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Outline	
•  Linear	Regression	

–  Learning	with	a	linear	hypothesis	

–  Least	square	problems	

–  Solving	least	squares:	Analytic	solution	and	gradient	descent	

–  Other	issues:	Polynomial	regression	and	regularization	

•  Support	Vector	Machines	

–  Optimal	margin	classifiers	

–  The	role	of	duality	

–  Regularization	

–  Kernel	functions	
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Linear	Regression	
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Linear	Regression	
	
Suppose	we	are	given	a	dataset	in	the	form	

-  (x(1),	y(1)),	(x(2),	y(2)),...,	(x(m),	y(m))	
-  x(i):	typically	a	vector	with	the	values	of	the	features	for	the	i-th	

data	point	

-  y(i):	the	label	of	the	i-th	data	point	(a	real	number)	
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Linear	Regression:	We	try	to	learn	a	linear	function	in	the	form	
h(x)	=	w1	x1	+	w2	x2	+	...	+	wn	xn	+	w0	

•  h(x)	is	then	called	a	linear	hypothesis	

Goal:	Learn	the	function	that	best	describes	the	
dependence	of	y	on	the	features	



Linear	Regression	
A	classic	example	
•  Consider	a	1-dimensional	problem	
•  Supppose	we	want	to	predict	the	rent	for	apartments	in	

a	specific	area	of	Athens	
•  x1	=	area	of	the	apartment	in	sq.	meters	
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•  Dataset:		
-  1	feature	(area)	
-  y(i)	=	price	

•  We	want	to	find	a	
function	in	the	form	
h(x1)	=	w1x1	+	w0	that	
best	fits	the	data	w 

w 
w 

w w 

w 
w 



Linear	Regression	
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How	shall	we	decide	which	
linear	function	fits	best?	
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Linear	Regression	
•  There	is	no	unique	answer,	every	line	will	miss	several	

points	
•  We	need	to	select	a	loss	function	to	evaluate	the	quality	

of	the	line	picked	
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Idea:	Pick	the	line	that	
minimizes	the	(squared)	
distances	from	the	data	
points	
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Linear	Regression	
•  If	the	sum	of	the	squared	distances	is	small,	we	can	say	

that	we	achieve	a	good	approximation	by	a	linear	
function	
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Idea:	Pick	the	line	that	
minimizes	the	(squared)	
distances	from	the	data	
points	
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Linear	Regression	
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•  When	we	have	n	features	(i.e.	n	variables),	let	w	=	(w0,	w1,	w2,...,	wn)		
•  Loss	function:	

•  We	assumed	m	data	
points	

•  The	division	by	2m	is	for	
normalization	



Linear	Regression	
This	is	a	“least	squares	problem”	
In	more	detail:	
	
•  In	problems	with	one	feature:	
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•  In	problems	with	multiple	features:	

	
•  We	want	to	find	the	vector	w	that	minimizes		C(w)	



Least	Squares	Problems	
•  In	some	cases,	we	may	have	some	extra	constraints,	e.g.	some	

upper	bound	on	||w|| 
•  If	not	then	this	is	an	unconstrained	convex	quadratic	problem	

•  Homework:	check	that	C(w)	is	a	convex	function	
•  Analytic	solution	obtained	by:	

∇C(w)	=	0	
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•  The	partial	derivatives	lead	to	linear	equations	



Least	Squares	Problems	
In	more	concise	form:	
•  For	convenience,	set	x0(i)	=	1	for	each	data	point	

•  Grouping	together	the	equations	
-  We	can	then	write	h(x(i))	as	wT	x(i)		
-  Let	X	be	the	matrix	where	the	i-th	row	contains	the	i-th	data	

point	
-  Let	y		be	the	column	vector	with	all	the	labels	of	the	data	

points	

•  Then 
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∇C(w)	=	0	⇒	XT	⋅	X	⋅	w	=	XT	⋅	y	⇒	w	=	(XT	⋅	X)-1	⋅	XT	⋅	y		



Least	Squares	Problems	
•  What	if	the	matrix	XT	⋅	X	is	not	invertible?	
•  Of	if	we	want	to	avoid	solving	a	linear	system	with	a	large	number	

of	equations?	
	
