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Introduction

Partitioning Mixed-Integer Linear Programs

Timeline of Integer Programming:

e 1940’s: Construction of Simplex algorithm
« 1958: Construction of Cutting Planes algorithms
* 1960: Construction of Branch-and-Bound
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Introduction

Partitioning Mixed-Integer Linear Programs

Timeline of Integer Programming:

e 1940’s: Construction of Simplex algorithm

= Simplex algorithm solves Linear Programs optimally.
= Most practical problems require variables of discrete values.
= Omitting integrality leads to a relaxation of an Integer Program.
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Introduction

Partitioning Mixed-Integer Linear Programs

Timeline of Integer Programming:

« 1958: Construction of Cutting Planes algorithms

= Cutting planes algorithms start by solving the linear relaxation of the problem.
= |teratively, additional constraints restore integrality for variables of continuous values.

Decomposition methods in Integer Programming 4



Introduction

Partitioning Mixed-Integer Linear Programs

Timeline of Integer Programming:

« 1958: Construction of Cutting Planes algorithms

= Cutting planes algorithms start by solving the linear relaxation of the problem.
= |teratively, additional constraints restore integrality for variables of continuous values.

min X1 + X9 X1 = 1.333 X1 =
2x1 + X9 >5 ' Xy = 2.333 Xy = 2
x1+2x226 X1+x2=3666 Qx1+x224Qx1+x2=4
X1,X; =0 Non-integer solution Integer solution
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Introduction

Partitioning Mixed-Integer Linear Programs

Timeline of Integer Programming:
* 1960: Construction of Branch-and-Bound

= Branch-and-Bound creates a pair of branches for each variable of continuous value.

e.g., if an integer variable x is set to the continuous value b, then one of the following
should be satisfied:

« x=>[b] eg.,ifb=2.3,thenx >3

e x<|b] eg.,ifb=23,thenx <2
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Introduction

Partitioning Mixed-Integer Linear Programs

Timeline of Integer Programming:

e 1940’s: Construction of Simplex algorithm
« 1958: Construction of Cutting Planes algorithms
* 1960: Construction of Branch-and-Bound

Integer Programming methods combine the following techniques:

* Solving a relaxation to obtain a dual bound

* Restoring feasibility over the solution of the relaxation to obtain a primal bound, by
generating linear inequalities called cuts.
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Benders Decomposition

Classical variant and dual-derived cuts




Benders Decomposition

Overview

In 1962, Jacques F. Benders presented a set of “partitioning procedures”, which
decompose a MILP into a master problem (a relaxation of the original MILP) and a set of
subproblems.
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Benders Decomposition

Overview

In 1962, Jacques F. Benders presented a set of “partitioning procedures”, which
decompose a MILP into a master problem (a relaxation of the original MILP) and a set of
subproblems.

P min f(y)+g(x)
C(y),C(x),C(y,x)

y integer variables
x continuous variables

f(y),g(x): Non-negative linear cost functions
C(y),C(x),C(y,x): Constraints

y: Integer variables
X Continuous variables

Decomposition methods in Integer Programming




Benders Decomposition

Overview

In 1962, Jacques F. Benders presented a set of “partitioning procedures”, which
decompose a MILP into a master problem (a relaxation of the original MILP) and a set of
subproblems.

We separate integer and continuous variables:

P min f(y)+gXx)

y integer variables y integer variables

x continuous variables Evidently, problem M is a relaxation of ¢:

* The minimum objective value of M is a lower bound
of the minimum objective value of .

 All constraints of M hold in %P, while there are
constraints of ¢ which are not part of M.

f(y),g(x): Non-negative linear cost functions
C(y),C(x),C(y,x): Constraints

y: Integer variables
X Continuous variables
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Benders Decomposition

Overview

In 1962, Jacques F. Benders presented a set of “partitioning procedures”, which
decompose a MILP into a master problem (a relaxation of the original MILP) and a set of
subproblems.

We separate integer and continuous variables:

P min f(y)+gXx)

C(}’) C(X) C(y x) If ¥ is the solution of M:
. min g0 +f()
y integer variables C(x.5),C00

x continuous variables . .
x continuous variables

f(y),g(x): Non-negative linear cost functions

If 4 has a feasible solution, then its objective value is an
C(y),C(x),C(y,x): Constraints A ' uti | jective value i

upper bound of the optimal objective value of %:
* Allconstraints C(y) are satisfied by construction.
* The remaining constraints of & are also taken into

y: Integer variables
X . .
consideration.

Continuous variables
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Benders Decomposition

Overview

In 1962, Jacques F. Benders presented a set of “partitioning procedures”, which
decompose a MILP into a master problem (a relaxation of the original MILP) and a set of
subproblems.

We separate integer and continuous variables:

P min f(y)+gXx)

We add an inequality to M, ensuring that if y = y, then
C(y)’ C(X), C(y’ X) the objective value is set to the upper bound:

y integer variables M: min f)+6

. . C
x continuous variables Ch )_ _ B
ify=y—-0=g(x)
f(y),g(x): Non-negative linear cost functions

C(y),C(x),C(y,x): Constraints y integer variables

6=0

Iteratively solving M and 4 and generating new

y: Integer variables
X . "
inequalities leads to a convergence.

Continuous variables

Decomposition methods in Integer Programming




Benders Decomposition

Overview

In 1962, Jacques F. Benders presented a set of “partitioning procedures”, which
decompose a MILP into a master problem (a relaxation of the original MILP) and a set of
subproblems.

The construction of new inequalities is derived of duality theory; this is why the
subproblem(s) should consist of strictly continuous variables.
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Benders Decomposition

Example

JM min Yy
y € 10,10]
P: min y+2-x
x+y =5 is decomposed 7
into M and 4:
y € [0,10]
x =0
A: min 2-Xx
X=5—Yy
x=0

Decomposition methods in Integer Programming




Benders Decomposition

Example

JM min Yy
y € 10,10]
P: min y+2-x
x+y =5 is decomposed 7
into M and 4:
y € [0,10]
x=0
Dual of 4: max u-(5-—Yy)
u<?2
u=0
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Benders Decomposition

Example

JM min Yy
y € 10,10]
P: min y+2-x
X+ty=5 is decomposed y 9>%u-(5-7y)
into M and /:
y € [0,10]
x =0
Dual of 4: max u-(5—7%)
u<?2
u=0
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Benders Decomposition

Example

J.: min y+20

O0=u-(5—-y)
y € 10,10]
P: min y+2-x 9 >0
x+y =5 is decomposed
into M and /4: — S 7. (5 _
y € [0,10] y O=zu-(5-y)
x =0
Dual of 4: max u-(5-—Yy)
u<?2
u=0
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Benders Decomposition

Example

print("Iteration Gap (%)")
print(" ")
master = masterProblem() # Construct the master problem 'M’
0O o lowerBound, upperBound, iteration = @, inf, 1 # Initialize lower bound, upper bound, number of iterations
Benders decompos‘tlon algorlthm: while(lowerBound < upperBound): # The procedure is repeated until a convergence is reached.
results = opt.solve(master, tee = False) # Solve 'M'
y = value(master.y) # Get the value of variable 'y’
lowerBound = value(master.obj) # Update the value of the lower bound
subproblem = subProblem(y) # Construct the subproblem 'S’
Set LB — O UB = 00 t — 1 . results = opt.solve(subproblem, tee = False) # Solve 'S’
. [) ) ) u = value(subproblem.u) # Get the value of variable 'u’
. if value(subproblem.obj) + lowerBound < upperBound: # Update the value of the upper bound, in case of improvement
. Whlle(LB < U B): upperBound = value(subproblem.obj) + lowerBound
master.constraints.add(master.8 >= u*(5 - master.y)) # Add cut to "M’
print(f"{iteration:<12}{lowerBound: <16}{upperBound: <16}{round(1ee*(upperBound - lowerBound)/upperBound, 2)}%")

. SOlve (JVL% get LB’ }_]; iteration += 1 # Increase the number of iterations by 1

: Addcutf =u-(5—y)toM;
. t=t+1;

