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▪ Simplex algorithm solves Linear Programs optimally.
▪ Most practical problems require variables of discrete values.
▪ Omitting integrality leads to a relaxation of an Integer Program.
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▪ Cutting planes algorithms start by solving the linear relaxation of the problem.
▪ Iteratively, additional constraints restore integrality for variables of continuous values.

𝑚𝑖𝑛 𝑥1 + 𝑥2
2𝑥1 + 𝑥2 ≥ 5
𝑥1 + 2𝑥2 ≥ 6
𝑥1, 𝑥2 ≥ 0

𝑥1 = 1.333
𝑥2 = 2.333
𝑥1 + 𝑥2 = 3.666
Non-integer solution

𝑥1 + 𝑥2 ≥ 4

𝑥1 = 2
𝑥2 = 2
𝑥1 + 𝑥2 = 4
Integer solution
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▪ Branch-and-Bound creates a pair of branches for each variable of continuous value.

e.g., if an integer variable 𝑥 is set to the continuous value 𝑏, then one of the following
should be satisfied:
• 𝑥 ≥ 𝑏  e.g., if 𝑏 = 2.3, then 𝑥 ≥ 3
• 𝑥 ≤ 𝑏  e.g., if 𝑏 = 2.3, then 𝑥 ≤ 2
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Integer Programming methods combine the following techniques:
• Solving a relaxation to obtain a dual bound
• Restoring feasibility over the solution of the relaxation to obtain a primal bound, by 

generating linear inequalities called cuts.



Benders Decomposition
Classical variant and dual-derived cuts
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Overview

In 1962, Jacques F. Benders presented a set of “partitioning procedures”, which
decompose a MILP into a master problem (a relaxation of the original MILP) and a set of
subproblems.
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𝐶 𝑦 , 𝐶 𝑥 , 𝐶(𝑦, 𝑥): Constraints

𝑦: Integer variables
𝑥: Continuous variables
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𝑓 𝑦 , g(x): Non-negative linear cost functions
𝐶 𝑦 , 𝐶 𝑥 , 𝐶(𝑦, 𝑥): Constraints

𝑦: Integer variables
𝑥: Continuous variables

We separate integer and continuous variables:

M: 𝑚𝑖𝑛 𝑓 𝑦
  𝐶(𝑦)

𝑦 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

Evidently, problem M is a relaxation of P:
• The minimum objective value of M is a lower bound 

of the minimum objective value of P.
• All constraints of M hold in P, while there are

constraints of P which are not part of M.
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𝑓 𝑦 , g(x): Non-negative linear cost functions
𝐶 𝑦 , 𝐶 𝑥 , 𝐶(𝑦, 𝑥): Constraints

𝑦: Integer variables
𝑥: Continuous variables

We separate integer and continuous variables:

If ത𝑦 is the solution of M:

S: 𝑚𝑖𝑛 𝑔 𝑥 + 𝑓(ത𝑦)
  𝐶 𝑥, ത𝑦 , 𝐶(𝑥)

𝑥 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

If S has a feasible solution, then its objective value is an 
upper bound of the optimal objective value of P:
• All constraints 𝐶(𝑦) are satisfied by construction.
• The remaining constraints of P are also taken into 

consideration.
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𝑓 𝑦 , g(x): Non-negative linear cost functions
𝐶 𝑦 , 𝐶 𝑥 , 𝐶(𝑦, 𝑥): Constraints

𝑦: Integer variables
𝑥: Continuous variables

We separate integer and continuous variables:

We add an inequality to M, ensuring that if 𝑦 = ത𝑦, then 
the objective value is set to the upper bound:

M: 𝑚𝑖𝑛 𝑓 𝑦 + 𝜃
  𝐶 𝑦
  𝑖𝑓 𝑦 = ത𝑦 → 𝜃 = 𝑔(𝑥)

𝑦 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠
𝜃 ≥ 0

Iteratively solving M and S and generating new
inequalities leads to a convergence.



Benders Decomposition
Overview

In 1962, Jacques F. Benders presented a set of “partitioning procedures”, which
decompose a MILP into a master problem (a relaxation of the original MILP) and a set of
subproblems.

The construction of new inequalities is derived of duality theory; this is why the
subproblem(s) should consist of strictly continuous variables.
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Benders Decomposition
Example

P: 𝑚𝑖𝑛 𝑦 + 2 ⋅ 𝑥

𝑥 + 𝑦 ≥ 5

𝑦 ∈ [0, 10]
𝑥 ≥ 0
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M: 𝑚𝑖𝑛 𝑦

𝑦 ∈ [0, 10]

s: 𝑚𝑖𝑛 2 ⋅ 𝑥

𝑥 ≥ 5 − ത𝑦
𝑥 ≥ 0

ത𝑦is decomposed 
into M and S:
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M: 𝑚𝑖𝑛 𝑦

𝑦 ∈ [0, 10]

Dual of s: 𝑚𝑎𝑥 𝑢 ⋅ (5 − ത𝑦)

𝑢 ≤ 2
𝑢 ≥ 0

ത𝑦is decomposed 
into M and S:
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M: 𝑚𝑖𝑛 𝑦 + 𝜃

  𝜃 ≥ ത𝑢 ⋅ (5 − 𝑦)
𝑦 ∈ [0, 10]
𝜃 ≥ 0

Dual of s: 𝑚𝑎𝑥 𝑢 ⋅ (5 − ത𝑦)

𝑢 ≤ 2
𝑢 ≥ 0

ത𝑦

is decomposed 
into M and S: 𝜃 ≥ ത𝑢 ⋅ (5 − 𝑦)
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Benders decomposition algorithm:

1. Set LB = 0, UB = ∞, t = 1;
2. While(LB < UB):
3. Solve M→ get LB, ത𝑦;
4. Solve S → get ത𝑢, UB;
5. Add cut 𝜃 ≥ ത𝑢 ⋅ (5 − 𝑦) to M;
6. t = t + 1;
7. End while;



Combinatorial cuts
Cuts beyond duality theory



Combinatorial cuts
Traveling Salesman Problem
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Nodes to visit: 25 [1,… , 25]
Depot: 𝑑𝑒𝑝𝑜𝑡
Distances: 𝑑𝑖𝑗: 𝑖, 𝑗 ∈ [1, … , 25, 𝑑𝑒𝑝𝑜𝑡]

Objective: Minimize total covered distance

Constraints:
• Each node is visited exactly once.
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Traveling Salesman Problem
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𝑚𝑖𝑛 σ𝑖∈𝐽σ𝑗∈𝐽 𝑑𝑖𝑗 ⋅ 𝑥𝑖𝑗
σ𝑖∈𝐽 𝑥𝑖𝑗 = 1 ∀𝑗 ∈ 𝐽

σ𝑖∈𝐽 𝑥𝑗𝑖 = 1 ∀𝑗 ∈ 𝐽

𝑢𝑖 + 1 − 𝑢𝑗 ≤ 𝐽 ⋅ (1 − 𝑥𝑖𝑗) ∀𝑖 ∈ 𝐽, 𝑗 ∈ 𝐽\{𝑑𝑒𝑝𝑜𝑡}

𝑥𝑖𝑗 ∈ {0, 1} ∀𝑖 ∈ 𝐽, 𝑗 ∈ 𝐽, 𝑖 ≠ 𝑗

𝑢𝑗 ∈ [0, 𝐽 ] ∀𝑗 ∈ 𝐽



Combinatorial cuts
Traveling Salesman Problem
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𝑚𝑖𝑛 σ𝑖∈𝐽σ𝑗∈𝐽 𝑑𝑖𝑗 ⋅ 𝑥𝑖𝑗
σ𝑖∈𝐽 𝑥𝑖𝑗 = 1 ∀𝑗 ∈ 𝐽

σ𝑖∈𝐽 𝑥𝑗𝑖 = 1 ∀𝑗 ∈ 𝐽

𝑢𝑖 + 1 − 𝑢𝑗 ≤ 𝐽 ⋅ (1 − 𝑥𝑖𝑗) ∀𝑖 ∈ 𝐽, 𝑗 ∈ 𝐽\{𝑑𝑒𝑝𝑜𝑡}

𝑥𝑖𝑗 ∈ {0, 1} ∀𝑖 ∈ 𝐽, 𝑗 ∈ 𝐽, 𝑖 ≠ 𝑗

𝑢𝑗 ∈ [0, 𝐽 ] ∀𝑗 ∈ 𝐽

𝑥𝑖𝑗 = 1 → nodes 𝑖 and 𝑗 are connected
𝑥𝑖𝑗 = 0 → nodes 𝑖 and 𝑗 are not connected



Combinatorial cuts
Traveling Salesman Problem
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𝑚𝑖𝑛 σ𝑖∈𝐽σ𝑗∈𝐽 𝑑𝑖𝑗 ⋅ 𝑥𝑖𝑗
σ𝑖∈𝐽 𝑥𝑖𝑗 = 1 ∀𝑗 ∈ 𝐽