Gradient	descent	works	very	fast	in	this	setting	
	
•  If	the	current	solution	is	w	=	(w0,	w1,	w2,...,	wn),	then	the	update	in	

iteration	k	for	each	wj,	j=1,...,	n,	is	(with	step	size	αk):	
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Polynomial	Regression	

•  In	some	problems	a	linear	hypothesis	does	not	suffice	
•  Next	step	would	be	to	move	to	a	polynomial	

hypothesis	
•  E.g.	For	one	variable:	we	may	want	to	search	for	a	

hypothesis	of	the	form	
h(x)	=		w3x3	+	w2x2	+	w1x	+	w0	

•  We	can	create	polynomial	features	
•  Each	x(i)	can	be	transformed	into	a	new	vector	that	

includes	these	features	
•  We	can	apply	linear	regression	on	this	transformed	

data	set		
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Polynomial	Regression	

•  If	we	have	many	variables	to	begin	with?	
•  Again	we	can	think	of	polynomials	in	all	variables	
•  Hence,	we	can	have	features	like	x1x2	or	x2x4	etc	
•  Suppose	we	want	to	fit	the	data	with	a	polynomial	of	

degree	2	
•  If	we	want	to	include	all	possible	monomials,	then	for	

every	data	point	x,	we	can	define	the	transformation:	
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We	can	then	do	linear	regression	with	the	data	set		
(φ(x(i)),	y(i))	for	i=1,...,m	



Regularized	Regression	
Overfitting:	
	
•  It	can	happen	when	we	have	too	many	features	and	small	

number	of	training	examples	
•  Or	if	we	use	a	polynomial	of	high	degree,	when	a	smaller	

one	suffices	
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What	can	we	do?	
•  It	is	observed	that	in	the	presence	of	overfitting,	the	

parameters	have	very	high	absolute	values	
•  Large	variance	
•  Hence,	we	can	“punish”	large	values	in	our	objective	

function	



Regularized	Regression	
New	objective:	
	

•  Experimentation	needed	for	choosing	appropriate	values	
of	λ	
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How	do	we	minimize	the	new	C(w)?	
•  Again	a	convex	problem	
•  Gradient	descent	still	works	quite	well	
	

This	method	is	also	referred	to	as	Ridge	Regression	



  
 

Support	Vector	Machines	
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Support	Vector	Machines	

•  One	of	the	best	families	of	supervised	learning	algorithms	
•  Big	advantage:	easily	applicable	in	very	high	dimensional	

feature	spaces	
•  Lagrange	duality	provides	many	insights	for	building	SVMs	



Classification	Problems	
•  To	begin	with,	suppose	we	have	a	linearly	separable	

data	set	
•  2	labels:	{-1,	+1}	
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•  Red	class:	label	-1	
•  Blue	class:	label	+1	
•  In	2	dimensions,	there	is	a	line	

of	the	form	w1x1	+	w2x2	+	b	=	0	
that	separates	the	2	classes		

•  wT	⋅	x	+	b	<	0	for	every	point	x	
in	the	red	class	

•  wT	⋅	x	+	b	>	0	for	every	point	x	
in	the	blue	class	

•  where	w	=	(w1,	w2)	



Classification	Problems	
•  If	each	data	point	had	n	features:	then	there	exists	a	

hyperplane	in	Rn	that	separates	the	2	classes:	
w1x1	+	w2x2	+...+	wnxn	+	b	=	0		

•  Goal:	Find	w	=	(w1,	w2,	...,	wn)	and	b	so	that	we	correctly	
classify	the	data	set	
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Classification	Problems	
•  The	problem	may	admit	many	solutions	

–  There	can	be	too	many	lines	that	separate	the	2	classes	
•  Is	there	a	solution	that	is	better	than	the	others?	
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Which	of	these	lines	is	a	better	
choice	for	future	predictions	on	
non-training	data?	