1
2
3
4. Solve 4 — get u, UB;
5
6
7. End while; 100.0%
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Combinatorial cuts
Cuts beyond duality theory




Combinatorial cuts

Traveling Salesman Problem

Nodes to visit: 25(1,...,25] e 2% M= e s
Depot: depot RO ~
Distances: dij:i,j €[1,..,25,depot]
Objective: Minimize total covered distance LSS AP\
o 4 ABrva b I\ota

Constraints: D R
* Each node is visited exactly once. e~ : SRR

2 » & & o) ?176
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Combinatorial cuts

Traveling Salesman Problem

min ZiE]ZjE]dij-xij

QieyXij =1 vi€eJ

DieyXji =1 VjEe]

w+1—w <[/ (1—x) Vi € ],j € J\{depot}
XijE{O,l} VlE],]E],l:/:]

u; € [0, ]/]] VjE€]
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Combinatorial cuts

Traveling Salesman Problem

XijE{O,l} VlE],]E],l:/:]

x;j = 1 - nodesiandj are connected
x;j = 0 = nodes i andj are not connected
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Combinatorial cuts

Traveling Salesman Problem

w € [0, /1] vj €]

u;: Order of visiting node j
e.g., U; = 0 — node j is visited first
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Combinatorial cuts

Traveling Salesman Problem

min Ziejzjejdij-xij

Objective function: minimization of covered distance
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Combinatorial cuts

Traveling Salesman Problem

Qiey Xij =1 Vi€l
QieyXji =1 viel

Each node is visited exactly once:
* Each node is the origin of a trip.
* Each node is the destination of a trip.
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Combinatorial cuts

Traveling Salesman Problem

u+1—u <|J|- (1 —x;) Vi € J,j € J\{depot}

If x;; = 1, then the order of visiting node j is larger than the order of visiting
nodei. If x;; = 0, then the right-hand side is always greater/equal than the
left-hand side.
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Combinatorial cuts

Traveling Salesman Problem

min ZiE]ZjE]dij-xij

QieyXij =1 vi€eJ

DieyXji =1 VjEe]

w+1—u <|[J|-(1—x) Vi € ],j € J\{depot}
XijE{O,l} VlE],]E],l:/:]

u; € [0, ]/]] VjE€]

Complicating constraints: they imply a weak bound — slow convergence to
optimality
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Combinatorial cuts

Traveling Salesman Problem

Decomposition methods in Integer Programming

Without these constraints: Subtours

+ The problem is very easy — it can be
solved optimally in a few seconds for
thousands of nodes.

- The solution does not define a single
route which visits all nodes - infeasible.




Combinatorial cuts

Traveling Salesman Problem

A relaxation of the problem provides a lower bound:

min - iy Njey dij - Xij

DieyXij =1 vi€eJ
Qiej%ji =1 Vi €]
XijE{O,l} VlE],]E],l:/:]

If the solution has subtours, then add an inequality which prevents the relaxation from
computing the same evidently infeasible solution.
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Combinatorial cuts

Traveling Salesman Problem

A relaxation of the problem provides a lower bound:

min - iy Njey dij - Xij

DieyXij =1 vi€eJ
Qiej%ji =1 Vi €]
XijE{O,l} VlE],]E],l:/:]

If X;; are the values of variables X;;, then:

> xyl-1

(i,j):x;j=1
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Combinatorial cuts

Traveling Salesman Problem

A relaxation of the problem provides a lower bound:

min - Viey Ljey dij - Xij

DieyXij =1 vi€eJ
Qiej%ji =1 Vi €]
XijE{O,l} VlE],]E],l:/:]

If x;; = 1 for all trips (i,j):X;; = 1, then
the left-hand side is set to |/|.

z Xij < Ul =1 Adding this cut ensures that at least one
(4,7):xj=1 trip is eliminated.

If X;; are the values of variables X;;, then:
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Combinatorial cuts

Traveling Salesman Problem

A combinatorial cut can be generated for each subtour:
X417 =1
X17,16 = 1
Y1618 =1 [ Xa17 T X1716 T X16,18 T X1825 T X254 < 4

X1g25 = 1
X254 = 1

==

or if S is the set of subtours, and each subtour s is a subset
of trips (i,j): X;; = 1, then:

Qi pesXij < Isl—1 Vs €S

Decomposition methods in Integer Programming




Combinatorial cuts

Traveling Salesman Problem

A Branch-and-Cut algorithm:

1. SetLB=0,t=1;
2. While True:

3 Solve relaxation — get LB, X;;, set S = 0;

4 Foreach nodej € J:

5 Generate a subtour s starting from j, append s to S;
6. Add combinatorial cut 3 ; iyesxij < [s| — 1;

7. End for;

8 IfS = @:

0. End while;

10. Else:
11. t=t+1;
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Combinatorial cuts

Traveling Salesman Problem

print(f"Iteration
print("
startTime = time.time()
plotRoute(@, [])
milp = relaxation(nodes, distances)
iteration = 1
while True:
results = opt.solve(milp, tee = False, timelimit = 60)
links = [(i, j) for i in milp.Nodes for j in milp.Nodes if i != j and value(milp.x[i, j]) > ©.9]
plotRoute(iteration, links)
for j in milp.Nodes:
route = generateRoute(milp, Jj)
if Len(route) == Len(nodes)+1:
break
else:

milp.constraints.add(sum(milp.x[route[i-1], route[i]] for i in range(l, Len(route))) <= Len(route)-2)
print(f"{iteration} {value(milp.ob3j)} {int(time.time() - startTime)}")
if Len(route) == Len(nodes)+1:
break
else:
iteration += 1

Finished in 30.8s]
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Introduction - TSP
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Constraint Programming

Example: Sudoku puzzle

Sudoku game:
A 9x9 grid must be filled with numeric values from 1 to 9.

« Ateachrow, each one of the 9 cells should have a unique
value.

e Ateachcolumn, each one of the 9 cells should have a
unique value.

* Each 3x3 subgrid (9 cells) should have a unique value per
cell.
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Constraint Programming

Example: Sudoku puzzle

Sudoku game:

Given a matrix sudokul-,j, i ={1,..,9},j ={1,...,9} and fixed
values Sudokul-,j for certain cells, we should solve a
satisfiability problem for which the following conditions hold:

*  sudoku;; # sudoku; vi={1,..,9},j={1,..,9}, k={1,..,9} #j
*  sudoku;; # sudokuy vi={1,..,9},i=1{1,..,9}, k={1,..,9} #1i
*  sudokus.iyq3.j+p # Sudokus.icz.j4+q Vi =1{0,1,2}, j = {0,1,2},

a ={1,2,3},b = {1,2,3},

c=1{1,2,3} #q,
d={1,23}+b
* sudoku;; = sudoku; ; V(i,j): 3 sudoku, ;
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Constraint Programming

Example: Sudoku puzzle

Sudoku game:

Given a matrix sudokul-,j, i ={1,..,9},j ={1,...,9} and fixed
values Sudokul-,j for certain cells, we should solve a
satisfiability problem for which the following conditions hold:

sudoku; ; # sudoku, vi={1,..,9},j={1,..,9}, k={1,..,9} #j
sudoku; j # sudokuy ; vi={1,..,9},i=1{1,..,9}, k={1,..,9} #1i
sudokus.irq3.j+p # Sudokug.iic3.j+q Vi ={0,1,2}, j ={0,1,2},

a ={1,2,3},b = {1,2,3},

c=1{1,2,3} #q,
d={1,23}+b
* sudoku;; = sudoku; ; V(i,j): 3 sudoku, ;
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Constraint Programming

Preliminaries

Constraint Satisfaction Problem (CSP):

A CSP consists of:

 afinite set of variables

e adomain - afinite set of values — for each variable

* afinite set of constraints — logic relations over the variables

The solution of a CSP is a complete (for all variables) and consistent (it satisfies all constraints)
assignment of values to variables.
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Constraint Programming

Preliminaries

Constraint Satisfaction Problem (CSP): 9 | 1] 3 5

A CSP consists of:
* afinite set of variables - sudoku; ; 5 8 7
e adomain - afinite set of values —for each variable-1to0 9

* afinite set of constraints — logic relations over the variables 7|9
—the uniqueness of values in rows/columns/3x3 subgrids 5 9 a |3
4 9
4 1|9
7 6 9 5
1 6 | 4 7
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Constraint Programming

Preliminaries

Constraint Programming (CP):

Constraint Programming is the computer implementation of an algorithm for solving a CSP [Brailsford et
al., 1999].