σ𝑖∈𝐽 𝑥𝑗𝑖 = 1 ∀𝑗 ∈ 𝐽

𝑢𝑖 + 1 − 𝑢𝑗 ≤ 𝐽 ⋅ (1 − 𝑥𝑖𝑗) ∀𝑖 ∈ 𝐽, 𝑗 ∈ 𝐽\{𝑑𝑒𝑝𝑜𝑡}

𝑥𝑖𝑗 ∈ {0, 1} ∀𝑖 ∈ 𝐽, 𝑗 ∈ 𝐽, 𝑖 ≠ 𝑗

𝑢𝑗 ∈ [0, 𝐽 ] ∀𝑗 ∈ 𝐽

𝑢𝑗: Order of visiting node 𝑗
e.g., 𝑢𝑗 = 0 → node 𝑗 is visited first



Combinatorial cuts
Traveling Salesman Problem
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𝑚𝑖𝑛 σ𝑖∈𝐽σ𝑗∈𝐽 𝑑𝑖𝑗 ⋅ 𝑥𝑖𝑗
σ𝑖∈𝐽 𝑥𝑖𝑗 = 1 ∀𝑗 ∈ 𝐽

σ𝑖∈𝐽 𝑥𝑗𝑖 = 1 ∀𝑗 ∈ 𝐽

𝑢𝑖 + 1 − 𝑢𝑗 ≤ 𝐽 ⋅ (1 − 𝑥𝑖𝑗) ∀𝑖 ∈ 𝐽, 𝑗 ∈ 𝐽\{𝑑𝑒𝑝𝑜𝑡}

𝑥𝑖𝑗 ∈ {0, 1} ∀𝑖 ∈ 𝐽, 𝑗 ∈ 𝐽, 𝑖 ≠ 𝑗

𝑢𝑗 ∈ [0, 𝐽 ] ∀𝑗 ∈ 𝐽

Objective function: minimization of covered distance



Combinatorial cuts
Traveling Salesman Problem
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𝑚𝑖𝑛 σ𝑖∈𝐽σ𝑗∈𝐽 𝑑𝑖𝑗 ⋅ 𝑥𝑖𝑗
σ𝑖∈𝐽 𝑥𝑖𝑗 = 1 ∀𝑗 ∈ 𝐽

σ𝑖∈𝐽 𝑥𝑗𝑖 = 1 ∀𝑗 ∈ 𝐽

𝑢𝑖 + 1 − 𝑢𝑗 ≤ 𝐽 ⋅ (1 − 𝑥𝑖𝑗) ∀𝑖 ∈ 𝐽, 𝑗 ∈ 𝐽\{𝑑𝑒𝑝𝑜𝑡}

𝑥𝑖𝑗 ∈ {0, 1} ∀𝑖 ∈ 𝐽, 𝑗 ∈ 𝐽, 𝑖 ≠ 𝑗

𝑢𝑗 ∈ [0, 𝐽 ] ∀𝑗 ∈ 𝐽

Each node is visited exactly once:
• Each node is the origin of a trip.
• Each node is the destination of a trip.
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Traveling Salesman Problem

Decomposition methods in Integer Programming 27

𝑚𝑖𝑛 σ𝑖∈𝐽σ𝑗∈𝐽 𝑑𝑖𝑗 ⋅ 𝑥𝑖𝑗
σ𝑖∈𝐽 𝑥𝑖𝑗 = 1 ∀𝑗 ∈ 𝐽

σ𝑖∈𝐽 𝑥𝑗𝑖 = 1 ∀𝑗 ∈ 𝐽

𝑢𝑖 + 1 − 𝑢𝑗 ≤ 𝐽 ⋅ (1 − 𝑥𝑖𝑗) ∀𝑖 ∈ 𝐽, 𝑗 ∈ 𝐽\{𝑑𝑒𝑝𝑜𝑡}

𝑥𝑖𝑗 ∈ {0, 1} ∀𝑖 ∈ 𝐽, 𝑗 ∈ 𝐽, 𝑖 ≠ 𝑗

𝑢𝑗 ∈ [0, 𝐽 ] ∀𝑗 ∈ 𝐽

If 𝑥𝑖𝑗 = 1, then the order of visiting node 𝑗 is larger than the order of visiting 
node 𝑖. If 𝑥𝑖𝑗 = 0, then the right-hand side is always greater/equal than the 
left-hand side.



Combinatorial cuts
Traveling Salesman Problem
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𝑚𝑖𝑛 σ𝑖∈𝐽σ𝑗∈𝐽 𝑑𝑖𝑗 ⋅ 𝑥𝑖𝑗
σ𝑖∈𝐽 𝑥𝑖𝑗 = 1 ∀𝑗 ∈ 𝐽

σ𝑖∈𝐽 𝑥𝑗𝑖 = 1 ∀𝑗 ∈ 𝐽

𝑢𝑖 + 1 − 𝑢𝑗 ≤ 𝐽 ⋅ (1 − 𝑥𝑖𝑗) ∀𝑖 ∈ 𝐽, 𝑗 ∈ 𝐽\{𝑑𝑒𝑝𝑜𝑡}

𝑥𝑖𝑗 ∈ {0, 1} ∀𝑖 ∈ 𝐽, 𝑗 ∈ 𝐽, 𝑖 ≠ 𝑗

𝑢𝑗 ∈ [0, 𝐽 ] ∀𝑗 ∈ 𝐽

Complicating constraints: they imply a weak bound → slow convergence to 
optimality 



Combinatorial cuts
Traveling Salesman Problem
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Without these constraints: Subtours

+ The problem is very easy – it can be 
solved optimally in a few seconds for 
thousands of nodes.

- The solution does not define a single
route which visits all nodes - infeasible.



Combinatorial cuts
Traveling Salesman Problem
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A relaxation of the problem provides a lower bound:

𝑚𝑖𝑛 σ𝑖∈𝐽σ𝑗∈𝐽 𝑑𝑖𝑗 ⋅ 𝑥𝑖𝑗
σ𝑖∈𝐽 𝑥𝑖𝑗 = 1 ∀𝑗 ∈ 𝐽

σ𝑖∈𝐽 𝑥𝑗𝑖 = 1 ∀𝑗 ∈ 𝐽

𝑥𝑖𝑗 ∈ {0, 1} ∀𝑖 ∈ 𝐽, 𝑗 ∈ 𝐽, 𝑖 ≠ 𝑗

If the solution has subtours, then add an inequality which prevents the relaxation from
computing the same evidently infeasible solution.



Combinatorial cuts
Traveling Salesman Problem
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A relaxation of the problem provides a lower bound:

𝑚𝑖𝑛 σ𝑖∈𝐽σ𝑗∈𝐽 𝑑𝑖𝑗 ⋅ 𝑥𝑖𝑗
σ𝑖∈𝐽 𝑥𝑖𝑗 = 1 ∀𝑗 ∈ 𝐽

σ𝑖∈𝐽 𝑥𝑗𝑖 = 1 ∀𝑗 ∈ 𝐽

𝑥𝑖𝑗 ∈ {0, 1} ∀𝑖 ∈ 𝐽, 𝑗 ∈ 𝐽, 𝑖 ≠ 𝑗

If ҧ𝑥𝑖𝑗 are the values of variables 𝑥𝑖𝑗, then:

෍

𝑖,𝑗 : ҧ𝑥𝑖𝑗=1

𝑥𝑖𝑗 ≤ 𝐽 − 1



Combinatorial cuts
Traveling Salesman Problem
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A relaxation of the problem provides a lower bound:

𝑚𝑖𝑛 σ𝑖∈𝐽σ𝑗∈𝐽 𝑑𝑖𝑗 ⋅ 𝑥𝑖𝑗
σ𝑖∈𝐽 𝑥𝑖𝑗 = 1 ∀𝑗 ∈ 𝐽

σ𝑖∈𝐽 𝑥𝑗𝑖 = 1 ∀𝑗 ∈ 𝐽

𝑥𝑖𝑗 ∈ {0, 1} ∀𝑖 ∈ 𝐽, 𝑗 ∈ 𝐽, 𝑖 ≠ 𝑗

If ҧ𝑥𝑖𝑗 are the values of variables 𝑥𝑖𝑗, then:

෍

𝑖,𝑗 : ҧ𝑥𝑖𝑗=1

𝑥𝑖𝑗 ≤ 𝐽 − 1

If 𝑥𝑖𝑗 = 1 for all trips 𝑖, 𝑗 : ҧ𝑥𝑖𝑗 = 1, then
the left-hand side is set to 𝐽 .
Adding this cut ensures that at least one
trip is eliminated.
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Traveling Salesman Problem
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A combinatorial cut can be generated for each subtour:

𝑥4,17 = 1
𝑥17,16 = 1

𝑥16,18 = 1

𝑥18,25 = 1

𝑥25,4 = 1

𝑥4,17 + 𝑥17,16 + 𝑥16,18 + 𝑥18,25 + 𝑥25,4 ≤ 4

or if 𝑆 is the set of subtours, and each subtour 𝑠 is a subset
of trips 𝑖, 𝑗 : ҧ𝑥𝑖𝑗 = 1, then:

σ 𝑖,𝑗 ∈𝑠 𝑥𝑖𝑗 ≤ 𝑠 − 1 ∀𝑠 ∈ 𝑆
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A Branch-and-Cut algorithm:

1. Set LB = 0, t = 1;
2. While True:
3. Solve relaxation → get LB, ҧ𝑥𝑖𝑗, set 𝑆 = ∅;
4. For each node 𝑗 ∈ 𝐽:
5. Generate a subtour 𝑠 starting from 𝑗, append 𝑠 to 𝑆;
6. Add combinatorial cut σ 𝑖,𝑗 ∈𝑠 𝑥𝑖𝑗 ≤ 𝑠 − 1;
7. End for;
8. If 𝑆 = ∅:
9. End while;
10. Else:          
11. t = t + 1;

Combinatorial cuts
Traveling Salesman Problem
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Combinatorial cuts
Traveling Salesman Problem
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Introduction - TSP



Constraint Programming
Example: Sudoku puzzle

Sudoku game:

A 9x9 grid must be filled with numeric values from 1 to 9.