Classification	Problems	
•  Suppose	we	pick	a	line	very	close	to	the	red	class	
•  And	suppose	2	new	points,	A	and	B,	arrive	for	

classification	
–  Not	part	of	the	initial	data	set	
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•  For	B	we	can	be	pretty	sure	it	
should	be	classified	as	+1	

•  What	about	A?		
•  We	can	label	it	as	-1	but	we	might	

not	be	sure	about	it	
•  For	Point	A:	wTx	+	b	is	close	to	0	A 

B 



Classification	Problems	
•  Ideally,	we	would	like	a	line,	given	by	w,	and	b,	such	that:	
•  wT	⋅	x	+	b	<<	0	for	every	point	x	in	the	red	class	
•  wT	⋅	x	+	b	>>	0	for	every	point	x	in	the	blue	class	
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What	is	the	criterion	we	should	
optimize	to	achieve	the	best	
possible	results?	



The	Optimal	Margin	Classifier	
•  Pick	the	line	that	maximizes	the	margins	
•  Margin	of	a	data	point:	distance	from	the	line	selected	
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wTx	+	b	=	0	

Minimum		
margins	

Hence:	pick	a	line	that	maximizes	the	
minimum	margin	from	the	data	points	



The	Optimal	Margin	Classifier	
•  Support	vectors:	The	vectors	formed	by	the	data	points	

with	the	minimum	margins	
•  Will	see	later	why	they	are	useful	
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The	Optimal	Margin	Classifier	
Defining	the	optimization	problem	we	care	about:	
•  Suppose	the	data	set	is	(x(1),	y(1)),	(x(2),	y(2)),...,	(x(m),	y(m))	
•  y(i)	in	{-1,	+1}		
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wTx	+	b	=	0	

Minimum		
margins	

Given	a	possible	solution	w	and	b:		
•  Distance	of	point	x(i)	from	the	line	

wT	⋅	x	+	b	=	0	
di	=	|wT	⋅	x(i)	+	b	|	/	||w|| 

•  If	the	line	is	a	correct	classifier	
di	=	y(i)	⋅	(wT	⋅	x(i)	+	b	)	/	||w|| 

•  We	want	to	find:	
maxw,b	mini	di	



The	Optimal	Margin	Classifier	
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First	attempt	to	bring	the	problem	to	an	amenable	form:	

max		r	/	||w||	
s.t.	
y(i)	⋅	(wT	⋅	x(i)	+	b	)	/	||w||	≥	r/||w||	
									

•  Problem:	Objective	function	is	nasty	(non-convex)	
•  No	techniques	known	tailored	for	such	functions	

max	d	
s.t.	
di	≥	d,	i=1,...,m															

⇒ 

⇒ 
max		r	/	||w||	
s.t.	
y(i)	⋅	(wT	⋅	x(i)	+	b	)	≥	r	
									



The	Optimal	Margin	Classifier	
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Normalization:		
•  No	need	to	have	r	as	a	variable,	we	can	assume	without	loss	

of	generality	that	r=1	
•  Suppose	not	
•  Consider	a	solution	w,	b,	such	that	mini	|wT	⋅	x(i)	+	b|	=	a	≠	1	
•  Then	set	w:	=	w/a,	b:=	b/a	
•  This	is	a	new	valid	solution	that	satisfies	what	we	want		
	
Hence:	
•  We	need	to	maximize	1	/	||w||	
•  Instead:	we	can	minimize	||w|| 
•  To	bring	the	problem	to	a	more	familiar	form,	we	will	use	as	

our	objective	function:	1/2	||w||2	



The	Optimal	Margin	Classifier	
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•  Convex	quadratic	objective	function	
•  Linear	inequality	constraints	
•  We	can	solve	it	with	various	ways	

-  If	we	add	slack	variables,	we	have	seen	how	to	solve	it	
using	the	KKT	conditions	

