OIKONOMIKO MANEMIETHMIO AOHN』N

ATHENS UNIVERSITY of ECONOMICS AND BUSINESS

M.Sc. Program in Data Science

 Department of Informatics
Optimization Techniques

Applications of Convex Optimization to Machine Learning

Outline

- Linear Regression
- Learning with a linear hypothesis
- Least square problems
- Solving least squares: Analytic solution and gradient descent
- Other issues: Polynomial regression and regularization
- Support Vector Machines
- Optimal margin classifiers
- The role of duality
- Regularization
- Kernel functions

Linear Regression

Linear Regression

Suppose we are given a dataset in the form

- $\left(x^{(1)}, y^{(1)}\right),\left(x^{(2)}, y^{(2)}\right), \ldots,\left(x^{(m)}, y^{(m)}\right)$
- $x^{(i)}$: typically a vector with the values of the features for the i-th data point

$$
x^{(i)}=\left(x_{1}^{(i)}, x_{2}^{(i)}, \ldots, x_{n}^{(i)}\right)
$$

- $y^{(i)}$: the label of the i-th data point (a real number)

Goal: Learn the function that best describes the dependence of y on the features

Linear Regression: We try to learn a linear function in the form

$$
h(x)=w_{1} x_{1}+w_{2} x_{2}+\ldots+w_{n} x_{n}+w_{0}
$$

- $h(x)$ is then called a linear hypothesis

Linear Regression

A classic example

- Consider a 1-dimensional problem
- Supppose we want to predict the rent for apartments in a specific area of Athens
- $\mathrm{x}_{1}=$ area of the apartment in sq. meters

- Dataset:
- 1 feature (area)
- $y^{(i)}=$ price
- We want to find a function in the form $\mathrm{h}\left(\mathrm{x}_{1}\right)=\mathrm{w}_{1} \mathrm{x}_{1}+\mathrm{w}_{0}$ that best fits the data

Linear Regression

How shall we decide which linear function fits best?

Linear Regression

- There is no unique answer, every line will miss several points
- We need to select a loss function to evaluate the quality of the line picked

Linear Regression

- If the sum of the squared distances is small, we can say that we achieve a good approximation by a linear function

Idea: Pick the line that minimizes the (squared) distances from the data points

Linear Regression

- When we have n features (i.e. n variables), let $\mathrm{w}=\left(\mathrm{w}_{0}, \mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{n}}\right)$
- Loss function:

$$
C(w)=\frac{1}{2 m} \sum_{i=1}^{m}\left[h\left(x^{(i)}\right)-y^{(i)}\right]^{2}
$$

- We assumed m data points
- The division by 2 m is for normalization

Linear Regression

This is a "least squares problem"
In more detail:

- In problems with one feature:

$$
C(w)=\frac{1}{2 m} \sum_{i=1}^{m}\left[w_{1} x_{1}^{(i)}+w_{0}-y^{(i)}\right]^{2}
$$

- In problems with multiple features:

$$
C(w)=\frac{1}{2 m} \sum_{i=1}^{m}\left[w_{1} x_{1}^{(i)}+w_{2} x_{2}^{(i)}+\ldots+w_{n} x_{n}^{(i)}+w_{0}-y^{(i)}\right]^{2}
$$

- We want to find the vector w that minimizes $C(w)$

Least Squares Problems

- In some cases, we may have some extra constraints, e.g. some upper bound on $\|w\|$
- If not then this is an unconstrained convex quadratic problem
- Homework: check that $\mathrm{C}(\mathrm{w})$ is a convex function
- Analytic solution obtained by:

$$
\nabla C(w)=0
$$

$$
\frac{\partial C(w)}{\partial w_{j}}=\frac{1}{2 m} \sum_{i=1}^{m} 2\left[h\left(x^{(i)}\right)-y^{(i)}\right] x_{j}^{(i)}=\frac{1}{m} \sum_{i=1}^{m}\left[h\left(x^{(i)}\right)-y^{(i)}\right] x_{j}^{(i)}
$$

- The partial derivatives lead to linear equations

Least Squares Problems

In more concise form:

- For convenience, set $x_{0}{ }^{(i)}=1$ for each data point

$$
x^{(i)}=\left(x_{0}^{(i)}, x_{1}^{(i)}, x_{2}^{(i)}, \ldots, x_{n}^{(i)}\right)=\left(1, x_{1}^{(i)}, x_{2}^{(i)}, \ldots, x_{n}^{(i)}\right)
$$

- Grouping together the equations
- We can then write $h\left(x^{(i)}\right)$ as $w^{\top} x^{(i)}$
- Let X be the matrix where the i-th row contains the i-th data point
- Let y be the column vector with all the labels of the data points
- Then

$$
\nabla C(w)=0 \Rightarrow X^{\top} \cdot X \cdot w=X^{\top} \cdot y \Rightarrow w=\left(X^{\top} \cdot X\right)^{-1} \cdot X^{\top} \cdot y
$$

Least Squares Problems

- What if the matrix $X^{\top} \cdot X$ is not invertible?
- Of if we want to avoid solving a linear system with a large number of equations?

Gradient descent works very fast in this setting

- If the current solution is $w=\left(w_{0}, w_{1}, w_{2}, \ldots, w_{n}\right)$, then the update in iteration k for each $w_{j}, j=1, \ldots, n$, is (with step size α_{k}):

$$
w_{j}=w_{j}-\frac{\alpha_{k}}{m} \sum_{i=1}^{m}\left[h\left(x^{(i)}\right)-y^{(i)}\right] x_{j}^{(i)}
$$

Polynomial Regression

- In some problems a linear hypothesis does not suffice
- Next step would be to move to a polynomial hypothesis
- E.g. For one variable: we may want to search for a hypothesis of the form

$$
h(x)=w_{3} x^{3}+w_{2} x^{2}+w_{1} x+w_{0}
$$

- We can create polynomial features
- Each $x^{(i)}$ can be transformed into a new vector that includes these features
- We can apply linear regression on this transformed data set

Polynomial Regression

- If we have many variables to begin with?
- Again we can think of polynomials in all variables
- Hence, we can have features like $x_{1} x_{2}$ or $x_{2} x_{4}$ etc
- Suppose we want to fit the data with a polynomial of degree 2
- If we want to include all possible monomials, then for every data point x, we can define the transformation:

$$
\phi(x)=\left(1, x_{1}, \ldots, x_{n}, x_{1}^{2}, x_{1} x_{2}, x_{1} x_{3}, \ldots, x_{1} x_{n}, x_{2}^{2}, x_{2} x_{3}, \ldots, x_{n}^{2}\right)
$$

We can then do linear regression with the data set $\left(\phi\left(x^{(i)}\right), y^{(i)}\right)$ for $i=1, \ldots, m$

Regularized Regression

Overfitting:

- It can happen when we have too many features and small number of training examples
- Or if we use a polynomial of high degree, when a smaller one suffices

What can we do?

- It is observed that in the presence of overfitting, the parameters have very high absolute values
- Large variance
- Hence, we can "punish" large values in our objective function

Regularized Regression

New objective:

$$
C(w)=\frac{1}{2 m} \sum_{i=1}^{m}\left[h\left(x^{(i)}\right)-y^{(i)}\right]^{2}+\frac{\lambda}{2 m}\|w\|^{2}
$$

- Experimentation needed for choosing appropriate values of λ

How do we minimize the new $C(w)$?

- Again a convex problem
- Gradient descent still works quite well

This method is also referred to as Ridge Regression

Support Vector Machines

Support Vector Machines

- One of the best families of supervised learning algorithms
- Big advantage: easily applicable in very high dimensional feature spaces
- Lagrange duality provides many insights for building SVMs

Classification Problems

- To begin with, suppose we have a linearly separable data set
- 2 labels: $\{-1,+1\}$

Classification Problems

- If each data point had n features: then there exists a hyperplane in R^{n} that separates the 2 classes:

$$
w_{1} x_{1}+w_{2} x_{2}+\ldots+w_{n} x_{n}+b=0
$$

- Goal: Find $w=\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ and b so that we correctly

Classification Problems

- The problem may admit many solutions
- There can be too many lines that separate the 2 classes
- Is there a solution that is better than the others?