Integer “Programming” or Constraint “Programming”?

In Integer Programming, “programming” refers to mathematical programming, as introduced by George
Dantzig, creator of the Simplex algorithm.

In Constraint Programming, “programming” refers to the translation of logic constraints from natural
language to a programming language.
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Constraint Programming

Preliminaries

CP for combinatorial optimisation problems:

 Finds feasible solutions
e Choosesthe best solution (i.e., the feasible solution which has the minimum/maximum value of a

designated function).

* Weaker than Integer Programming at proving optimality
* Not necessarily weaker at finding better solutions — multiple feasible solutions are explored more easily

than in an IP framework
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Constraint Programming

Principles

Each CP solver may incorporate different algorithms to explore for feasible solutions,
but fundamental principles are globally implemented:

e CPsearch

* Backtracking
* Propagation
* Pruning
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Constraint Programming

Principles

Each CP solver may incorporate different algorithms to explore for feasible solutions,
but fundamental principles are globally implemented:

* CP search — exploring possible assignments of values to variables

* Backtracking — reverting to previous decisions in case of infeasibilities
* Propagation — adding new constraints based on current decisions

* Pruning - removing inconsistent values from domains
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Constraint Programming

Principles
In the previous example: o | 1|3 5
6 7 2 | 4
* sudoku;; # sudoku, vi={1,..,9},j=1{1,..,9}, k = 5 8 7
{1,...,9}#j
*  sudoku;; # sudokuy ; vi={1,..,9},i={1,..,9}, k= 7 9
{1,...,9} # i
*  sudokug.iiqz.j+p * Sudokus.iicz.jrq Vi = {0,1,2}, j = {0,1,2}, 2 9 4 3
a=1{1,2,3},b ={1,2,3},
c=1{1,2,3} #aq, 4 9
d={1,23}+b
* sudoku;; = sudoku; ; V(i,j): 3 sudoku,; ; 4 1| 9
7 6 9 5
1 6 4 7
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Constraint Programming

Principles

In the previous example: °© 1|3 5
6 2 7 2 4
* We assign values to variables, in search of a feasible solution. 5 8 7
For example, we assign value 2 at sudoku, ,. We notice that
there are conflicts in some constraints: 7 9
2 9 4 3
4 9
4 1 9
7 6 9 5
1 6 4 7
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Constraint Programming

Principles

In the previous example: °o | 1|3 5
6 2 7 2 4
* We assign values to variables, in search of a feasible solution. 5 8 7
For example, we assign value 2 at sudoku, ,. We notice that
there are conflicts in some constraints: 7 9
* There exists a cell at the same row with the same value: 2 9 il 3
sudokuy g = 2
a4 9
* As aresult, we revert the previous decision.
4 1 9
7 6 9 5
1 6 4 7
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Constraint Programming

Principles

In the previous example: °o | 1|3 5
6 2 7 2 4
* We assign values to variables, in search of a feasible solution. 5 8 7
For example, we assign value 2 at sudoku, ,. We notice that
there are conflicts in some constraints: 7 9
* There exists a cell at the same row with the same value: p) 9 il 3
sudokuy g = 2
4 9
* As aresult, we revert the previous decision.
4 1 9
7 6 9 5
Reverting a previous decision due to conflicts with the constraints of 1 6 4 7

the problem is called backtracking.
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Constraint Programming

Principles

In the previous example: °o | 1|3 5
6 2 7 2 4
* We assign values to variables, in search of a feasible solution. 5 8 7
For example, we assign value 2 at sudoku, ,. We notice that
there are conflicts in some constraints: 7 9
* There exists a cell at the same row with the same value: 2 9 il 3
sudokuy g = 2
4 9
* Torevert the previous decision, we add the following constraint:
4 1 9
* sudokuy, # 2
7 6 9 5
1 6 4 7
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Constraint Programming

Principles

In the previous example: °o | 1|3 5
6 2 7 2 4
* We assign values to variables, in search of a feasible solution. 5 8 7
For example, we assign value 2 at sudoku, ,. We notice that
there are conflicts in some constraints: 7 9
* There exists a cell at the same row with the same value: p) 9 il 3
sudokuy g = 2
a4 9
* Torevert the previous decision, we add the following constraint:
4 1 9
* sudokuy, # 2
7 6 9 5
Adding constraints based on current/previous decisions is called 1 6 4 7

propagation.
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Constraint Programming

Principles

In the previous example: °o | 1|3 5
6 2 7 2 4
* We assign values to variables, in search of a feasible solution. 5 8 7
For example, we assign value 2 at sudoku, ,. We notice that
there are conflicts in some constraints: 7 9
* There exists a cell at the same row with the same value: p) 9 il 3
sudokuy g = 2
4 9
* Torevert the previous decision, we add the following constraint:
4 1 9
* sudokuy, # 2
* The domain of sudoku,, becomes {4, 8}. 7 6 9 5
1 6 4 7
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Constraint Programming

Principles

In the previous example: °o | 1|3 5
6 2 7 2 4
* We assign values to variables, in search of a feasible solution. 5 8 7
For example, we assign value 2 at sudoku, ,. We notice that
there are conflicts in some constraints: 7 9
* There exists a cell at the same row with the same value: p) 9 il 3
sudokuy g = 2
4 9
* Torevert the previous decision, we add the following constraint:
4 1 9
* sudokuy, # 2
* The domain of sudoku,, becomes {4, 8}. 7 6 9 5
Reducing the domains of variables as a result of propagation is 1 6 4 7

called pruning.
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Constraint Programming

Principles

9 | 1 | 3 5
6 8 | 7 2 | 4
2 | 5| 4 8 7
7 |9
2 9 4 | 3
4 9
4 1|9
7 6 9 5
1 6 | 4 7

Decomposition methods in Integer Programming




Constraint Programming

Modeling in CP: Logic constraints

* Disjunctions (OR)/Conjunctions (AND): o 1 |3 5
For example, cells sudokug 3 and sudoku;3; canonly | ¢ g | 7 > | 4
get values 5 or 8:
2 | 5| 4 8 7
 sudokugs; =5V sudokug; =8
’ ’ 7 | 9
* sudoku;3 =5V sudoku;3; =8
2 9 4 | 3
The same cells can not get value 1 and 2 and 3 and ...
9 except for 5 or 8: 5,8 4 2
4 5,8 1 9
* sudokugsz # 1 Asudokugz # 2 A ... sudokug s + 9
* sudoku;sz # 1 Asudoku;3 # 2 A...sudoku, 3 # 9 7 6 9 5
1 6 | 4 7
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Constraint Programming

Modeling in CP: Conditional constraints

* |f a (set of) condition(s) is True, then a constraint | ¢ 1 | 3 5
IS Imposed: 6 | 8 | 7 5 | a4
For example, if sudokug 3 = 5, then sudoku; 3 = 8:
2 5 4 8 7
* ifsudokug3z =5 — sudoku,3; = 8 7 | 9

* ifsudokugs = 8 - sudoku;3 =5
* ifsudoku;3; =5 — sudokugz = 8 2 9 4 | 3
* ifsudoku;3; =8 - sudokugs =5

5,8 4 9
4 5,8 1 9

7 6 9 5

1 6 4 7
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Constraint Programming

Modeling in CP: Conditional constraints

If a (set of) condition(s) is True, then a constraint
IS Imposed:
For example, if sudokug 3 = 5, then sudoku; 3 = 8:

* ifsudokug3z =5 — sudoku,3; = 8
* ifsudokugs = 8 - sudoku;3 =5
* ifsudoku;3; =5 — sudokugz = 8
* ifsudoku;3; =8 - sudokugs =5

All these constraints are identical - modeling flexibility.