-  Otherwise	interior	point	methods	can	also	solve	it	quickly 
-  There	are	also	commercial	tools	specific	for	Quadratic	

Programming	



The	Optimal	Margin	Classifier	
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•  We	could	consider	the	problem	solved	at	this	point	
BUT:	
•  We	can	exploit	Lagrange	duality	to	derive	the	dual	problem	
•  The	dual	will	allow	us	to	solve	this	much	more	efficiently	
•  Solving	the	dual	works	well	even	for	very	high	dimensional	

spaces	
•  This	also	provides	intuition	regarding	the	support	vectors	and	

why	it	is	useful	that	we	usually	have	only	“few”	support	
vectors	



The	Dual	Problem	
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•  The	Lagrange	function:	
•  We	only	have	Lagrange	multipliers	for	the	inequality	
constraints	

•  Let	α	=	(α1,	α2,...,	αm)	be	the	vector	of	Lagrange	multipliers	

•  The	dual	function		
•  We	need	to	compute	infw,b	L(w,	b;	α)	
•  To	minimize	L,	we	use	the	condition	∇L	=	0 



The	Dual	Problem	
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•  Deriving	the	dual	function:	

•  Plug	in	(1)	into	the	Lagrangian	function		
•  After	some	algebraic	manipulations: 

⇒ 

⇒ 

(1)	

(2)	

•  By	using	(2),	the	last	term	vanishes 



The	Dual	Problem	
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•  Summarizing,	we	arrive	at	the	following	dual	problem:	

•  Notation:	for	convenience,	we	denote	by		〈x(i),	x(j)〉	the	inner	
product	of	the	2	vectors,	i.e.,	(x(i))T	⋅	x(j)	



Lessons	and	insights	learnt	from	the	
dual	
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1.  If	we	manage	to	solve	the	dual,	we	can	easily	use	(1)	and	(2)	
to	compute	the	optimal	solution	w*	and	b*	for	the	primal	

2.  Why	could	it	be	easier	to	solve	the	dual?	
-  Let	us	look	at	the	KKT	conditions	
-  Because	we	have	inequalities	in	the	primal,	we	have	the	

complementarity	conditions:		
αi	⋅	[y(i)	⋅	(wT	⋅	x(i)	+	b)	-	1]	=	0	

-  Hence	for	all	data	points	where	y(i)	⋅	(wT	⋅	x(i)	+	b)	>	1	⇒ αi = 0	
-  αi	>	0	only	for	data	points	with	the	minimum	margin	
-  These	are	the	points	corresponding	precisely	to	the	support	vectors!	
-  In	practice,	we	do	not	expect	too	many	points	to	attain	the	

minimum	margin		
-  Hence,	even	with	thousands	of	training	data,	we	expect	to	have	few	

support	vectors	⇒	few	non-zero	variables	in	the	dual		



Lessons	and	insights	learnt	from	the	
dual	
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3.  The	dual	is	written	in	terms	of	the	inner	products	
-  Suppose	we	solve	the	dual	
-  Suppose	also	we	now	want	to	make	a	prediction	for	a	

new	data	point	x	
-  We	should	calculate	wTx	+	b	and	decide	which	label	to	

give	
-  But	by	(1)	this	is	

-  If	many	αi’s	are	zero,	this	needs	only	a	few	inner	product	
calculations	

-  No	need	to	calculate	w	and	b	to	make	the	prediction		



Almost	Separable	Data	
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•  Some	times	the	data	may	not	be	linearly	separable	even	
though	it	is	obvious	that	there	are	2	separable	classes	of	data	

•  In	this	example,	the	dataset	is	almost	linearly	separable	
•  We	will	treat	some	(few)	examples	as	“outliers”	



Almost	Separable	Data	
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•  We	cannot	demand	that	y(i)	⋅	(wT	⋅	x(i)	+	b)		≥	1	
•  But	we	can	relax	the	constraints	

•  Ask	for	y(i)	⋅	(wT	⋅	x(i)	+	b)		≥	1	–	si	(slack	variable	si	≥	0)	
•  Penalize	the	sum	