Classification Problems

- Suppose we pick a line very close to the red class
- And suppose 2 new points, A and B, arrive for classification
- Not part of the initial data set

Classification Problems

- Ideally, we would like a line, given by w, and b, such that:
- $w^{\top} \cdot x+b \ll 0$ for every point x in the red class
- $w^{\top} \cdot x+b \gg 0$ for every point x in the blue class

The Optimal Margin Classifier

- Pick the line that maximizes the margins
- Margin of a data point: distance from the line selected

Hence: pick a line that maximizes the minimum margin from the data points

The Optimal Margin Classifier

- Support vectors: The vectors formed by the data points with the minimum margins
- Will see later why they are useful

The Optimal Margin Classifier

Defining the optimization problem we care about:

- Suppose the data set is $\left(x^{(1)}, y^{(1)}\right),\left(x^{(2)}, y^{(2)}\right), \ldots,\left(x^{(m)}, y^{(m)}\right)$
- $\mathrm{y}^{(\mathrm{i})}$ in $\{-1,+1\}$

The Optimal Margin Classifier

First attempt to bring the problem to an amenable form:
$\max d$
s.t.
$d_{i} \geq d, i=1, \ldots, m$

$$
\begin{array}{ll}
\Rightarrow \quad & \max r /\|w\| \\
& \text { s.t. } \\
& y^{(i)} \cdot\left(w^{\top} \cdot x^{(i)}+b\right) /\|w\| \geq r /\|w\| \\
& \max r /\|w\| \\
\Rightarrow \quad & \text { s.t. } \\
& y^{(i)} \cdot\left(w^{\top} \cdot x^{(i)}+b\right) \geq r
\end{array}
$$

- Problem: Objective function is nasty (non-convex)
- No techniques known tailored for such functions

The Optimal Margin Classifier

Normalization:

- No need to have r as a variable, we can assume without loss of generality that $r=1$
- Suppose not
- Consider a solution w, b, such that $\min _{i}\left|w^{\top} \cdot x^{(i)}+b\right|=a \neq 1$
- Then set $w:=w / a, b:=b / a$
- This is a new valid solution that satisfies what we want

Hence:

- We need to maximize $1 /\|w\|$
- Instead: we can minimize $\|w\|$
- To bring the problem to a more familiar form, we will use as our objective function: $1 / 2\|w\|^{2}$

The Optimal Margin Classifier

$\min \frac{1}{2}\|w\|^{2}$
s. t.:

$$
\begin{aligned}
& y^{(i)} \cdot\left(w^{T} \cdot x^{(i)}+b\right) \geq 1 \\
& \text { for } i=1, \ldots, m
\end{aligned}
$$

- Convex quadratic objective function
- Linear inequality constraints
- We can solve it with various ways
- If we add slack variables, we have seen how to solve it using the KKT conditions
- Otherwise interior point methods can also solve it quickly
- There are also commercial tools specific for Quadratic Programming

The Optimal Margin Classifier

- We could consider the problem solved at this point BUT:
- We can exploit Lagrange duality to derive the dual problem
- The dual will allow us to solve this much more efficiently
- Solving the dual works well even for very high dimensional spaces
- This also provides intuition regarding the support vectors and why it is useful that we usually have only "few" support vectors

The Dual Problem

- The Lagrange function:
- We only have Lagrange multipliers for the inequality constraints
- Let $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right)$ be the vector of Lagrange multipliers

$$
L(w, b ; \alpha)=\frac{1}{2}\|w\|^{2}-\sum_{i=1}^{m} \alpha_{i}\left[y^{(i)}\left(w^{T} \cdot x^{(i)}+b\right)-1\right]
$$

- The dual function
- We need to compute $\inf _{w, b} L(w, b ; a)$
- To minimize L , we use the condition $\nabla \mathrm{L}=0$