• At each row, each one of the 9 cells should have a unique 
value.

• At each column, each one of the 9 cells should have a 
unique value.

• Each 3x3 subgrid (9 cells) should have a unique value per 
cell.
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Sudoku game:

Given a matrix 𝑠𝑢𝑑𝑜𝑘𝑢𝑖,𝑗, 𝑖 = {1, … , 9}, 𝑗 = {1,… , 9} and fixed
values 𝑠𝑢𝑑𝑜𝑘𝑢𝑖,𝑗 for certain cells, we should solve a
satisfiability problem for which the following conditions hold:

• 𝑠𝑢𝑑𝑜𝑘𝑢𝑖,𝑗 ≠ 𝑠𝑢𝑑𝑜𝑘𝑢𝑖,𝑘 ∀𝑖 = 1,… , 9 , 𝑗 = 1,… , 9 , 𝑘 = 1,… , 9 ≠ 𝑗

• 𝑠𝑢𝑑𝑜𝑘𝑢𝑖,𝑗 ≠ 𝑠𝑢𝑑𝑜𝑘𝑢𝑘,𝑗 ∀𝑗 = 1,… , 9 , 𝑖 = 1,… , 9 , 𝑘 = 1,… , 9 ≠ 𝑖

• 𝑠𝑢𝑑𝑜𝑘𝑢3⋅𝑖+𝑎,3⋅𝑗+𝑏 ≠ 𝑠𝑢𝑑𝑜𝑘𝑢3⋅𝑖+𝑐,3⋅𝑗+𝑑 ∀𝑖 = 0,1,2 , 𝑗 = {0,1,2},

𝑎 = 1,2,3 , 𝑏 = {1,2,3},
𝑐 = 1, 2,3 ≠ 𝑎,
𝑑 = 1,2,3 ≠ 𝑏

• 𝑠𝑢𝑑𝑜𝑘𝑢𝑖,𝑗 = 𝑠𝑢𝑑𝑜𝑘𝑢𝑖,𝑗 ∀ 𝑖, 𝑗 : ∃ 𝑠𝑢𝑑𝑜𝑘𝑢𝑖,𝑗
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Constraint Programming
Example: Sudoku puzzle



Sudoku game:

Given a matrix 𝑠𝑢𝑑𝑜𝑘𝑢𝑖,𝑗, 𝑖 = {1, … , 9}, 𝑗 = {1,… , 9} and fixed
values 𝑠𝑢𝑑𝑜𝑘𝑢𝑖,𝑗 for certain cells, we should solve a
satisfiability problem for which the following conditions hold:

• 𝑠𝑢𝑑𝑜𝑘𝑢𝑖,𝑗 ≠ 𝑠𝑢𝑑𝑜𝑘𝑢𝑖,𝑘 ∀𝑖 = 1,… , 9 , 𝑗 = 1,… , 9 , 𝑘 = 1,… , 9 ≠ 𝑗

• 𝑠𝑢𝑑𝑜𝑘𝑢𝑖,𝑗 ≠ 𝑠𝑢𝑑𝑜𝑘𝑢𝑘,𝑗 ∀𝑗 = 1,… , 9 , 𝑖 = 1,… , 9 , 𝑘 = 1,… , 9 ≠ 𝑖

• 𝑠𝑢𝑑𝑜𝑘𝑢3⋅𝑖+𝑎,3⋅𝑗+𝑏 ≠ 𝑠𝑢𝑑𝑜𝑘𝑢3⋅𝑖+𝑐,3⋅𝑗+𝑑 ∀𝑖 = 0,1,2 , 𝑗 = {0,1,2},

𝑎 = 1,2,3 , 𝑏 = {1,2,3},
𝑐 = 1, 2,3 ≠ 𝑎,
𝑑 = 1,2,3 ≠ 𝑏

• 𝑠𝑢𝑑𝑜𝑘𝑢𝑖,𝑗 = 𝑠𝑢𝑑𝑜𝑘𝑢𝑖,𝑗 ∀ 𝑖, 𝑗 : ∃ 𝑠𝑢𝑑𝑜𝑘𝑢𝑖,𝑗
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Constraint Programming
Example: Sudoku puzzle
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Constraint Programming
Preliminaries

Constraint Satisfaction Problem (CSP):

A CSP consists of:
• a finite set of variables
• a domain – a finite set of values – for each variable
• a finite set of constraints – logic relations over the variables

The solution of a CSP is a complete (for all variables) and consistent (it satisfies all constraints)
assignment of values to variables.
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Constraint Programming
Preliminaries

Constraint Satisfaction Problem (CSP):

A CSP consists of:
• a finite set of variables - 𝑠𝑢𝑑𝑜𝑘𝑢𝑖,𝑗
• a domain – a finite set of values – for each variable – 1 to 9
• a finite set of constraints – logic relations over the variables 

– the uniqueness of values in rows/columns/3x3 subgrids
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Constraint Programming
Preliminaries

Constraint Programming (CP):

Constraint Programming is the computer implementation of an algorithm for solving a CSP [Brailsford et 
al., 1999].

Integer “Programming” or Constraint “Programming”?

In Integer Programming, “programming” refers to mathematical programming, as introduced by George 
Dantzig, creator of the Simplex algorithm.

In Constraint Programming, “programming” refers to the translation of logic constraints from natural 
language to a programming language.
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Constraint Programming
Preliminaries

CP for combinatorial optimisation problems:

• Finds feasible solutions
• Chooses the best solution (i.e., the feasible solution which has the minimum/maximum value of a 

designated function).

• Weaker than Integer Programming at proving optimality
• Not necessarily weaker at finding better solutions – multiple feasible solutions are explored more easily 

than in an IP framework
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Constraint Programming
Principles

Each CP solver may incorporate different algorithms to explore for feasible solutions,
but fundamental principles are globally implemented:

• CP search
• Backtracking
• Propagation
• Pruning
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Constraint Programming
Principles

Each CP solver may incorporate different algorithms to explore for feasible solutions,
but fundamental principles are globally implemented:

• CP search – exploring possible assignments of values to variables
• Backtracking – reverting to previous decisions in case of infeasibilities
• Propagation – adding new constraints based on current decisions
• Pruning – removing inconsistent values from domains
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Constraint Programming
Principles

In the previous example:

• 𝑠𝑢𝑑𝑜𝑘𝑢𝑖,𝑗 ≠ 𝑠𝑢𝑑𝑜𝑘𝑢𝑖,𝑘 ∀𝑖 = 1,… , 9 , 𝑗 = 1,… , 9 , 𝑘 =

1,… , 9 ≠ 𝑗
• 𝑠𝑢𝑑𝑜𝑘𝑢𝑖,𝑗 ≠ 𝑠𝑢𝑑𝑜𝑘𝑢𝑘,𝑗 ∀𝑗 = 1,… , 9 , 𝑖 = 1,… , 9 , 𝑘 =

1,… , 9 ≠ 𝑖
• 𝑠𝑢𝑑𝑜𝑘𝑢3⋅𝑖+𝑎,3⋅𝑗+𝑏 ≠ 𝑠𝑢𝑑𝑜𝑘𝑢3⋅𝑖+𝑐,3⋅𝑗+𝑑 ∀𝑖 = 0,1,2 , 𝑗 = {0,1,2},

𝑎 = 1,2,3 , 𝑏 = {1,2,3},
𝑐 = 1, 2,3 ≠ 𝑎,
𝑑 = 1,2,3 ≠ 𝑏

• 𝑠𝑢𝑑𝑜𝑘𝑢𝑖,𝑗 = 𝑠𝑢𝑑𝑜𝑘𝑢𝑖,𝑗 ∀ 𝑖, 𝑗 : ∃ 𝑠𝑢𝑑𝑜𝑘𝑢𝑖,𝑗
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Constraint Programming
Principles

In the previous example:

• We assign values to variables, in search of a feasible solution. 
For example, we assign value 2 at 𝑠𝑢𝑑𝑜𝑘𝑢2,2. We notice that 
there are conflicts in some constraints:

2
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Constraint Programming
Principles

In the previous example:
2

• We assign values to variables, in search of a feasible solution. 
For example, we assign value 2 at 𝑠𝑢𝑑𝑜𝑘𝑢2,2. We notice that 
there are conflicts in some constraints:

• There exists a cell at the same row with the same value:
𝑠𝑢𝑑𝑜𝑘𝑢2,8 = 2

• As a result, we revert the previous decision.
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Constraint Programming
Principles

In the previous example:
2

• We assign values to variables, in search of a feasible solution. 
For example, we assign value 2 at 𝑠𝑢𝑑𝑜𝑘𝑢2,2. We notice that 
there are conflicts in some constraints:

• There exists a cell at the same row with the same value:
𝑠𝑢𝑑𝑜𝑘𝑢2,8 = 2

• As a result, we revert the previous decision.