Decomposition methods in Integer Programming
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Constraint Programming

Modeling in CP: Predicates

Although each solver follows customised modeling conventions, several constraints
are universally applied in CSPs. For example, imposing that all variables of a subset
receive different values is a common constraint.

To standardise Constraint Programming modeling, the community has introduced
certain functions which impose such common constraints. These functions are called
predicates, and the imposed constraints are called global constraints.
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Constraint Programming

Modeling in CP: Predicates

Although each solver follows customised modeling conventions, several constraints
are universally applied in CSPs. For example, imposing that all variables of a subset
receive different values is a common constraint.

To standardise Constraint Programming modeling, the community has introduced
certain functions which impose such common constraints. These functions are called
predicates, and the imposed constraints are called global constraints.

E.g., all solvers have incorporated a predicate called allDif ferent(X), ensuring that all
variables of set X receive different values.
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Constraint Programming

Modeling in CP: Predicates

To impose that all cells at the same row receive
different values:

. allDifferent(sudokui,jU = {1, ...,9}) Vi =1{1,..,9}

meaning that variables sudoku; ; for a fixed index i
get unique values.
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Constraint Programming

Modeling in CP: Predicates

To impose that all cells at the same row receive | © 1 | 3 5
different values: 5 . 5 | a4
. allDifferent(sudokui,jU = {1, ...,9}) Vi =1{1,..,9} 5 8 7
. . . . " ? 9
meaning that variables sudoku; ; for a fixed index i
get unique values. 2 9 413
Previous constraint: 4 9
*  sudoku;; # sudoku vi={1,..,9},j={1,..,9}, k=1{1,..,9} #j 4 1 9
Scale: 9 x9 x 8 =648 constraints
New constraint: ! 6 9 >
. allDifferent(sudokui,jU = {1, ...,9}) vi ={1,..,9} 1 6 4 .

Scale: 9 constraints
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Constraint Programming

Modeling in CP: Predicates

model = CpoModel()

# Variables
cellValues = [[model.integer_var(l, 9, name = f"valueOf_{i},{j}") for j in range(9)] for i in range(9)]

# Given values are fixed to the respective variables.
for 1 in range(9):
for j in range(9):
if sudokuMatrix[i][j] != None:
model.add(cellValues[i][j] == sudokuMatrix[i][j])
# Each row has different values.
for 1 in range(9):
model.add(model.all diff([cellValues[i][j] for J in range(9)]))
# Each column has different values.
for j in range(9):
model.add(model.all diff([cellValues[i][j] for i in range(9)]))
# Each 3x3 grid has different values.
for 1 in range(3):
for j in range(3):
model.add(model.all_diff([cellValues[i*3 + k][J*3 + 1] for k in range(3) for 1 in range(3)]))

sol = model.solve(TimeLimit = 6@, trace_log = False)

if sol:
plotGrid(sudokuMatrix, sol)
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Constraint Programming

Modeling in CP: Traveling Salesman Problem

Nodes to visit: 251, ..., 25] o 2 M = P e
Depot: depot 1T g :
Distances: dij:i,j €[1,..,25,depot]
Objective: Minimize total covered distance TISeR. NN L e

o 3 ABnva 1] I\ola
Constraints: Vi |
* Each node is visited exactly once. CeNGEL L ¢
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Constraint Programming

Modeling in CP: Traveling Salesman Problem

i ¥ ! BaAtivg, ® Node
min ZLEJ ZjE] dl] . xl] ’1 WVOC (w— ,:fw-;_ .20 .23 r“‘v.g .6 Y Depot
. % e S 2
Zie] xij = V] E] B 2 s
. depot <
ZLE] x]l — 1 v] E] l, K .8 EEapyeL
. . 22 y
w+1—u; <|J[-(1—x;) Vi€e],j€]\{depot} ~ 4 % )
/,l % . . ; 3
xij € {0,1} Vie]jE]i*] AR S\ 2 ;
. & I B R 15
u; € [0, /1] vVjie] : ' 3
KoAu
ABnva I\iota
19/
Metpalwva P L 2 .25 .14 .5
.4 .18 ‘
g &! U Pl
% MNpodntng
% HAlQ
.10 2 As ‘ .17
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Constraint Programming

Modeling in CP: Traveling Salesman Problem

TSP can be easily modeled as a CSP: s o
. . . . 4 *dept .8 i ¢
Xi: variables indicating the next stop of
node i sk | L
Domain of x;: [1, ..., 25, depot]|\{i} VIS {
E.g.,ifx; = 2, then node ‘2’ succeeds node ‘1" / A@w
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Constraint Programming

Modeling in CP: Traveling Salesman Problem

TSP can be easily modeled as a CSP: TS S
3 0 . . 4 *dept .8 i ’
X;: variables indicating the next stop of
node i XA | s
Domain of x;: [1, ..., 25, depot]\{i} PIASEEK p
E.g.,if x; = 2, then node ‘2’ succeeds node ‘1. ’ i
allDif ferent(x;|i € [1, ...,25, depot]) | ot
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Constraint Programming

Modeling in CP: Traveling Salesman Problem

Subtour elimination constraints in IP: el i FHI] e
o . 4 *dept .8 ; -
w+1—u <|J|-(1—x;) Vi € ],j € J\{depot} RN
Subtour elimination constraints in CP: < 2
4 ABrva
yi € [0, ..., 25]: the position of the node in the | rwows P % iiog
route | 3 T
All 26 nodes are visited — all values in [0, 25] S
will be assigned. »
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Constraint Programming

Modeling in CP: element predicate

element predicate:

CP modeling allows using variables as indices of other variables or parameters.
For example:

Vx;:  the position of the next node of i
dix;: thedistance from node i to its successor
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Constraint Programming

Modeling in CP: element predicate

element predicate:

CP modeling allows using variables as indices of other variables or parameters.
For example:

Vx;:  the position of the next node of i
dix;: thedistance from node i to its successor

The element predicate assigns values of variables to indices:
element(y, x;): returns yy,

element(d;, x;): returns d;,.,
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Constraint Programming

Modeling in CP: Traveling Salesman Problem

Subtour elimination constraints in IP: el i FHI] e
. . y *dept i 8 |

w+1—u <|J|-(1—x;) Vi € ],j € J\{depot} RN

Subtour elimination constraints in CP: < 2

ABrva

19 f
. ' 4

y; € [0, ..., 25]: the position of the node in the & P s o TR
rO U te i : > ¢ Y

element(y’ Xi) — yl —I— 1 Vi i depot KANNPOn, ’{_%,’,
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Constraint Programming

Modeling in CP: Traveling Salesman Problem

TSP in CP formulation: _ . ¢ % bom
JREL e ‘;

allDif ferent(x;|i € [1, ...,25,depot])

element(y,x;) =vy; + 1 Vi # depot '

x; € [1, ...,25,depot]\i 2
y; €10, ...,25]: the position of the node in the ’ e
route e ;o

18
®
4
(]
21 g 16
o .
0.4% Mpodntn
% HAL
®
(QNNP %%
2
%
3 17
o 7~ ©®

(C) OpenStreetMap contributors’
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Constraint Programming

Modeling in CP: Traveling Salesman Problem

TSP in CP formulation: i 2% Mo =2 A
. . ' R |

allDif ferent(x;|i € [1, ..., 25,depot]) coprc | 0%

element(y,x;)) =y; +1 Vi # depot |

x; €11,...,25,depot|\i > e

y; €10, ...,25]: the position of the node in the ’ A@w

Fo Ute ‘ Netpaiwva o ERG / 2 io 5

Objective function: b i S s

min  ); element(d;, x;)
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Constraint Programming

Modeling in CP: Traveling Salesman Problem

model = CpoModel()