The Dual Problem

- Deriving the dual function:

$$
\begin{align*}
\frac{\partial L}{\partial w_{j}}=0 \text { for } j=1, \ldots, n & \Rightarrow w=\sum_{i=1}^{m} \alpha_{i} y^{(i)} x^{(i)} \tag{1}\\
\frac{\partial L}{\partial b}=0 & \Rightarrow \sum_{i=1}^{m} \alpha_{i} y^{(i)}=0 \tag{2}
\end{align*}
$$

- Plug in (1) into the Lagrangian function
- After some algebraic manipulations:

$$
L(w, b ; \alpha)=\sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} y^{(i)} y^{(j)} \alpha_{i} \alpha_{j}\left(x^{(i)}\right)^{T} \cdot x^{(j)}-b \sum_{j=1}^{m} \alpha_{i} y^{(i)}
$$

- By using (2), the last term vanishes

The Dual Problem

- Summarizing, we arrive at the following dual problem:

$$
\max W(\alpha)=\sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} y^{(i)} y^{(j)} \alpha_{i} \alpha_{j}\left\langle x^{(i)}, x^{(j)}\right\rangle
$$

s. t.:

$$
\begin{aligned}
& \sum_{i=1}^{m} \alpha_{i} y^{(i)}=0 \\
& \alpha_{i} \geq 0, \text { for } i=1, \ldots, m
\end{aligned}
$$

- Notation: for convenience, we denote by $\left\langle x^{(i)}, x^{(i)}\right\rangle$ the inner product of the 2 vectors, i.e., $\left(x^{(i)}\right)^{\top} \cdot x^{(j)}$

Lessons and insights learnt from the dual

1. If we manage to solve the dual, we can easily use (1) and (2) to compute the optimal solution w^{*} and b^{*} for the primal
2. Why could it be easier to solve the dual?

- Let us look at the KKT conditions
- Because we have inequalities in the primal, we have the complementarity conditions:

$$
\alpha_{i} \cdot\left[y^{(i)} \cdot\left(w^{\top} \cdot x^{(i)}+b\right)-1\right]=0
$$

- Hence for all data points where $y^{(i)} \cdot\left(w^{\top} \cdot x^{(i)}+b\right)>1 \Rightarrow a_{i}=0$
- $\quad \alpha_{i}>0$ only for data points with the minimum margin
- These are the points corresponding precisely to the support vectors!
- In practice, we do not expect too many points to attain the minimum margin
- Hence, even with thousands of training data, we expect to have few support vectors \Rightarrow few non-zero variables in the dual

Lessons and insights learnt from the dual

3. The dual is written in terms of the inner products

- Suppose we solve the dual
- Suppose also we now want to make a prediction for a new data point x
- We should calculate $w^{\top} x+b$ and decide which label to give
- But by (1) this is

$$
w^{T} \cdot x+b=\sum_{i=1}^{m} \alpha_{i} y^{(i)}\left\langle x^{(i)}, x\right\rangle+b
$$

- If many α_{i}^{\prime} 's are zero, this needs only a few inner product calculations
- No need to calculate w and b to make the prediction

Almost Separable Data

- Some times the data may not be linearly separable even though it is obvious that there are 2 separable classes of data

- In this example, the dataset is almost linearly separable
- We will treat some (few) examples as "outliers"

Almost Separable Data

- We cannot demand that $y^{(i)} \cdot\left(w^{\top} \cdot x^{(i)}+b\right) \geq 1$
- But we can relax the constraints

- Ask for $y^{(i)} \cdot\left(w^{\top} \cdot x^{(i)}+b\right) \geq 1-s_{i}\left(\right.$ slack variable $\left.s_{i} \geq 0\right)$
- Penalize the sum

Almost Separable Data

- The new primal problem

$$
\min \frac{1}{2}\|w\|^{2}+C \sum_{i=1}^{m} s_{i}
$$

s. t.:

$$
\begin{aligned}
& y^{(i)} \cdot\left(w^{T} \cdot x^{(i)}+b\right) \geq 1-s_{i}, i=1, \ldots, m \\
& s_{i} \geq 0, \quad i=1, \ldots, m
\end{aligned}
$$

