 9

Iteration 1:
• Final step: Gauss-Jordan method to get the new

tableau
– Divide first the pivot row by the pivot element
– This makes the coefficient of x2 equal to 1 in the pivot

row
– Then we can add/subtract appropriate multiples of the

pivot row to the other rows (just as in the algebraic
description of simplex)

Tabular form of the simplex method

35

Basis
Coefficients Right

sideZ x1 x2 x3 x4 x5

Z 1 -3 -5 0 0 0 0

x3 0 1 0 1 0 0 4

x4 0 0 2 0 1 0 12

x5 0 3 2 0 0 1 18
12/2 = 6
18/2 = 9

End of Iteration 1:
• Optimality test:

– There exists a negative coefficient in row (0)
– Hence, we need to go to the next iteration

Tabular form of the simplex method

36

Basis
Coefficients Right

sideZ x1 x2 x3 x4 x5

Z 1 -3 0 0 5/2 0 30

x3 0 1 0 1 0 0 4

x2 0 0 1 0 1/2 0 6

x5 0 3 0 0 -1 1 6

New tableau

Iteration 2:
• Which variable should enter the basis?

– Only variable x1 has a negative coefficient in row (0)
– Pivot column: The column of x1

• Minimum Ratio Test
– Variable x5 is the leaving variable
– Pivot row: The row of x5

Tabular form of the simplex method

37

Basis
Coefficients Right

sideZ x1 x2 x3 x4 x5

Z 1 -3 0 0 5/2 0 30

x3 0 1 0 1 0 0 4

x2 0 0 1 0 1/2 0 6

x5 0 3 0 0 -1 1 6

4/1 = 4

6/3 = 2

End of Iteration 2:
• Optimality test

– No negative coefficient in the row of Z
– Hence we stop at the current BF solution (2, 6, 2, 0, 0)
– Optimal solution to the original problem: x1 = 2, x2 = 6

Tabular form of the simplex method

38

Basis
Coefficients Right

sideZ x1 x2 x3 x4 x5

Z 1 0 0 0 3/2 1 36

x3 0 0 0 1 1/3 -1/3 2

x2 0 0 1 0 1/2 0 6

x1 0 1 0 0 -1/3 1/3 2

New tableau

Summary: Geometric, algebraic and
tableau form

We have seen 3 different ways of thinking about the same
algorithm

• Geometric view:
– This is how the algorithm was inspired
– Useful only for 2 or 3 dimensions

• Algebraic description
– More convenient for learning the logic of the algorithm esp. in higher

dimensions

• Tableau form
– Equivalent to the algebraic form in terms of operations performed
– However, it organizes the data in a more compact form
– Allows for better automation

39

Tie-breaking and other technical
details

Some issues that may arise

• During the execution:
– Many choices for the entering variable
– Many choices for the leaving variable
– No leaving variable

• At initialization:
– Difficulty in finding an initial feasible solution to begin with

• At termination:
– Multiple optimal solutions

40

Tie-breaking and other technical
details

• Many choices for the entering variable:
– No problem, make an arbitrary choice
– An optimal solution will be reached eventually
– Hard to know in advance which one is the best choice

41

Tie-breaking and other technical
details

•Many choices for the leaving variable:
–This may cause problems
–All such variables will become 0 at the end of the iteration
–Hence, we will have some basic variables with a 0 value
–Such solutions are called degenerate
–They may not allow Z to increase in the next iteration
–The algorithm may get trapped in a loop where some variables enter
and exit the basis repeatedly and Z gets stuck at the same value
–Bland’s rule: If there are multiple candidate leaving variables, always
choose the variable with the smallest index
–Also: rarely been observed in practice, almost safe to ignore this

42

Tie-breaking and other technical
details

•No leaving basic variable:
– This means that the entering variable can be increased indefinitely
– The increase does not yield any negative values to the current basic

variables
– In the tableau form: all coefficients in pivot column are negative or 0

(except first row)
– Conclusion: The problem is unbounded, optimal solution is +∞
– Maybe a mistake has occured in the initial formulation of the problem

43

Tie-breaking and other technical
details

• Multiple optimal solutions:
– If there are multiple optimal solutions, there are at least 2 optimal CPF

solutions
– Any convex combination of these CPF solutions is also an optimal

solution
– In some problems we may only care to identify one optimal solution

and stop
– If we care to find more optimal CPF solutions:

• Run more iterations of simplex after we found the first optimal solution
• Choose a nonbasic variable with zero coefficient in the row of Z as the entering

variable
• There exists such a variable whenever there are multiple optimal solutions

44

Tie-breaking and other technical
details

• Difficulty in finding an initial feasible solution:
– What if the all-0 solution is not feasible? How do we start simplex

then?
– This can happen when some coefficients bi are negative
– Strategy: Define an auxiliary problem so that

• It is easy to find an initial feasible solution in the auxiliary problem
• The optimal solution of the auxiliary can tell us whether there exists a feasible

solution in our original problem
– 2-phase simplex method:

• First run simplex on the auxiliary problem
• See whether we can identify an initial basic feasible solution from the optimal

solution of the auxiliary problem
• If yes, run simplex on our original problem

45

Tie-breaking and other technical
details

• Difficulty in finding an initial feasible solution:
– There are various ways to define the auxiliary problem
– Illustration:

46

max Z = cT x
s.t.

Σj aijxj ≤ bi

xi ≥ 0, i = 1,...,n

Þ

min 1Ty
s.t.

Σj aijxj + yi = bi , i = 1,…n
xi ≥ 0, yi ≥ 0, i = 1, ...,n

- The auxiliary problem always has a feasible solution
- Set original variables to 0, and y equal to b.

- The original problem has a feasible solution if and only if the optimal
of the auxiliary is 0

Other variants in
implementing Simplex

• The revised simplex method
– Based on exploiting fast matrix operations
– Each iteration requires solving 2 systems of linear equations
– But these are not solved from scratch
– Only small updates based on the solution from previous iteration

• The dual simplex method
– Applying simplex to the dual linear program
– But essentially working with the primal
– Useful tool for sensitivity analysis

• Many other variations have also been suggested over the
years...

47

Complexity of Simplex
•Extremely well-behaved in practice
• Empirically, number of iterations in simplex looks

proportional to number of constraints, e.g., usually no more
than 3m

• Can we have a good theoretical upper bound on the number
of iterations?

• NO! There are examples that need an exponential (2n)
number of iterations, discovered first by [Klee, Minty ’72]

• Despite that, it is still one of the preferred algorithms for
solving linear programs!

48

Other Algorithms
•The ellipsoid method: The first polynomial time algorithm

– By [Kachiyan ’79], however not well behaved in practice
•Interior point methods: also polynomial time algorithms

– First conceived by Karmarkar [1984]
– Main ideas:

• Again keep moving from a feasible solution to a better one
• But this time, we move along solutions in the interior of the polytope
• The current solution keeps getting closer and closer to a vertex of the polytope

49

6

4 x1

x2

2x2 = 12

3x1 + 2x2 = 18

x1 = 4-

-

-

- -(0, 0)

� �
�
�
�

Other Algorithms
Types of interior point methods
•Affine scaling algorithms

– One of the simplest interior point algorithms
– Based on approximating polyhedra by “ellipsoids”
– Optimizing over ellipsoids in each iteration
– Non-linear problems but solvable with closed form solutions

•Potential reduction algorithms
– Do not measure progress by the increase in the objective function
– Instead use a non-linear potential function

•Path following algorithms
– Transforms the initial problem into an unconstrained problem (or a

problem with equality constraints)
– Incorporates the inequality constraints “xi ≥ 0” into the objective

function (logarithmic barrier function)
– Solves the resulting non-linear problem with Newton’s method

50

Simplex vs Interior Point Algorithms
• Comparisons

– In theory: interior point methods are polynomial time algorithms (for
any n and m), simplex may need exponential time

– In practice: average case complexity of simplex very low compared to
worst case

– One iteration of interior point methods needs much more
computation time than in simplex to decide the next feasible solution

– But: as the number of constraints increases, interior point methods do
not need much more iterations

– Number of iterations in simplex may increase rapidly as we increase
the number of variables and constraints

• Interior point methods go through the internal part of the polytope
• Adding more constraints reduces the feasible region, by adding more constraint

boundaries
• Hence, for problems with many thousands of constraints, interior point methods

seem to be the best hope

51