X [model.integer_var(e, Len(nodes)-1, name = f'nextOf_{i}') for i in nodes]
y [model.integer var(@, Len(nodes)-1, name = f'positionOf {i}') for i in nodes]

model.add(model.all diff(x))
for 1 in range(len(nodes)):
if nodes[i] != 'depot':
model.add(model.element(y, x[1]) == y[1i]+1)

model.add(model.minimize(sum(model.element(distances[i], x[i]) for i in Pange(ien(nodes)))}j

sol = model.solve(TimeLimit = 1@, trace_log = False)
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Constraint Programming

Modeling in CP: Traveling Salesman Problem

More variants of TSP: o 2 e e
* Pickup and Delivery TSP
* We can visit nhode 6 only after |
node 1 has been visited. VISR SR ] NN
* We can visit node 9 only after 2 Z '
node 2 has been visited. ’ s
« We can visit node 20 only after s e Ar
node 3 has been visited. | AT
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Constraint Programming

Modeling in CP: Traveling Salesman Problem

More variants of TSP: o= 2 e e
* Pickup and Delivery TSP
e We can visit node 6 only after '
node 1 has been visited. VIS N ] NEmcTL
* We can visit node 9 only after 2 Z '
node 2 has been visited. ’ s
« We can visit node 20 only after s e Ar
node 3 has been visited. | TN
1 < Ve o AL
Y2 < Yo : PN .
Y3 < Y20 22 W s KK
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Constraint Programming

Modeling in CP: Traveling Salesman Problem

model = CpoModel()

X [model.integer var(®, Len(nodes)-1, name = fF'nextOf_{i}') for i in nodes]
y [model.integer var(@, Len(nodes)-1, name = f'positionOf_{i}') for 1 in nodes]

model.add(model.all diff(x))
for i in range(len(nodes)):
if nodes[i] != ‘'depot’':
model.add(model.element(y, x[1i]) == y[i]+1)

for i in range(lLen(pickups)):
model.add(y[nodes.index(pickups[i])] < y[nodes.index(deliveries[i])])

model.add(model.minimize(sum(model.element(distances[i], x[1]) for 1 in range(lLen(nodes)))))

sol = model.solve(TimeLimit = 1@, trace_log = False)
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Constraint Programming

Modeling in CP: Traveling Salesman Problem

Decomposition methods in Integer Programming

ABrva

19




Constraint Programming

Modeling in CP: Traveling Salesman Problem

More variants of TSP: o = 2 AL % b
 Capacity constraints
* Node 1 is the pickup point of a parcel to .
be delivered to node 2. PASEK X &)
* Node 3 is the pickup point of a parcel to 2 > :
be delivered to node 4. | AB* ¢
* Node 13 is the pickup point of a parcelto |~ s
be delivered to the depot. < o e S
* No more than 2 parcels can fit in the L
VehICle. (C) OpenstreetMap contributors 5 : 1
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Constraint Programming

Modeling in CP: Traveling Salesman Problem

TSP in CP formulation: _ . ¢ % bom
| / ;de’” &

allDif ferent(x;|i € [1, ...,25,depot])

element(y,x;) =vy; + 1 Vi # depot '

x; € [1,...,25,depot]\i 2
y; €10, ...,25]: the position of the node in the ’ | e

LTS bz : .‘,v I 5 el B
[; € {0,1,2}: loaded parcels at node | ' )

3 21 g 16
© @
.42 Npodnitn
% HAL
®
(QNNP %%
2
%
3 17
o a ©®

(C) OpenStreetMap contributors’
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Constraint Programming

Modeling in CP: Traveling Salesman Problem
TSP in CP formulation:

allDif ferent(x;|i € |1, ..., 25,depot])
element(y,x;) =y; +1 Vi # depot

x; €11,...,25,depot|\i
y; €10, ...,25]: the position of the node in the
route

[; € {0,1,2}: loaded parcels at node |

be, = L + Wy Vi #+ depot

laepot = 1

Decomposition methods in Integer Programming
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Constraint Programmin

Modeling in CP: Traveling Salesman Problem

X Baiy
6
1ITWVO ABY 23
W 20\
> 2
I 5
depot T
. 8
y
22 4
12
LI
AQKQ
-

KaNNPang

(C) OpenStreetMap contributors

1cu
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IAATWVo ABAVC 23 @® Node
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Scheduling

Common variants/objectives




Scheduling

Preliminaries

Annotations:

J: Jobs
M: Machines

Description:

Set |/ contains tasks which should can be carried out by (some of the) machines M.
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Scheduling

Preliminaries

Single-stage jobs — each job is processed in a single phase
e.g., exam scheduling — each course is assigned exactly once

Annotations:

J: Jobs
M: Machines

Multi-stage jobs — each job requires multiple phases of processing

e.g., manufacturing a product usually requires the construction of
multiple compartments, assembled at the end

The compartments may impose a designated order of construction or
machine eligibilities

Description:

Set |/ contains tasks which should can be carried out by (some of the) machines M.
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Scheduling

Preliminaries

Annotations:

J: Jobs
M: Machines
Pjm: Processingtime of job j on machine m

Description:

Set |/ contains tasks which should can be carried out by (some of the) machines M.

Each job is processed for a fixed time interval called processing time. As long as ajob is
processed, then the assighed machine is unavailable (or a part of its resources is
unavailable).
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Scheduling

Preliminaries

Annotations: * Identical machines - all processing times are
the same (p; instead of pj;,)

J: Jobs
M: Machines

Pjm: Processingtime of job j on machine m
* Unrelated machines — each job has different
processing times per machines in an

Description: unrelated manner

e Uniform machines — each machine has a
speed parameter

Set |/ contains tasks which should can be carried out by (some of the) machines M.

Each job is processed for a fixed time interval called processing time. As long as ajob is
processed, then the assighed machine is unavailable (or a part of its resources is
unavailable).
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Scheduling

Preliminaries

Annotations:

J: Jobs

M: Machines

Djm: Processing time of job j on machine m
Sijm: Setuptimes

Description:

Set |/ contains tasks which should can be carried out by (some of the) machines M.

Each job is processed for a fixed time interval called processing time.

Setups are tasks which take place right before the start of processing. The duration of
these tasks are called setup times.
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Scheduling

Preliminaries

Annotations: e Sequence-dependent setup times: the
duration is depended on the previous job
which has been processed - s, is the setup
time of job j on machine m if the previous job
was .

J: Jobs

M: Machines

Djm: Processing time of job j on machine m
Sijm: Setuptimes

Description:

Set |/ contains tasks which should can be carried out by (some of the) machines M.

Each job is processed for a fixed time interval called processing time.

Setups are tasks which take place right before the start of processing. The duration of
these tasks are called setup times.
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Scheduling

Preliminaries

Annotations:

J: Jobs

M: Machines

pjm: Processingtime of job jon machinem  d;: due-time of job j
Sijm: Setuptimes 1 release time of job j

Description:

Set |/ contains tasks which should can be carried out by (some of the) machines M.

Each job is processed for a fixed time interval called processing time.

Setups are tasks which take place right before the start of processing. The duration of
these tasks are called setup times. Release or due times may restrict the solution.
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Scheduling

Preliminaries

e Due-times impose either strict (the job must

Annotations: be completed before its due-time) or soft
(the job could be completed after its due-

J: Jobs time, but a penalty is charged) constraints.

M: Machines

pjm: Processingtime of job jon machinem  d;: due-time of job j

Sijm: Setuptimes 1 release time of job j

Description:

Set |/ contains tasks which should can be carried out by (some of the) machines M.

Each job is processed for a fixed time interval called processing time.

Setups are tasks which take place right before the start of processing. The duration of
these tasks are called setup times. Release or due times may restrict the solution.
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Scheduling

Preliminaries

Common objectives:

Total completion times: min Zjej Cj, Cj: completion time of job j
All jobs must be scheduled in the minimum sum of completion times.

Throughput: mMax Y ie; Xmem Xjm,» Xjm = 1ifjob j is assigned tom
Not all jobs can be scheduled — maximise the number of scheduled jobs

Makespan: mMin Cnax, Cmax = G Vj €]
All jobs must be scheduled in the minimum makespan (when the last job is completed).