- And the new dual problem

$$
\max W(\alpha)=\sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} y^{(i)} y^{(j)} \alpha_{i} \alpha_{j}\left\langle x^{(i)}, x^{(j)}\right\rangle
$$

s. t.:

$$
\begin{aligned}
& \sum_{i=1}^{m} \alpha_{i} y^{(i)}=0 \\
& 0 \leq \alpha_{i} \leq C, \text { for } i=1, \ldots, m
\end{aligned}
$$

Almost Separable Data

- Lagrange duality works almost in the same way as before
- Only difference is the upper bound on each α_{i}
- Sanity check: Derive the new dual on your own
- Again equations (1) and (2) still valid
- Hence, again predictions on new data points can be made using inner products

Kernels

- What happens when the data are not even close to linearly separable?

Separable by a curve but not by a line

- We can try to find a polynomial that separates the 2 classes
- Similar in spirit to polynomial regression
- This is where the real power of SVMs arises

Kernels

- We can create polynomial features
- Each $x^{(i)}$ can be transformed into a new vector that includes these features, say $\phi\left(x^{(i)}\right)$
- Instead of the inner products $\left\langle x^{(i)}, x^{(j)}\right\rangle$, we will now have $\left\langle\phi\left(x^{(i)}\right), \phi\left(x^{(j)}\right)\right\rangle$
- If we are careful, this can be done very efficiently

Definition: Given $\phi(x)$, a kernel is a function K such that

$$
K(x, z)=\langle\phi(x), \phi(z)\rangle
$$

Kernels

- It is instructive to look at some examples of kernels

1. Suppose $\phi(x)=\left(1, \sqrt{2} x_{1}, \sqrt{2} x_{2}, x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right)$

Observation: $\mathrm{K}(\mathrm{x}, \mathrm{z})=\langle\mathrm{x}, \mathrm{z}\rangle^{2}=\left(\mathrm{x}^{\top} \mathrm{z}\right)^{2}$
2. Suppose now

$$
\phi(x)=\left(x_{1}^{2}, x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{1}, x_{2}^{2}, x_{2} x_{3}, x_{3} x_{1}, x_{3} x_{2}, x_{3}^{2}\right)
$$

Again $K(x, z)=\left(x^{\top} z\right)^{2}$
If we had n variables instead of 3 :

- Computing $\langle\phi(x), \phi(z)\rangle$ takes $O\left(n^{2}\right)$ time
- Computing $K(x, z)$ takes only $O(n)$ time

Kernels

- In general we can pick our transformation so that

$$
K(x, z)=[\beta\langle x, z\rangle+\gamma]^{p}
$$

For appropriately chosen β, γ

- New objective function in the dual

$$
W(\alpha)=\sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} y^{(i)} y^{(j)} \alpha_{i} \alpha_{j} K\left(x^{(i)}, x^{(j)}\right)
$$

Main Conclusions:

- We can incorporate high dimensional feature spaces
- All we need is inner product computations
- No need to compute $\phi(x)$, we only need to compute K
- Hence: we can learn in a high dimensional feature space without the need to explicitly represent the new features

Solving the dual

- How can we actually solve the dual?
- The best approach is via the SMO algorithm (Sequential Minimal Optimization)
- Derived by Platt (1998)

Main ideas:

- A local search approach
- Suppose we keep all variables fixed and try to update a single variable α_{i}
- By (2) we cannot do that, if we fix m-1 variables, this fixes the last variable as well
- We do local search on pairs of variables
- Pick a pair of variables, and keep the other m-2 variables fixed
- Find a way to update these 2 variables so as to make progress

Reading Material

- Lecture Notes on Support Vector Machines from the machine learning course of Andrew Ng (Stanford): https://sgfin.github.io/files/notes/CS229 Lecture Notes.pdf
- Technical report by Platt on the SMO algorithm: https://www.microsoft.com/en-us/research/uploads/prod/1998/04/sequential-minimaloptimization.pdf
- Machine Learning on Coursera by Andrew Ng also very illustrative