Reverting a previous decision due to conflicts with the constraints of
the problem is called backtracking.
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Constraint Programming
Principles

In the previous example:
2

• We assign values to variables, in search of a feasible solution. 
For example, we assign value 2 at 𝑠𝑢𝑑𝑜𝑘𝑢2,2. We notice that 
there are conflicts in some constraints:

• There exists a cell at the same row with the same value:
𝑠𝑢𝑑𝑜𝑘𝑢2,8 = 2

• To revert the previous decision, we add the following constraint:

• 𝑠𝑢𝑑𝑜𝑘𝑢2,2 ≠ 2
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Constraint Programming
Principles

In the previous example:
2

• We assign values to variables, in search of a feasible solution. 
For example, we assign value 2 at 𝑠𝑢𝑑𝑜𝑘𝑢2,2. We notice that 
there are conflicts in some constraints:

• There exists a cell at the same row with the same value:
𝑠𝑢𝑑𝑜𝑘𝑢2,8 = 2

• To revert the previous decision, we add the following constraint:

• 𝑠𝑢𝑑𝑜𝑘𝑢2,2 ≠ 2

Adding constraints based on current/previous decisions is called
propagation.
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Constraint Programming
Principles

In the previous example:
2

• We assign values to variables, in search of a feasible solution. 
For example, we assign value 2 at 𝑠𝑢𝑑𝑜𝑘𝑢2,2. We notice that 
there are conflicts in some constraints:

• There exists a cell at the same row with the same value:
𝑠𝑢𝑑𝑜𝑘𝑢2,8 = 2

• To revert the previous decision, we add the following constraint:

• 𝑠𝑢𝑑𝑜𝑘𝑢2,2 ≠ 2

• The domain of 𝑠𝑢𝑑𝑜𝑘𝑢2,2 becomes {4, 8}.
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Constraint Programming
Principles

In the previous example:
2

• We assign values to variables, in search of a feasible solution. 
For example, we assign value 2 at 𝑠𝑢𝑑𝑜𝑘𝑢2,2. We notice that 
there are conflicts in some constraints:

• There exists a cell at the same row with the same value:
𝑠𝑢𝑑𝑜𝑘𝑢2,8 = 2

• To revert the previous decision, we add the following constraint:

• 𝑠𝑢𝑑𝑜𝑘𝑢2,2 ≠ 2

• The domain of 𝑠𝑢𝑑𝑜𝑘𝑢2,2 becomes {4, 8}.

Reducing the domains of variables as a result of propagation is
called pruning.
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Constraint Programming
Principles

2

8

4
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Constraint Programming
Modeling in CP: Logic constraints

• Disjunctions (OR)/Conjunctions (AND):
For example, cells 𝑠𝑢𝑑𝑜𝑘𝑢6,3 and 𝑠𝑢𝑑𝑜𝑘𝑢7,3 can only
get values 5 or 8:

• 𝑠𝑢𝑑𝑜𝑘𝑢6,3 = 5 ∨ 𝑠𝑢𝑑𝑜𝑘𝑢6,3 = 8

• 𝑠𝑢𝑑𝑜𝑘𝑢7,3 = 5 ∨ 𝑠𝑢𝑑𝑜𝑘𝑢7,3 = 8

The same cells can not get value 1 and 2 and 3 and …
9 except for 5 or 8:

• 𝑠𝑢𝑑𝑜𝑘𝑢6,3 ≠ 1 ∧ 𝑠𝑢𝑑𝑜𝑘𝑢6,3 ≠ 2 ∧ … 𝑠𝑢𝑑𝑜𝑘𝑢6,3 ≠ 9
• 𝑠𝑢𝑑𝑜𝑘𝑢7,3 ≠ 1 ∧ 𝑠𝑢𝑑𝑜𝑘𝑢7,3 ≠ 2 ∧ … 𝑠𝑢𝑑𝑜𝑘𝑢7,3 ≠ 9

2

8

4

5,8

5,8
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Constraint Programming
Modeling in CP: Conditional constraints

2

8

4

5,8

5,8

• If a (set of) condition(s) is True, then a constraint
is imposed:

For example, if 𝑠𝑢𝑑𝑜𝑘𝑢6,3 = 5, then 𝑠𝑢𝑑𝑜𝑘𝑢7,3 = 8:

• if 𝑠𝑢𝑑𝑜𝑘𝑢6,3 = 5 → 𝑠𝑢𝑑𝑜𝑘𝑢7,3 = 8

• if 𝑠𝑢𝑑𝑜𝑘𝑢6,3 = 8 → 𝑠𝑢𝑑𝑜𝑘𝑢7,3 = 5

• if 𝑠𝑢𝑑𝑜𝑘𝑢7,3 = 5 → 𝑠𝑢𝑑𝑜𝑘𝑢6,3 = 8
• if 𝑠𝑢𝑑𝑜𝑘𝑢7,3 = 8 → 𝑠𝑢𝑑𝑜𝑘𝑢6,3 = 5
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Constraint Programming
Modeling in CP: Conditional constraints

2

8

4

5,8

5,8

• If a (set of) condition(s) is True, then a constraint
is imposed:

For example, if 𝑠𝑢𝑑𝑜𝑘𝑢6,3 = 5, then 𝑠𝑢𝑑𝑜𝑘𝑢7,3 = 8:

• if 𝑠𝑢𝑑𝑜𝑘𝑢6,3 = 5 → 𝑠𝑢𝑑𝑜𝑘𝑢7,3 = 8

• if 𝑠𝑢𝑑𝑜𝑘𝑢6,3 = 8 → 𝑠𝑢𝑑𝑜𝑘𝑢7,3 = 5

• if 𝑠𝑢𝑑𝑜𝑘𝑢7,3 = 5 → 𝑠𝑢𝑑𝑜𝑘𝑢6,3 = 8
• if 𝑠𝑢𝑑𝑜𝑘𝑢7,3 = 8 → 𝑠𝑢𝑑𝑜𝑘𝑢6,3 = 5

All these constraints are identical – modeling flexibility.
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Constraint Programming
Modeling in CP: Predicates

Although each solver follows customised modeling conventions, several constraints
are universally applied in CSPs. For example, imposing that all variables of a subset
receive different values is a common constraint.

To standardise Constraint Programming modeling, the community has introduced
certain functions which impose such common constraints. These functions are called
predicates, and the imposed constraints are called global constraints.
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Constraint Programming
Modeling in CP: Predicates

Although each solver follows customised modeling conventions, several constraints
are universally applied in CSPs. For example, imposing that all variables of a subset
receive different values is a common constraint.

To standardise Constraint Programming modeling, the community has introduced
certain functions which impose such common constraints. These functions are called
predicates, and the imposed constraints are called global constraints.

E.g., all solvers have incorporated a predicate called 𝑎𝑙𝑙𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑋 , ensuring that all
variables of set 𝑋 receive different values.
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Constraint Programming
Modeling in CP: Predicates

• 𝑎𝑙𝑙𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑠𝑢𝑑𝑜𝑘𝑢𝑖,𝑗 𝑗 = 1,… , 9 ∀𝑖 = 1, … , 9

To impose that all cells at the same row receive
different values:

meaning that variables 𝑠𝑢𝑑𝑜𝑘𝑢𝑖,𝑗 for a fixed index 𝑖

get unique values.
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Constraint Programming
Modeling in CP: Predicates

• 𝑎𝑙𝑙𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑠𝑢𝑑𝑜𝑘𝑢𝑖,𝑗 𝑗 = 1,… , 9 ∀𝑖 = 1, … , 9

To impose that all cells at the same row receive
different values:

meaning that variables 𝑠𝑢𝑑𝑜𝑘𝑢𝑖,𝑗 for a fixed index 𝑖

get unique values.

Previous constraint:
• 𝑠𝑢𝑑𝑜𝑘𝑢𝑖,𝑗 ≠ 𝑠𝑢𝑑𝑜𝑘𝑢𝑖,𝑘 ∀𝑖 = 1,… , 9 , 𝑗 = 1,… , 9 , 𝑘 = 1,… , 9 ≠ 𝑗

Scale: 9 x 9 x 8 = 648 constraints

New constraint:
• 𝑎𝑙𝑙𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑠𝑢𝑑𝑜𝑘𝑢𝑖,𝑗 𝑗 = 1,… , 9 ∀𝑖 = 1,… , 9

Scale: 9 constraints
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Constraint Programming
Modeling in CP: Predicates
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Nodes to visit: 25 [1,… , 25]
Depot: 𝑑𝑒𝑝𝑜𝑡
Distances: 𝑑𝑖𝑗: 𝑖, 𝑗 ∈ [1, … , 25, 𝑑𝑒𝑝𝑜𝑡]

Objective: Minimize total covered distance

Constraints:
• Each node is visited exactly once.