(Weighted) Tardiness: minY.;e;(w; )T;, T, = C; —d; Vj €]
All jobs must be scheduled, but not all due-times can be respected — we minimise the delay penalties.
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Scheduling

Parallel Machine Scheduling

The simplest variant:

Single-stage jobs J of processing times p; must be assigned to identical parallel machines M. Each
machine can process one job at the time. We aim at minimising makespan (maximum completion times).

E.g., for 5jobs on 2 machines:
Makespan
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Logic-based Benders Decomposition

Subproblems of discrete variables
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Logic-Based Benders Decomposition

Beyond dual-derived cuts

In classical Benders Decomposition, the subproblem should consist of strictly continuous variables, to
generate dual-derived cuts.

This may be too restrictive: most practical problems require a partitioning which brings forward
subproblems of integer variables.
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Logic-Based Benders Decomposition

Beyond dual-derived cuts

In classical Benders Decomposition, the subproblem should consist of strictly continuous variables, to
generate dual-derived cuts.

This may be too restrictive: most practical problems require a partitioning which brings forward
subproblems of integer variables.

In 2000, J.F.Hooker extended the method, so that subproblems of integer variables are implemented. The
extension is named Logic-Based Benders Decomposition. The method is efficient, as:

* Anycomplicated MILP can be partitioned into more easily solved subproblems.
« Each subproblem can be consisted of any variable and solved by any method (e.g., the subproblem
can be solved by an exact algorithm or a Constraint Programming model, not strictly as a MILP).
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Logic-Based Benders Decomposition

Beyond dual-derived cuts

In classical Benders Decomposition, the subproblem should consist of strictly continuous variables, to
generate dual-derived cuts.

This may be too restrictive: most practical problems require a partitioning which brings forward
subproblems of integer variables.

In 2000, J.F.Hooker extended the method, so that subproblems of integer variables are implemented. The
extension is named Logic-Based Benders Decomposition. The method is efficient, as:

* Anycomplicated MILP can be partitioned into more easily solved subproblems.

« Each subproblem can be consisted of any variable and solved by any method (e.g., the subproblem
can be solved by an exact algorithm or a Constraint Programming model, not strictly as a MILP).

In LBBD, combinatorial cuts are used to eliminate previous solutions.
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Logic-Based Benders Decomposition

Example: Scheduling

J: Jobs {1, 2, 3}
M: Machines {1, 2}

Pjm: Processingtime of job j on machine m 1:{3, 2, 5}, 2: {1, 5, 4}

All jobs must be assigned to one machine. Only one job can be processed at the same
time over all machines.

Objective function: minimization of makespan
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Logic-Based Benders Decomposition

Example: Scheduling

: Makespan

- B |

my ‘ J3 " ‘
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Logic-Based Benders Decomposition

Example: Scheduling

MILP formulation for P:

min  Cpgx

ZmEM Xjimt = 1 Vji€]

t+Djm .
Zt’:t{ y]mt’ ijmx]mt v] E],mEM,t
ZjE]ZmEMyjmt <1 |4
Cmath'ijt Vie], meM,t
Xjimt € {0,1} Vie],meM,t
Yimt € {0,1} ViEJ meM,t
Cmax = 0
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Logic-Based Benders Decomposition

Example: Scheduling

MILP formulation for P:

min  Cpgx

D meM Ximt = 1

E+D jm
Zt’=t Yimt' = Pjm * Xjmt
Zje]ZmEMyjmt <1

Cmax =t Yimt

ijt (S {0, 1}
ijt € {O» 1}

Crax = 0

Decomposition methods in Integer Programming

Vie]
VieE]meM,t
vVt

Vie], meM,t

VieE] meM,t
VieE] meM,t

Setto 1ifjobj start at time t on machine m.

Setto 1ifjobjis processed attime ton
machine m.




Logic-Based Benders Decomposition

Example: Scheduling

MILP formulation for P:

min  Cpgx

YimeM Ximt = 1
t+pjm =
Zt’=t Yimt' = Pjm * Xjmt

Zje]ZmEMyjmt <1
Cmax = t'yjmt

ijt (S {0, 1}
ijt € {O» 1}

Crax = 0

Decomposition methods in Integer Programming

Vie]
VieE]meM,t
vVt

Vie], meM,t

VieE] meM,t
VieE] meM,t

Each job is assigned to one machine.

Setto 1ifjobj start at time t on machine m.

Setto 1ifjobjis processed attime ton
machine m.




Logic-Based Benders Decomposition

Example: Scheduling

MILP formulation for P:

Zje]ZmEMyjmt <1
Cmax = t'yjmt

ijt (S {0, 1}
Yimt € {O» 1}

Cmax = 0

Decomposition methods in Integer Programming

Vi €]J
VieE]meM,t
vVt

Vie], meM,t

VieE] meM,t
VieE] meM,t

Each job which starts at time tis processed at
alltime instances fromttot + pj,.

Setto 1ifjobj start at time t on machine m.

Setto 1ifjobjis processed attime ton
machine m.




Logic-Based Benders Decomposition

Example: Scheduling

MILP formulation for P:

min  Cpgx

D meM Ximt = 1

Zje]ZmEMyjmt <1
Cmax = t'yjmt

ijt (S {0, 1}
Yimt € {O» 1}

Cmax = 0

Decomposition methods in Integer Programming

Vi €]J
VieE]meM,t
vVt

Vie], meM,t

VieE] meM,t
VieE] meM,t

Each time instance can be assigned to no
more than one job.

Setto 1ifjobj start at time t on machine m.

Setto 1ifjobjis processed attime ton
machine m.




Logic-Based Benders Decomposition

Example: Scheduling

MILP formulation for P:

min  Cpgx

D meM Ximt = 1

Zje]ZmEMyjmt <1
Cmax = t'yjmt

ijt (S {0, 1}
Yimt € {O» 1}

Cmax = 0

Decomposition methods in Integer Programming

Vi €]J
VieE]meM,t
vVt

Vie], meM,t

VieE] meM,t
VieE] meM,t

Makespan is set to the maximum completion
time.

Setto 1ifjobj start at time t on machine m.

Setto 1ifjobjis processed attime ton
machine m.




Logic-Based Benders Decomposition

Example: Scheduling

MILP formulation for JM:

min  Cpgx

ZmEM Xjim = 1 Vj€E]

Crnax ZZje]ij‘xjm VvmeM
xij{O,l} VieE]meM
Crax = 0
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Logic-Based Benders Decomposition

Example: Scheduling

MILP formulation for JM:

min  Cpgx

dYmem Xjm = 1 Vi€e] A relaxation of P:
* Eachjobis assigned to exactly one
> ). ey, J g y
Cmax = Z]E] p]m x]m vm € M machine.
e The constraints which enforce the
xjm = {()’ 1} Vj = ]’m EM processing of no more than one job at the
> same time are removed.
Cmax = 0
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Logic-Based Benders Decomposition

Example: Scheduling

: Makespan

my ‘ J2 X21 =1 ‘
m; ‘ J1 J3 ‘
X12 = 1 X32 = 1
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Logic-Based Benders Decomposition

Example: Scheduling

CP formulation for 4:
Given the assignments of jobs to machines, p; = pj, if xj, = 1.

min  Cygx

Cumulative(sj,ﬁj, 1,11 €])

CmaxZSj_I_ﬁj Vi€e]
sj = 0 integer Vjie]
Cnax = 0
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Logic-Based Benders Decomposition

Example: Scheduling

: Makespan

my ‘ J2 - ‘

ms ‘ J1 J3 ‘
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Logic-Based Benders Decomposition

Example: Scheduling

lteration 1:
o After SOlVingQNL — X921 = 1, X12 = 1, X3p = 1, LB = 5.
 Given the solution of M, we solve 4 - UB=7.

 Since LB < UB, the optimal solution is not found yet — a cut is added:

Cmax > UB —-UB - (Z(j,m);fjm=1(1 - xjm))
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Logic-Based Benders Decomposition

Example: Scheduling

lteration 1:
o After SOlVingQNL — X921 = 1, X12 = 1, X3p = 1, LB = 5.
 Given the solution of M, we solve 4 - UB=7.