Almost	Separable	Data	
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•  The	new	primal	problem	

•  And	the	new	dual	problem	



Almost	Separable	Data	

40 

•  Lagrange	duality	works	almost	in	the	same	way	as	before	
•  Only	difference	is	the	upper	bound	on	each	αi	
•  Sanity	check:	Derive	the	new	dual	on	your	own	

•  Again	equations	(1)	and	(2)	still	valid	
•  Hence,	again	predictions	on	new	data	points	can	be	made	

using	inner	products	



Kernels	
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•  What	happens	when	the	data	are	not	even	close	to	linearly	
separable?	

•  We	can	try	to		find	a	polynomial	that	separates	the	2	classes	
•  Similar	in	spirit	to	polynomial	regression	
•  This	is	where	the	real	power	of	SVMs	arises	

Separable	by	a	curve	
but	not	by	a	line	



Kernels	
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•  We	can	create	polynomial	features	
•  Each	x(i)	can	be	transformed	into	a	new	vector	that	includes	

these	features,	say	φ(x(i))	
•  Instead	of	the	inner	products	〈x(i),	x(j)〉,	we	will	now	have	
〈φ(x(i))	,	φ(x(j))	〉	

•  If	we	are	careful,	this	can	be	done	very	efficiently		

Definition:	Given	φ(x),	a	kernel	is	a	function	K	such	that	
K(x,	z)	=	〈φ(x)	,	φ(z)	〉	



Kernels	
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•  It	is	instructive	to	look	at	some	examples	of	kernels	
1.  Suppose		

Observation:		K(x,	z)	=	〈x,	z〉2	=	(xTz)2	

2.  Suppose	now	

	Again	K(x,	z)	=	(xTz)2	
If	we	had	n	variables	instead	of	3:	
•  Computing	〈φ(x),	φ(z)〉	takes	O(n2)	time	
•  Computing	K(x,	z)	takes	only	O(n)	time	



Kernels	
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•  In	general	we	can	pick	our	transformation	so	that		
K(x,	z)	=	[β	〈x,	z〉	+	γ]p	

For	appropriately	chosen	β,	γ	
•  New	objective	function	in	the	dual	

Main	Conclusions:		
•  We	can	incorporate	high	dimensional	feature	spaces	
•  All	we	need	is	inner	product	computations	
•  No	need	to	compute	φ(x),	we	only	need	to	compute	K	
•  Hence:	we	can	learn	in	a	high	dimensional	feature	space	

without	the	need	to	explicitly	represent	the	new	features	



Solving	the	dual	
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•  How	can	we	actually	solve	the	dual?	
•  The	best	approach	is	via	the	SMO	algorithm	(Sequential	

Minimal	Optimization)	
•  Derived	by	Platt	(1998)	

Main	ideas:		
•  A	local	search	approach	
•  Suppose	we	keep	all	variables	fixed	and	try	to	update	a	single	

variable	αi	
•  By	(2)	we	cannot	do	that,	if	we	fix	m-1	variables,	this	fixes	the	

last	variable	as	well	
•  We	do	local	search	on	pairs	of	variables	

-  Pick	a	pair	of	variables,	and	keep	the	other	m-2	variables	fixed	
-  Find	a	way	to	update	these	2	variables	so	as	to	make	progress	
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Reading Material

• Lecture Notes on Support Vector Machines from the 
machine learning course of Andrew Ng (Stanford): 
https://sgfin.github.io/files/notes/CS229_Lecture_Notes.pdf

• Technical report by Platt on the SMO algorithm: 
https://www.microsoft.com/en-
us/research/uploads/prod/1998/04/sequential-minimal-
optimization.pdf

• Machine Learning on Coursera by Andrew Ng also very 
illustrative 

https://sgfin.github.io/files/notes/CS229_Lecture_Notes.pdf
https://www.microsoft.com/en-us/research/uploads/prod/1998/04/sequential-minimal-optimization.pdf