Constraint Programming
Modeling in CP: Traveling Salesman Problem
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Constraint Programming
Modeling in CP: Traveling Salesman Problem

𝑚𝑖𝑛 σ𝑖∈𝐽σ𝑗∈𝐽𝑑𝑖𝑗 ⋅ 𝑥𝑖𝑗
σ𝑖∈𝐽 𝑥𝑖𝑗 = 1 ∀𝑗 ∈ 𝐽

σ𝑖∈𝐽 𝑥𝑗𝑖 = 1 ∀𝑗 ∈ 𝐽

𝑢𝑖 + 1 − 𝑢𝑗 ≤ 𝐽 ⋅ (1 − 𝑥𝑖𝑗) ∀𝑖 ∈ 𝐽, 𝑗 ∈ 𝐽\{𝑑𝑒𝑝𝑜𝑡}

𝑥𝑖𝑗 ∈ {0, 1} ∀𝑖 ∈ 𝐽, 𝑗 ∈ 𝐽, 𝑖 ≠ 𝑗

𝑢𝑗 ∈ [0, 𝐽 ] ∀𝑗 ∈ 𝐽
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Constraint Programming
Modeling in CP: Traveling Salesman Problem

TSP can be easily modeled as a CSP:

𝑥𝑖: variables indicating the next stop of
node 𝑖

Domain of 𝑥𝑖: 1,… , 25, 𝑑𝑒𝑝𝑜𝑡 \{𝑖}

E.g., if 𝑥1 = 2, then node ‘2’ succeeds node ‘1’.
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Constraint Programming
Modeling in CP: Traveling Salesman Problem

TSP can be easily modeled as a CSP:

𝑥𝑖: variables indicating the next stop of
node 𝑖

Domain of 𝑥𝑖: 1,… , 25, 𝑑𝑒𝑝𝑜𝑡 \{𝑖}

E.g., if 𝑥1 = 2, then node ‘2’ succeeds node ‘1’.

𝑎𝑙𝑙𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡(𝑥𝑖|𝑖 ∈ 1,… , 25, 𝑑𝑒𝑝𝑜𝑡 )
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Constraint Programming
Modeling in CP: Traveling Salesman Problem

Subtour elimination constraints in IP:

𝑢𝑖 + 1 − 𝑢𝑗 ≤ 𝐽 ⋅ (1 − 𝑥𝑖𝑗) ∀𝑖 ∈ 𝐽, 𝑗 ∈ 𝐽\{𝑑𝑒𝑝𝑜𝑡}

Subtour elimination constraints in CP:

𝑦𝑖 ∈ [0,… , 25]: the position of the node in the
route

All 26 nodes are visited → all values in [0, 25]
will be assigned.



Decomposition methods in Integer Programming 68

Constraint Programming
Modeling in CP: element predicate

𝒆𝒍𝒆𝒎𝒆𝒏𝒕 predicate:

CP modeling allows using variables as indices of other variables or parameters.
For example:

𝑦𝑥𝑖: the position of the next node of 𝑖
𝑑𝑖𝑥𝑖: the distance from node 𝑖 to its successor
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Constraint Programming
Modeling in CP: element predicate

𝒆𝒍𝒆𝒎𝒆𝒏𝒕 predicate:

CP modeling allows using variables as indices of other variables or parameters.
For example:

𝑦𝑥𝑖: the position of the next node of 𝑖
𝑑𝑖𝑥𝑖: the distance from node 𝑖 to its successor

The 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 predicate assigns values of variables to indices:
𝑒𝑙𝑒𝑚𝑒𝑛𝑡(𝑦, 𝑥𝑖): returns 𝑦𝑥𝑖
𝑒𝑙𝑒𝑚𝑒𝑛𝑡(𝑑𝑖 , 𝑥𝑖): returns 𝑑𝑖𝑥𝑖
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Constraint Programming
Modeling in CP: Traveling Salesman Problem

Subtour elimination constraints in IP:

𝑢𝑖 + 1 − 𝑢𝑗 ≤ 𝐽 ⋅ (1 − 𝑥𝑖𝑗) ∀𝑖 ∈ 𝐽, 𝑗 ∈ 𝐽\{𝑑𝑒𝑝𝑜𝑡}

Subtour elimination constraints in CP:

𝑦𝑖 ∈ [0,… , 25]: the position of the node in the
route

𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑦, 𝑥𝑖 = 𝑦𝑖 + 1 ∀𝑖 ≠ 𝑑𝑒𝑝𝑜𝑡
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Constraint Programming
Modeling in CP: Traveling Salesman Problem

TSP in CP formulation:

𝑎𝑙𝑙𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡(𝑥𝑖|𝑖 ∈ 1,… , 25, 𝑑𝑒𝑝𝑜𝑡 )
𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑦, 𝑥𝑖 = 𝑦𝑖 + 1 ∀𝑖 ≠ 𝑑𝑒𝑝𝑜𝑡

𝑥𝑖 ∈ [1,… , 25, 𝑑𝑒𝑝𝑜𝑡]\𝑖
𝑦𝑖 ∈ [0,… , 25]: the position of the node in the
route
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Constraint Programming
Modeling in CP: Traveling Salesman Problem

TSP in CP formulation:

𝑎𝑙𝑙𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡(𝑥𝑖|𝑖 ∈ 1,… , 25, 𝑑𝑒𝑝𝑜𝑡 )
𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑦, 𝑥𝑖 = 𝑦𝑖 + 1 ∀𝑖 ≠ 𝑑𝑒𝑝𝑜𝑡

𝑥𝑖 ∈ [1,… , 25, 𝑑𝑒𝑝𝑜𝑡]\𝑖
𝑦𝑖 ∈ [0,… , 25]: the position of the node in the
route

Objective function:
min σ𝑖 𝑒𝑙𝑒𝑚𝑒𝑛𝑡(𝑑𝑖 , 𝑥𝑖)
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Constraint Programming
Modeling in CP: Traveling Salesman Problem
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Constraint Programming
Modeling in CP: Traveling Salesman Problem

More variants of TSP:

• Pickup and Delivery TSP
• We can visit node 6 only after

node 1 has been visited.
• We can visit node 9 only after

node 2 has been visited.
• We can visit node 20 only after

node 3 has been visited.
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Constraint Programming
Modeling in CP: Traveling Salesman Problem

More variants of TSP:

• Pickup and Delivery TSP
• We can visit node 6 only after

node 1 has been visited.
• We can visit node 9 only after

node 2 has been visited.
• We can visit node 20 only after

node 3 has been visited.

𝑦1 < 𝑦6
𝑦2 < 𝑦9
𝑦3 < 𝑦20
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Constraint Programming
Modeling in CP: Traveling Salesman Problem
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Constraint Programming
Modeling in CP: Traveling Salesman Problem
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Constraint Programming
Modeling in CP: Traveling Salesman Problem

More variants of TSP:

• Capacity constraints
• Node 1 is the pickup point of a parcel to

be delivered to node 2.
• Node 3 is the pickup point of a parcel to

be delivered to node 4.
• …
• Node 13 is the pickup point of a parcel to

be delivered to the depot.
• No more than 2 parcels can fit in the

vehicle.
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Constraint Programming
Modeling in CP: Traveling Salesman Problem

TSP in CP formulation:

𝑎𝑙𝑙𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡(𝑥𝑖|𝑖 ∈ 1,… , 25, 𝑑𝑒𝑝𝑜𝑡 )
𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑦, 𝑥𝑖 = 𝑦𝑖 + 1 ∀𝑖 ≠ 𝑑𝑒𝑝𝑜𝑡

𝑥𝑖 ∈ [1,… , 25, 𝑑𝑒𝑝𝑜𝑡]\𝑖
𝑦𝑖 ∈ [0,… , 25]: the position of the node in the
route
𝑙𝑖 ∈ {0, 1, 2}: loaded parcels at node i
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Constraint Programming
Modeling in CP: Traveling Salesman Problem

TSP in CP formulation:

𝑎𝑙𝑙𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡(𝑥𝑖|𝑖 ∈ 1,… , 25, 𝑑𝑒𝑝𝑜𝑡 )
𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑦, 𝑥𝑖 = 𝑦𝑖 + 1 ∀𝑖 ≠ 𝑑𝑒𝑝𝑜𝑡

𝑥𝑖 ∈ [1,… , 25, 𝑑𝑒𝑝𝑜𝑡]\𝑖
𝑦𝑖 ∈ [0,… , 25]: the position of the node in the
route
𝑙𝑖 ∈ {0, 1, 2}: loaded parcels at node i

𝑙𝑥𝑖 = 𝑙𝑖 +𝑤𝑖 ∀𝑖 ≠ 𝑑𝑒𝑝𝑜𝑡

𝑙𝑑𝑒𝑝𝑜𝑡 = 1
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Constraint Programming
Modeling in CP: Traveling Salesman Problem



Scheduling
Common variants/objectives
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Annotations:

𝐽: Jobs
𝑀: Machines

Preliminaries

Description:

Set 𝐽 contains tasks which should can be carried out by (some of the) machines 𝑀.
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Annotations:

𝐽: Jobs
𝑀: Machines

Preliminaries

• Single-stage jobs – each job is processed in a single phase
e.g., exam scheduling – each course is assigned exactly once

• Multi-stage jobs – each job requires multiple phases of processing
e.g., manufacturing a product usually requires the construction of
multiple compartments, assembled at the end
The compartments may impose a designated order of construction or
machine eligibilities

Description:

Set 𝐽 contains tasks which should can be carried out by (some of the) machines 𝑀.
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Annotations:

𝐽: Jobs
𝑀: Machines
𝑝𝑗𝑚: Processing time of job 𝑗 on machine 𝑚

Preliminaries

Description:

Set 𝐽 contains tasks which should can be carried out by (some of the) machines 𝑀.
Each job is processed for a fixed time interval called processing time. As long as a job is
processed, then the assigned machine is unavailable (or a part of its resources is
unavailable).
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Annotations:

𝐽: Jobs
𝑀: Machines
𝑝𝑗𝑚: Processing time of job 𝑗 on machine 𝑚

Preliminaries

• Identical machines – all processing times are
the same (𝑝𝑗 instead of 𝑝𝑗𝑚)

• Uniform machines – each machine has a
speed parameter

• Unrelated machines – each job has different
processing times per machines in an
unrelated mannerDescription:

Set 𝐽 contains tasks which should can be carried out by (some of the) machines 𝑀.
Each job is processed for a fixed time interval called processing time. As long as a job is
processed, then the assigned machine is unavailable (or a part of its resources is
unavailable).
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Annotations:

𝐽: Jobs
𝑀: Machines
𝑝𝑗𝑚: Processing time of job 𝑗 on machine 𝑚
𝑠𝑖𝑗𝑚: Setup times

Preliminaries

Description:

Set 𝐽 contains tasks which should can be carried out by (some of the) machines 𝑀.
Each job is processed for a fixed time interval called processing time.
Setups are tasks which take place right before the start of processing. The duration of
these tasks are called setup times.
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Annotations:

𝐽: Jobs
𝑀: Machines
𝑝𝑗𝑚: Processing time of job 𝑗 on machine 𝑚
𝑠𝑖𝑗𝑚: Setup times

Preliminaries

Description:

Set 𝐽 contains tasks which should can be carried out by (some of the) machines 𝑀.
Each job is processed for a fixed time interval called processing time.
Setups are tasks which take place right before the start of processing. The duration of
these tasks are called setup times.

• Sequence-dependent setup times: the
duration is depended on the previous job
which has been processed - 𝑠𝑖𝑗𝑚 is the setup
time of job 𝑗 on machine 𝑚 if the previous job
was 𝑖.
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Annotations:

𝐽: Jobs
𝑀: Machines
𝑝𝑗𝑚: Processing time of job 𝑗 on machine 𝑚 𝑑𝑗: due-time of job 𝑗
𝑠𝑖𝑗𝑚: Setup times 𝑟𝑗: release time of job 𝑗

Preliminaries

Description:

Set 𝐽 contains tasks which should can be carried out by (some of the) machines 𝑀.
Each job is processed for a fixed time interval called processing time.
Setups are tasks which take place right before the start of processing. The duration of
these tasks are called setup times. Release or due times may restrict the solution.
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Annotations:

𝐽: Jobs
𝑀: Machines
𝑝𝑗𝑚: Processing time of job 𝑗 on machine 𝑚 𝑑𝑗: due-time of job 𝑗
𝑠𝑖𝑗𝑚: Setup times 𝑟𝑗: release time of job 𝑗

Preliminaries

Description:

Set 𝐽 contains tasks which should can be carried out by (some of the) machines 𝑀.
Each job is processed for a fixed time interval called processing time.
Setups are tasks which take place right before the start of processing. The duration of
these tasks are called setup times. Release or due times may restrict the solution.

• Due-times impose either strict (the job must
be completed before its due-time) or soft
(the job could be completed after its due-
time, but a penalty is charged) constraints.
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Common objectives:

Total completion times: min σ𝑗∈𝐽 𝐶𝑗 , 𝐶𝑗: completion time of job 𝑗
All jobs must be scheduled in the minimum sum of completion times.

Throughput: max σ𝑗∈𝐽σ𝑚∈𝑀 𝑥𝑗𝑚 , 𝑥𝑗𝑚 = 1 if job 𝑗 is assigned to 𝑚
Not all jobs can be scheduled – maximise the number of scheduled jobs

Makespan: min 𝐶max, Cmax ≥ 𝐶𝑗 ∀𝑗 ∈ 𝐽

All jobs must be scheduled in the minimum makespan (when the last job is completed).

(Weighted) Tardiness: minσ𝑗∈𝐽(𝑤𝑗 ⋅)𝑇𝑗 , 𝑇𝑗 ≥ 𝐶𝑗 − 𝑑𝑗 ∀𝑗 ∈ 𝐽

All jobs must be scheduled, but not all due-times can be respected – we minimise the delay penalties.

Preliminaries
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The simplest variant:

Single-stage jobs 𝐽 of processing times 𝑝𝑗 must be assigned to identical parallel machines 𝑀. Each
machine can process one job at the time. We aim at minimising makespan (maximum completion times).

E.g., for 5 jobs on 2 machines:

Parallel Machine Scheduling

𝑗1 𝑗2

𝑗3 𝑗4 𝑗5

𝑚1

𝑚2

Makespan



Logic-based Benders Decomposition
Subproblems of discrete variables
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Logic-Based Benders Decomposition
Beyond dual-derived cuts

In classical Benders Decomposition, the subproblem should consist of strictly continuous variables, to
generate dual-derived cuts.

This may be too restrictive: most practical problems require a partitioning which brings forward
subproblems of integer variables.
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Logic-Based Benders Decomposition
Beyond dual-derived cuts

In classical Benders Decomposition, the subproblem should consist of strictly continuous variables, to
generate dual-derived cuts.

This may be too restrictive: most practical problems require a partitioning which brings forward
subproblems of integer variables.

In 2000, J.F.Hooker extended the method, so that subproblems of integer variables are implemented. The
extension is named Logic-Based Benders Decomposition. The method is efficient, as:

• Any complicated MILP can be partitioned into more easily solved subproblems.
• Each subproblem can be consisted of any variable and solved by any method (e.g., the subproblem

can be solved by an exact algorithm or a Constraint Programming model, not strictly as a MILP).
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Logic-Based Benders Decomposition
Beyond dual-derived cuts

In classical Benders Decomposition, the subproblem should consist of strictly continuous variables, to
generate dual-derived cuts.

This may be too restrictive: most practical problems require a partitioning which brings forward
subproblems of integer variables.

In 2000, J.F.Hooker extended the method, so that subproblems of integer variables are implemented. The
extension is named Logic-Based Benders Decomposition. The method is efficient, as:

• Any complicated MILP can be partitioned into more easily solved subproblems.
• Each subproblem can be consisted of any variable and solved by any method (e.g., the subproblem

can be solved by an exact algorithm or a Constraint Programming model, not strictly as a MILP).

In LBBD, combinatorial cuts are used to eliminate previous solutions.
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Logic-Based Benders Decomposition
Example: Scheduling

𝐽: Jobs {1, 2, 3}
𝑀: Machines {1, 2}

𝑝𝑗𝑚: Processing time of job 𝑗 on machine m 1: {3, 2, 5}, 2: {1, 5, 4}

All jobs must be assigned to one machine. Only one job can be processed at the same
time over all machines.

Objective function: minimization of makespan



𝑗3

𝑗2𝑗1
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Logic-Based Benders Decomposition
Example: Scheduling

𝑚1

𝑚2

Makespan
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Logic-Based Benders Decomposition
Example: Scheduling

MILP formulation for P:

𝑚𝑖𝑛 𝐶𝑚𝑎𝑥

σ𝑚∈𝑀 𝑥𝑗𝑚𝑡 = 1 ∀𝑗 ∈ 𝐽

σ
𝑡′=𝑡

𝑡+𝑝𝑗𝑚
𝑦𝑗𝑚𝑡′ ≥ 𝑝𝑗𝑚 ⋅ 𝑥𝑗𝑚𝑡 ∀𝑗 ∈ 𝐽,𝑚 ∈ 𝑀, 𝑡

σ𝑗∈𝐽σ𝑚∈𝑀 𝑦𝑗𝑚𝑡 ≤ 1 ∀𝑡

𝐶𝑚𝑎𝑥 ≥ 𝑡 ⋅ 𝑦𝑗𝑚𝑡 ∀𝑗 ∈ 𝐽,𝑚 ∈ 𝑀, 𝑡

𝑥𝑗𝑚𝑡 ∈ {0, 1} ∀𝑗 ∈ 𝐽,𝑚 ∈ 𝑀, 𝑡

𝑦𝑗𝑚𝑡 ∈ {0, 1} ∀𝑗 ∈ 𝐽,𝑚 ∈ 𝑀, 𝑡

𝐶𝑚𝑎𝑥 ≥ 0
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Logic-Based Benders Decomposition
Example: Scheduling

MILP formulation for P:

𝑚𝑖𝑛 𝐶𝑚𝑎𝑥

σ𝑚∈𝑀 𝑥𝑗𝑚𝑡 = 1 ∀𝑗 ∈ 𝐽

σ
𝑡′=𝑡

𝑡+𝑝𝑗𝑚
𝑦𝑗𝑚𝑡′ ≥ 𝑝𝑗𝑚 ⋅ 𝑥𝑗𝑚𝑡 ∀𝑗 ∈ 𝐽,𝑚 ∈ 𝑀, 𝑡

σ𝑗∈𝐽σ𝑚∈𝑀 𝑦𝑗𝑚𝑡 ≤ 1 ∀𝑡

𝐶𝑚𝑎𝑥 ≥ 𝑡 ⋅ 𝑦𝑗𝑚𝑡 ∀𝑗 ∈ 𝐽,𝑚 ∈ 𝑀, 𝑡

𝑥𝑗𝑚𝑡 ∈ {0, 1} ∀𝑗 ∈ 𝐽,𝑚 ∈ 𝑀, 𝑡

𝑦𝑗𝑚𝑡 ∈ {0, 1} ∀𝑗 ∈ 𝐽,𝑚 ∈ 𝑀, 𝑡

𝐶𝑚𝑎𝑥 ≥ 0

Set to 1 if job j start at time t on machine m.