 Since LB < UB, the optimal solution is not found yet — a cut is added:
Cmagx = UB —UB - (Z(j,m):fjmzl(l — Xjm))

If all jobs are assignhed to the same machine (i.e., Z(j,m):fjmzl(l — Xjm) = 0),

then the value of makespan is set to the upper bound.
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Logic-Based Benders Decomposition

Example: Scheduling

Iteration 1:

* Aftersolving M —>x,y =1,x1, =1,x3, =1,LB=5.

 Given the solution of M, we solve 4 - UB =7 —the best found.

 Since LB < UB, the optimal solution is not found yet — a cut is added:
Crax =7 =7 (1 —x31) + (1 —x12) + (1 — x32))

If all jobs are assignhed to the same machine (i.e., Z(j,m):fjmzl(l — Xjm) = 0),

then the value of makespan is set to the upper bound.
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Logic-Based Benders Decomposition

Example: Scheduling

Iteration 2:

* Aftersolving M —->x;1 =1,x,1 =1,x3, =1,LB=5.

* Given the solution of M, we solve 4 - UB =9 - not improving the best found (7).
 Since LB < UB, the optimal solution is not found yet — a cut is added:

Cmax =9—-9: ((1 - xll) + (1 o x21) + (1 - x32))
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Logic-Based Benders Decomposition

Example: Scheduling

Iteration 3:

* Aftersolving M —->x, =1,x,, =1,x3; =1,LB=6.

* Given the solution of M, we solve 4 = UB =11 - not improving the best found (7).
 Since LB < UB, the optimal solution is not found yet — a cut is added:

Cmax =11-11- ((1 - x12) + (1 o xzz) + (1 - X31))
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Logic-Based Benders Decomposition

Example: Scheduling

lteration 4:
o After SOlVingQNL — X172 = 1,x21 — 1, X31 = 1, LB=7.
* We notice that LB = best found UB (7).

 Since LB =UB, the optimal solution has been found, and the algorithm terminates.
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Logic-Based Benders Decomposition

Example: Scheduling

master = masterProblem(jobs, machines, processingTimes) # Construct the master problem 'M’
lowerBound, upperBound, iteration = @, inf, 1 # Initialize lower bound, upper bound, number of iterations
while(lowerBound < upperBound): # The procedure is repeated until a convergence is reached.
results = opt.solve(master, tee = False) # Solve 'M'
x = {}
for j in master.Jobs:
for m in master.Machines:
if value(master.x[j, m]) > ©.9:
x[J] =m
lowerBound = value(master.obj) # Update the value of the lower bound
startTimes, ub = subProblem(jobs, [processingTimes[j][x[j]] for j in master.Jobs]) # Construct the subproblem 'S’
if ub < upperBound: # Update the value of the upper bound, in case of improvement
upperBound = ub
master.constraints.add(master.Cmax >= ub - ub*(sum((1 - master.x[j, x[j]]) for j in master.Jobs))) # Add cut to "M’
print(f"{iteration:<12}{lowerBound: <16}{upperBound: <16}{round(1ee*(upperBound - lowerBound)/upperBound, 2)}%")
plotRoute(iteration, jobs, machines, startTimes, processingTimes, x)
iteration += 1 # Increase the number of iterations by 1
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Industrial case

Problem description

Scheduling in Textile industry:

Sets
» Asetoforders/to be scheduled
* Aset of parallel machines (weaving looms) M

Parameters

* Eachjob j has a machine-dependent processing time pj;,

* Before processing, each job j must be set up in the weaving loom m —the duration of the setup operation s; ;, is
sequence-and-machine-dependent.

e Setup operations occupy a working group —only R groups are available.

Constraints

* Jobs can be split — parts of the same job can be processed on different machines
* Alljobs must be scheduled.

* No morethan 1 job can be set up or processed on each machine.

* No morethan R setup operations can take place in parallel.
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Industrial case

Problem description

Scheduling in Textile industry:

: : /
Machine 1 : / : Order

. Order 2

: Order 4
Machine 3 / : . raer

: - Order 5
Machine 4 - Order 6

Splitability Availability of . Processing time
working groups Setup time (sequence-
dependent)
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Industrial case

Problem description

Scheduling in Textile industry:
Following the same modeling approach, we should has a set of variables:
Xijme € {0, 1} vie],je/\li},meM,teT

setto 1ifjob j is processed at time instance t on machine m, succeeding job i.

For a moderate scale (~100 jobs), a set of 5 looms and for a daily planning horizon (i.e., 1440 minutes):
|J| X [J| X |[M| X |T| =100 x 100 X 5 X 1440 = 72.000.000 variables

This scale cannot be handled —a MILP would not provide any feasible solution in reasonable time.
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Industrial case

Problem description

Scheduling in Textile industry:

Instead, a relaxation which considers the same setting without the resource constraints would be a simpler
problem, consisted of variables:

Xijm € {0,1} vie],jeJ\{i},, meM,

setto 1ifjobjis processed on machine m, succeeding job i.

For a moderate scale (~100 jobs), a set of 5 looms:
|JI X [J| X |[M| =100 x 100 X 5 = 50.000 variables

An easily handled scale for modern solvers.
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Industrial case

Master problem

For the master problem M:

Sets
« Asetoforders/ to be scheduled
* Aset of parallel machines (weaving looms) M

Parameters

* Each jobj has a machine-dependent processingtime pj,
* Before processing, each job j must be set up in the weaving loom m —the duration of the setup operation s; ;,,
iIs sequence-and-machine-dependent.

Constraints

* Jobs can be split - parts of the same job can be processed on different machines
* Alljobs must be scheduled.

* No morethan 1 job can be set up or processed on each machine.

«—No-morethan-R-setupoperationscarntake ptaceinparattet:
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Industrial case

Master problem

For the master problem M:
min z

subject to:

Objective function

e2 3Bl S Y g alyh,  WmeM

Assi i jobs i hi G,m
ssignment of jobs to machines = 100 oy L
> Wl =100 Vi e J*

meM

k—1 k— Variables
100 -y, ,, =2 W; Vie J*,meM
y,mE{Ol} VieJmeM

Sequencing of jobs
kq ’ fj L n?’ml,wf;l € Z-|' Vi € J,m e M

yz‘,:nl = Z “’zﬁn ViEJ*, mEM

jeJ,j#i

yzm - Z ‘Tj,z,m VieJ*meM

jeJ.j#t

ZmO,J,m = Ym e M

jed
k—1 k-1 k—1 s s *

im _nj,m+|J|' ”m§|J|—1 Vi,jeJ* meM

ni < -1 Vie J*,meM
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Industrial case

Master problem

For the master problem M:

Assignment of jobs to machines

S Wit =00 vieJ
meM
k—1 k—1 )
lUO-yhm EWLm VieJ", meM
W;m: Percentage of jobi € J assigned to machinem € M, integer
Yim: Binary variable; setto 1 if any part of job i € J is assighed to machinem € M

* 100% of each job must be assigned to the machines.
o IfW;,, is greaterthan O, theny; ,, is setto 1.
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Industrial case

Master problem

For the master problem M:

Sequencing of jobs

= :E: :rajﬂt

jeJ,3#1
yéﬂt'_ ZE: :r

j€S3#1
Ez:mﬂa,

JjeJ

k—1 k—1 k 1
Tim ~ Mm T2 5m S 1] =1

i,

nfl <|J -1
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VieJ*, meM

VieJ* meM

Yme M

Vi,jeJ*, me M

VieJ" meM

Xijm: Binary variable; set to 1 if j
succeeds i on machinem

Nim: Order of processing of job i on
machine m

* If any part of i is assigned to m, it will
succeed and precede of exactly one
job.

* An imaginary job 0 is defined as a
starting point.

e Subtour elimination constraints -
each machine has a sequence of
jobs; the properties are similar with
the case of TSP.




