Flows in Networks

(informal) problem statement:

Suppose we want to transport some quantity of a good within a given network, from some source to a destination

The good can be

- Oil to be transported through a network of oil pipes
- Information through a computer network
- Etc

Constraints: each edge in the network has a *capacity*, i.e., the maximum quantity it can carry

- oil pipes have a volume capacity
- A link in a computer network has limits on its bandwidth

Goal: find a way to route the good through the network so as to maximize the total quantity shipped

Flows in Networks

More formally:

Consider a graph G = (V, E), with a source node $s \in V$, and a sink node $t \in V$

Capacity constraints: for every edge $e \in E$, there is a capacity c_e

A feasible flow is an assignment of a flow f_e to every edge so that $1.f_e \le c_e$ 2.For every node other than source and sink: incoming flow = outgoing flow (preservation of flow)

Goal: find a feasible flow so as to maximize the total amount of flow coming out of s (or equivalently going into t)

Flow going out of s:
$$\sum_{(s,u)\in E} f_{su}$$

By preservation of flow this equals: $\sum_{(u,t)\in E} f_{ut}$

Flows in Networks

Example:

- Figure (a): network with capacities
- Figure (b): a feasible flow
- In fact, the flow in (b) is optimal (7 units)