Set to 1 if job j is processed at time t on 
machine m.
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Logic-Based Benders Decomposition
Example: Scheduling

MILP formulation for P:

𝑚𝑖𝑛 𝐶𝑚𝑎𝑥

σ𝑚∈𝑀 𝑥𝑗𝑚𝑡 = 1 ∀𝑗 ∈ 𝐽

σ
𝑡′=𝑡

𝑡+𝑝𝑗𝑚
𝑦𝑗𝑚𝑡′ ≥ 𝑝𝑗𝑚 ⋅ 𝑥𝑗𝑚𝑡 ∀𝑗 ∈ 𝐽,𝑚 ∈ 𝑀, 𝑡

σ𝑗∈𝐽σ𝑚∈𝑀 𝑦𝑗𝑚𝑡 ≤ 1 ∀𝑡

𝐶𝑚𝑎𝑥 ≥ 𝑡 ⋅ 𝑦𝑗𝑚𝑡 ∀𝑗 ∈ 𝐽,𝑚 ∈ 𝑀, 𝑡

𝑥𝑗𝑚𝑡 ∈ {0, 1} ∀𝑗 ∈ 𝐽,𝑚 ∈ 𝑀, 𝑡

𝑦𝑗𝑚𝑡 ∈ {0, 1} ∀𝑗 ∈ 𝐽,𝑚 ∈ 𝑀, 𝑡

𝐶𝑚𝑎𝑥 ≥ 0

Set to 1 if job j start at time t on machine m.

Set to 1 if job j is processed at time t on 
machine m.

Each job is assigned to one machine.
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Logic-Based Benders Decomposition
Example: Scheduling

MILP formulation for P:

𝑚𝑖𝑛 𝐶𝑚𝑎𝑥

σ𝑚∈𝑀 𝑥𝑗𝑚𝑡 = 1 ∀𝑗 ∈ 𝐽

σ
𝑡′=𝑡

𝑡+𝑝𝑗𝑚
𝑦𝑗𝑚𝑡′ ≥ 𝑝𝑗𝑚 ⋅ 𝑥𝑗𝑚𝑡 ∀𝑗 ∈ 𝐽,𝑚 ∈ 𝑀, 𝑡

σ𝑗∈𝐽σ𝑚∈𝑀 𝑦𝑗𝑚𝑡 ≤ 1 ∀𝑡

𝐶𝑚𝑎𝑥 ≥ 𝑡 ⋅ 𝑦𝑗𝑚𝑡 ∀𝑗 ∈ 𝐽,𝑚 ∈ 𝑀, 𝑡

𝑥𝑗𝑚𝑡 ∈ {0, 1} ∀𝑗 ∈ 𝐽,𝑚 ∈ 𝑀, 𝑡

𝑦𝑗𝑚𝑡 ∈ {0, 1} ∀𝑗 ∈ 𝐽,𝑚 ∈ 𝑀, 𝑡

𝐶𝑚𝑎𝑥 ≥ 0

Set to 1 if job j start at time t on machine m.

Set to 1 if job j is processed at time t on 
machine m.

Each job which starts at time t is processed at 
all time instances from 𝑡 to 𝑡 + 𝑝𝑗𝑚.
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Logic-Based Benders Decomposition
Example: Scheduling

MILP formulation for P:

𝑚𝑖𝑛 𝐶𝑚𝑎𝑥

σ𝑚∈𝑀 𝑥𝑗𝑚𝑡 = 1 ∀𝑗 ∈ 𝐽

σ
𝑡′=𝑡

𝑡+𝑝𝑗𝑚
𝑦𝑗𝑚𝑡′ ≥ 𝑝𝑗𝑚 ⋅ 𝑥𝑗𝑚𝑡 ∀𝑗 ∈ 𝐽,𝑚 ∈ 𝑀, 𝑡

σ𝑗∈𝐽σ𝑚∈𝑀 𝑦𝑗𝑚𝑡 ≤ 1 ∀𝑡

𝐶𝑚𝑎𝑥 ≥ 𝑡 ⋅ 𝑦𝑗𝑚𝑡 ∀𝑗 ∈ 𝐽,𝑚 ∈ 𝑀, 𝑡

𝑥𝑗𝑚𝑡 ∈ {0, 1} ∀𝑗 ∈ 𝐽,𝑚 ∈ 𝑀, 𝑡

𝑦𝑗𝑚𝑡 ∈ {0, 1} ∀𝑗 ∈ 𝐽,𝑚 ∈ 𝑀, 𝑡

𝐶𝑚𝑎𝑥 ≥ 0

Set to 1 if job j start at time t on machine m.

Set to 1 if job j is processed at time t on 
machine m.

Each time instance can be assigned to no 
more than one job.
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Logic-Based Benders Decomposition
Example: Scheduling

MILP formulation for P:

𝑚𝑖𝑛 𝐶𝑚𝑎𝑥

σ𝑚∈𝑀 𝑥𝑗𝑚𝑡 = 1 ∀𝑗 ∈ 𝐽

σ
𝑡′=𝑡

𝑡+𝑝𝑗𝑚
𝑦𝑗𝑚𝑡′ ≥ 𝑝𝑗𝑚 ⋅ 𝑥𝑗𝑚𝑡 ∀𝑗 ∈ 𝐽,𝑚 ∈ 𝑀, 𝑡

σ𝑗∈𝐽σ𝑚∈𝑀 𝑦𝑗𝑚𝑡 ≤ 1 ∀𝑡

𝐶𝑚𝑎𝑥 ≥ 𝑡 ⋅ 𝑦𝑗𝑚𝑡 ∀𝑗 ∈ 𝐽,𝑚 ∈ 𝑀, 𝑡

𝑥𝑗𝑚𝑡 ∈ {0, 1} ∀𝑗 ∈ 𝐽,𝑚 ∈ 𝑀, 𝑡

𝑦𝑗𝑚𝑡 ∈ {0, 1} ∀𝑗 ∈ 𝐽,𝑚 ∈ 𝑀, 𝑡

𝐶𝑚𝑎𝑥 ≥ 0

Set to 1 if job j start at time t on machine m.

Set to 1 if job j is processed at time t on 
machine m.

Makespan is set to the maximum completion 
time.
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Logic-Based Benders Decomposition
Example: Scheduling

MILP formulation for M:

𝑚𝑖𝑛 𝐶𝑚𝑎𝑥

σ𝑚∈𝑀 𝑥𝑗𝑚 = 1 ∀𝑗 ∈ 𝐽

𝐶𝑚𝑎𝑥 ≥ σ𝑗∈𝐽 𝑝𝑗𝑚 ⋅ 𝑥𝑗𝑚 ∀𝑚 ∈ 𝑀

𝑥𝑗𝑚 ∈ {0, 1} ∀𝑗 ∈ 𝐽,𝑚 ∈ 𝑀

𝐶𝑚𝑎𝑥 ≥ 0
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Logic-Based Benders Decomposition
Example: Scheduling

MILP formulation for M:

𝑚𝑖𝑛 𝐶𝑚𝑎𝑥

σ𝑚∈𝑀 𝑥𝑗𝑚 = 1 ∀𝑗 ∈ 𝐽

𝐶𝑚𝑎𝑥 ≥ σ𝑗∈𝐽 𝑝𝑗𝑚 ⋅ 𝑥𝑗𝑚 ∀𝑚 ∈ 𝑀

𝑥𝑗𝑚 ∈ {0, 1} ∀𝑗 ∈ 𝐽,𝑚 ∈ 𝑀

𝐶𝑚𝑎𝑥 ≥ 0

A relaxation of P:
• Each job is assigned to exactly one 

machine.
• The constraints which enforce the

processing of no more than one job at the
same time are removed.
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Logic-Based Benders Decomposition
Example: Scheduling

𝑗3

𝑗2

𝑗1

𝑚1

𝑚2

5

Makespan

𝑥21 = 1

𝑥12 = 1 𝑥32 = 1
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Logic-Based Benders Decomposition
Example: Scheduling

CP formulation for S:

Given the assignments of jobs to machines, ҧ𝑝𝑗 = 𝑝𝑗𝑚 if 𝑥𝑗𝑚 = 1.

𝑚𝑖𝑛 𝐶𝑚𝑎𝑥

𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒(𝑠𝑗 , ҧ𝑝𝑗 , 1,1|𝑗 ∈ 𝐽)

𝐶𝑚𝑎𝑥 ≥ 𝑠𝑗 + ҧ𝑝𝑗 ∀𝑗 ∈ 𝐽

𝑠𝑗 ≥ 0 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 ∀𝑗 ∈ 𝐽

𝐶𝑚𝑎𝑥 ≥ 0
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Logic-Based Benders Decomposition
Example: Scheduling

𝑗3

𝑗2

𝑗1

𝑚1

𝑚2

7

Makespan
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Logic-Based Benders Decomposition
Example: Scheduling

Iteration 1:

• After solving M →𝑥21 = 1, 𝑥12 = 1, 𝑥32 = 1, LB = 5.

• Given the solution of M, we solve S → UB = 7.