Industrial case

Master problem

For the master problem M:

Objective function

Z2 Tﬁo Win +20 D Sigm Tigm vm € M
JEJ* iceJ jeJ*

Makespan objective: the maximum completion time of the schedule of the machines
 Sum of processing times and setup times of the assigned parts of jobs
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Industrial case

Subproblem

For the subproblem 4:

* Foreach machine, a sequence of parts of orders is known.

* The subproblem is not responsible for assigning orders to machines or for sequencing. It must simply adjust
the start times of the setup operations, to ensure that no more than R working groups are occupied at the
same time.

Master: Lower Bound Su_bproblem: Upper Bound
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Industrial case

Subproblem

For the subproblem 4:

* Foreach machine, a sequence of parts of orders is known.

* The subproblem is not responsible for assigning orders to machines or for sequencing. It must simply adjust
the start times of the setup operations, to ensure that no more than R working groups are occupied at the
same time.

min Ck
subject to:
Cumulative((start _of(ﬁﬁm)), (Ef;l), 1, R)

start_of(ﬁi-‘:’m) > end_of(ﬂ,iﬁ_l,m) - ;_Jf'__ll,m Vm € My_y1,i=2,..., |5

Ck > end_of(ﬁ,;‘:’m) —I—ﬁi:nl Vme M,i=1,..., |_§1_1|
ﬁ:ﬁm : interval(size = 5;;1) VmeM,i=1,.., |05
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Industrial case

Benders cuts

For the cuts:

* Eachiteration should define a different allocation of parts of jobs to machines.

WEL Wk 4o <V .Sk Vp = (i,m) € P*

W;“—I;V;“_I-I—ng-)\pEk Vp = (i,m) € P*1

L E Vp = (i,m) € P*!

2> P —F (A = 3 (P - S B
acAk-1 pePF-1
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Industrial case

Results

Machines
Instance 2 5 10 15 20

Gap | Time | GHA | Gap | Time | GHA Gap Time | GHA Gap Time | GHA Gap Time | GHA
10 0.89 e 4.64 1.23 53 10.65 3.82 1488 11.00 6.30 3507 17.02 10.86 6026 14.99
20 0.51 o 1 2.41 1.98 11 6.57 3.96 5755 18.25 9.87 6940 20.59 10.94 7338 31.48
30 0.39 1 2.20 1.03 83 8.71 9.16 4430 26.25 10.29 7035 30.20 10.63 7781 39.39
40 0.57 | 1.04 213 260 6.31 0.74 5113 20.62 11.47 6809 32.57 15.42 7065 47.20
50 0.49 9 0.98 1.48 3479 5.84 3.81 8740 17.86 9.47 7537 36.30 19.69 7274 954.54
80 0.29 6 1.26 1.39 232 3.06 2.87 7545 18.06 9.35 8019 | 35.50 | 18.98 8221 53.82
i 100 0.39 11 0.91 1.52 196 3.10 2.64 6879 14.64 U3 6578 34.33 17.57 7952 48.99
' 150 0.40 41 0.83 1.27 334 3.09 2.58 7836 13.99 5.93 8541 27.90 13.67 10109 | 46.17
200 0.46 392 0.58 1.26 | 2645 2.85 2.33 8679 11.58 5.47 8925 | 28.64 | 17.95 7955 44.28

300 0.44 597 0.56 1.18 5312 2.79 7.40 8185 14.97 & s = 5 3 &

400 0.43 559 0.66 - - - o s s " - - - - -

500 0.44 689 0.54 - - - % = = & 2 2 % = =

700 - - - - - - - - - - - - - - -

1000 - - - - - - . & & & " i x " i
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Solvers

MILP solvers

def masterProblem(): # Master problem 'M'
model = ConcreteModel()

model.y = Var(within = NonNegativeIntegers, bounds = (@, 10)) # Variable 'y’
model.® = Var(within = NonNegativeReals) # Auxiliary variable '6°

model.obj = Objective(rule = model.y + model.6, sense = minimize) # min y + 6
model.constraints = ConstraintlList()

return model

def subProblem(y): # Subproblem 'S', given the value of variable 'y°'
model = ConcreteModel()

* Open-source library in Python interface Tl — TG = [T £ e
 Modeling (not solving) Mixed-Integer Linear nodel. constrainte - Constraintiist) e AmEe) #nex s )
Programs model. constraints. add(model.u <= 2) # u <= 2
* Compatible with most solvers — solve the
constructed model
* Syntax which resembles with the natural language
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Solvers

MILP solvers

Commercial solvers

 |IBM CPLEX Optimization Studio
e Gurobi Optimizer @ GUYROB!

Open-source solvers

* GNU Linear Programming Kit - GLPK

https://www.gnu.org/software/glpk/
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Solvers

CP solvers

IBM CPLEX CP Optimizer.
e Acommercial solver-notfor free
e Academic licenses available

Modeling with DOCplex Python API

model = CpoModel()

x = [model.integer var(®, len(nodes)-1, name = f'nextOf_ {numericIndices[i]}') for i in numericIndices.keys()]
y = [model.integer var(®, Len(nodes)-1, name = f'positionOf_{numericIndices[i]}') for i in numericIndices.keys()]

model.add(model.all diff(x))

for i in numericIndices.keys():

) S if numericIndices[i] != ‘'depot':

m (3 in 1..m) 1[7. (31)7 model.add(model.element(y, x[i]) == y[i]+1)

1[ml); model.add(model .minimize(sum(model.element(distanceMatrix[i], x[i]) for i in numericIndices.keys())))

sol = model.solve(TimeLimit = 60, trace_log = True)

CP modeler documentation
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https://ibmdecisionoptimization.github.io/docplex-doc/cp/docplex.cp.modeler.py.html

Solvers

CP solvers

Open-source CP solvers: Google OR-Tools

&

Learn how to solve optimization problems from C++, Python, C#, See the Release Notes for the latest updates.
or Java.

Get started with OR-Tools Install OR-Tools

Get started Install OR-Tools

About OR-Tools

OR-Tools is an open source software suite for optimization, tuned for tackling the world's toughest problems in vehicle routing, flows,
integer and linear programming, and constraint programming.

After modeling your problem in the programming language of your choice, you can use any of a half dozen solvers to solve it: commercial
solvers such as Gurobi or CPLEX, or open-source solvers such as SCIP, GLPK, or Google's GLOP and award-winning CP-SAT.

https://developers.google.com/optimization
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g

OR-Tools won gold in the international constraint
programming competition every year since 2013.

: Google Al


https://developers.google.com/optimization

Solvers

CP solvers

Open-source CP solvers: Google OR-Tools

cp = cp_model.CpModel()

startRoll = [cp.NewIntVar(rolling state, big M, f"startRoll {j}") for j in instance]
endRoll = [cp.NewIntVar(rolling state, big M, f"endRoll {j}") for j in instance]
rolling = [cp.NewIntervalVar(start = startRoll[j], size = math.ceil(rollDur[instance[j]]), end = endRoll[j],
cp.AddNoOverlap([rolling[j] for j in range(len(instance))])
for j in range(1l, Len(instance)):

cp.Add(startRoll[j] »>= endRoll[j-1])

if instance[j] in strict:

cp.Add(startRoll[j] == endRoll[j-1])
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Ending credits

CP solvers

Modeling languages: MiniZinc

Mon Tue Wed Thu Fri

L] L] L ]
MiniZinc pay
Beula Evening Day Day Day

MiniZinc is a high-level constraint modelling language that allow$ you Clara RN Nioht |
) ) o ) Darby Evening Evening Day Night Evening
to easily express and solve discrete optimisation problems. - 5 . . .
Ernst Might Evening Evening Day Evening

Green Day Day m Evening Evening
Jesze Evening Night Day Day
Get started P & Windows 10 or later , 5
Katie Day Might
Lloyd Day Evening Evening Night

Latest release: 2.9.2 (changelogq) N . .
N < changelog) Mabile Day Night Evening Evening Day

L Packages €) Source code &8 License information Nevin Evening Day Evening Day Evening
Paula Evening Evening Evening Day

MiniZine is developed at Monash University with support from OPTIMA.

Rostering

https://www.minizinc.org/
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