• Since LB < UB, the optimal solution is not found yet → a cut is added:

𝐶𝑚𝑎𝑥 ≥ 𝑈𝐵 − 𝑈𝐵 ⋅ (σ 𝑗,𝑚 : ҧ𝑥𝑗𝑚=1(1 − 𝑥𝑗𝑚))
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Logic-Based Benders Decomposition
Example: Scheduling

Iteration 1:

• After solving M →𝑥21 = 1, 𝑥12 = 1, 𝑥32 = 1, LB = 5.

• Given the solution of M, we solve S → UB = 7.

• Since LB < UB, the optimal solution is not found yet → a cut is added:

𝐶𝑚𝑎𝑥 ≥ 𝑈𝐵 − 𝑈𝐵 ⋅ (σ 𝑗,𝑚 : ҧ𝑥𝑗𝑚=1(1 − 𝑥𝑗𝑚))

If all jobs are assigned to the same machine (i.e., σ 𝑗,𝑚 : ҧ𝑥𝑗𝑚=1(1 − 𝑥𝑗𝑚) = 0),
then the value of makespan is set to the upper bound.



Decomposition methods in Integer Programming 112

Logic-Based Benders Decomposition
Example: Scheduling

Iteration 1:

• After solving M →𝑥21 = 1, 𝑥12 = 1, 𝑥32 = 1, LB = 5.

• Given the solution of M, we solve S → UB = 7 – the best found.

• Since LB < UB, the optimal solution is not found yet → a cut is added:

𝐶𝑚𝑎𝑥 ≥ 7 − 7 ⋅ ( 1 − 𝑥21 + 1 − 𝑥12 + (1 − 𝑥32))

If all jobs are assigned to the same machine (i.e., σ 𝑗,𝑚 : ҧ𝑥𝑗𝑚=1(1 − 𝑥𝑗𝑚) = 0),
then the value of makespan is set to the upper bound.



Decomposition methods in Integer Programming 113

Logic-Based Benders Decomposition
Example: Scheduling

Iteration 2:

• After solving M →𝑥11 = 1, 𝑥21 = 1, 𝑥32 = 1, LB = 5.

• Given the solution of M, we solve S → UB = 9 – not improving the best found (7).

• Since LB < UB, the optimal solution is not found yet → a cut is added:

𝐶𝑚𝑎𝑥 ≥ 9 − 9 ⋅ ( 1 − 𝑥11 + 1 − 𝑥21 + (1 − 𝑥32))
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Logic-Based Benders Decomposition
Example: Scheduling

Iteration 3:

• After solving M →𝑥12 = 1, 𝑥22 = 1, 𝑥31 = 1, LB = 6.

• Given the solution of M, we solve S → UB = 11 – not improving the best found (7).

• Since LB < UB, the optimal solution is not found yet → a cut is added:

𝐶𝑚𝑎𝑥 ≥ 11 − 11 ⋅ ( 1 − 𝑥12 + 1 − 𝑥22 + (1 − 𝑥31))
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Logic-Based Benders Decomposition
Example: Scheduling

Iteration 4:

• After solving M →𝑥12 = 1, 𝑥21 = 1, 𝑥31 = 1, LB = 7.

• We notice that LB = best found UB (7).

• Since LB = UB, the optimal solution has been found, and the algorithm terminates.
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Logic-Based Benders Decomposition
Example: Scheduling



Industrial case
Scheduling in Textile industry
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Industrial case
Problem description

Scheduling in Textile industry:

Sets
• A set of orders 𝐽 to be scheduled
• A set of parallel machines (weaving looms) 𝑀

Parameters
• Each job 𝑗 has a machine-dependent processing time 𝑝𝑗𝑚
• Before processing, each job 𝑗 must be set up in the weaving loom 𝑚 – the duration of the setup operation 𝑠𝑖𝑗𝑚 is 

sequence-and-machine-dependent.
• Setup operations occupy a working group – only 𝑅 groups are available.

Constraints
• Jobs can be split – parts of the same job can be processed on different machines
• All jobs must be scheduled.
• No more than 1 job can be set up or processed on each machine.
• No more than 𝑅 setup operations can take place in parallel.
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Industrial case
Problem description

Scheduling in Textile industry:
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Industrial case
Problem description

Scheduling in Textile industry:

Following the same modeling approach, we should has a set of variables:

𝑥𝑖𝑗𝑚𝑡 ∈ {0, 1} ∀𝑖 ∈ 𝐽, 𝑗 ∈ 𝐽\ 𝑖 ,𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇

set to 1 if job 𝑗 is processed at time instance 𝑡 on machine 𝑚, succeeding job 𝑖.

For a moderate scale (~100 jobs), a set of 5 looms and for a daily planning horizon (i.e., 1440 minutes):

𝐽 × 𝐽 × 𝑀 × 𝑇 = 100 × 100 × 5 × 1440 = 72.000.000 variables

This scale cannot be handled – a MILP would not provide any feasible solution in reasonable time. 
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Industrial case
Problem description

Scheduling in Textile industry:

Instead, a relaxation which considers the same setting without the resource constraints would be a simpler 
problem, consisted of variables:

𝑥𝑖𝑗𝑚 ∈ {0, 1} ∀𝑖 ∈ 𝐽, 𝑗 ∈ 𝐽\ 𝑖 ,𝑚 ∈ 𝑀,

set to 1 if job 𝑗 is processed on machine 𝑚, succeeding job 𝑖.

For a moderate scale (~100 jobs), a set of 5 looms:

𝐽 × 𝐽 × 𝑀 = 100 × 100 × 5 = 50.000 variables

An easily handled scale for modern solvers.
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Industrial case
Master problem

For the master problem M:

Sets
• A set of orders 𝐽 to be scheduled
• A set of parallel machines (weaving looms) 𝑀

Parameters
• Each job 𝑗 has a machine-dependent processing time 𝑝𝑗𝑚
• Before processing, each job 𝑗 must be set up in the weaving loom 𝑚 – the duration of the setup operation 𝑠𝑖𝑗𝑚

is sequence-and-machine-dependent.
• Setup operations occupy a working group – only 𝑅 groups are available.

Constraints
• Jobs can be split – parts of the same job can be processed on different machines
• All jobs must be scheduled.
• No more than 1 job can be set up or processed on each machine.
• No more than 𝑅 setup operations can take place in parallel.



Decomposition methods in Integer Programming 123

Industrial case
Master problem

For the master problem M:
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Industrial case
Master problem

For the master problem M:

𝑊𝑖,𝑚 : Percentage of job 𝑖 ∈ 𝐽 assigned to machine 𝑚 ∈ 𝑀, integer
𝑦𝑖,𝑚: Binary variable; set to 1 if any part of job 𝑖 ∈ 𝐽 is assigned to machine 𝑚 ∈ 𝑀

• 100% of each job must be assigned to the machines.
• If 𝑊𝑖,𝑚 is greater than 0, then 𝑦𝑖,𝑚 is set to 1.
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Industrial case
Master problem

For the master problem M:

𝑥𝑖,𝑗,𝑚 : Binary variable; set to 1 if 𝑗

succeeds 𝑖 on machine 𝑚
𝑛𝑖,𝑚: Order of processing of job 𝑖 on
machine 𝑚

• If any part of 𝑖 is assigned to 𝑚, it will
succeed and precede of exactly one
job.

• An imaginary job 0 is defined as a
starting point.

• Subtour elimination constraints –
each machine has a sequence of
jobs; the properties are similar with
the case of TSP.
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Industrial case
Master problem

For the master problem M:

Makespan objective: the maximum completion time of the schedule of the machines
• Sum of processing times and setup times of the assigned parts of jobs
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Industrial case
Subproblem

For the subproblem S:

• For each machine, a sequence of parts of orders is known.
• The subproblem is not responsible for assigning orders to machines or for sequencing. It must simply adjust 

the start times of the setup operations, to ensure that no more than 𝑅 working groups are occupied at the 
same time.
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Industrial case
Subproblem

For the subproblem S:

• For each machine, a sequence of parts of orders is known.
• The subproblem is not responsible for assigning orders to machines or for sequencing. It must simply adjust 

the start times of the setup operations, to ensure that no more than 𝑅 working groups are occupied at the 
same time.
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Industrial case
Benders cuts

For the cuts:

• Each iteration should define a different allocation of parts of jobs to machines.
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Industrial case
Results



Solvers
MILP/CP tools



Solvers
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MILP solvers

• Open-source library in Python interface
• Modeling (not solving) Mixed-Integer Linear 

Programs
• Compatible with most solvers – solve the 

constructed model
• Syntax which resembles with the natural language
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MILP solvers

Commercial solvers

• IBM CPLEX Optimization Studio
• Gurobi Optimizer

Open-source solvers

• GNU Linear Programming Kit - GLPK
https://www.gnu.org/software/glpk/

https://www.gnu.org/software/glpk/


Solvers
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IBM CPLEX CP Optimizer.
• A commercial solver – not for free
• Academic licenses available

CP solvers

Modeling with IBM ILOG Modeling with DOCplex Python API

CP modeler documentation

https://ibmdecisionoptimization.github.io/docplex-doc/cp/docplex.cp.modeler.py.html


Solvers
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Open-source CP solvers: Google OR-Tools

CP solvers

https://developers.google.com/optimization

https://developers.google.com/optimization


Solvers
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Open-source CP solvers: Google OR-Tools

CP solvers



Ending credits
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Modeling languages: MiniZinc

CP solvers

https://www.minizinc.org/

https://www.minizinc.org/
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Thank you!
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