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Our goals

e Formulate problems where the objective function or
the constraints are not linear

e Understand when can we have efficient algorithms for
solving “non-linear” programs

— What assumptions are needed for the type of constraints or for
the objective function?

e Generalize LP duality theory/sensitivity analysis?



Introduction to convex sets and
convex functions



Convex Sets

We focus on subsets of R" for some dimensionn > 1
- Points here correspond to n-dimensional vectors
- But intuition from low dimensions very useful

* Given 2 points x, y € R", a point z lies on the line that
connects x and y if and only if
z=ax + (1-a) y forsome a € [0, 1]

Definition: A set C < R"is convex if for any 2 points x, y € C, and

forany a € [0, 1], we have that ax + (1-a)y € C

* In geometric terms: the line connecting any 2 points of C,
must entirely belong to C




Convex Sets

A.
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Examples

Convex sets:

Nonconvex sets:
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Convex Sets

Further examples of convex sets

1.All of R", for any dimensionn>1

2.The nonnegative orthant: points with all coordinates nonnegative
* Since ax + (1-a)y will also have nonnegative coordinates

3.The set of points contained within a ball
 E.g. {x:|[x]|, €1}
* Since
|lax + (1-a)y|[, < [lax|[, + [|(1-a)yll, < allx]|, + (1-a)llyll, < 1

4.Intersections of convex sets



Convex Sets

Further examples of convex sets

5. Feasible region of a linear program
 Convex polygon in 2 dimensions (when it is bounded)
* Convexity follows since it is an intersection of halfspaces

Feasible
region




Convex Sets

Examples that do not involve R"
* The exact same definition of convexity can be applied for
elements that are not points of R"

Definition: A real symmetric n x n matrix A is called positive
semidefinite (PSD) if for every n-dimensional vector z
z"-A-z20

Claim: The set of PSD matrices is a convex set
i.e., if A and B are PSD matrices, then AA + (1-A)B is also PSD for

any A € [0, 1]



Convex Functions

Definition: A function f : R® — R is convex if for any 2 points

X, Yy, and for any a € [0, 1], we have that
f(ax + (1-a)y) < af(x) + (1-a)f(y)
A
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e Geometric interpretation: the line connecting any 2 points (x,f(x))

(y,f(y)) must lie on or above the graph of the function
10



Convex Functions

Examples
e\With 1 variable:

 Exponential functions with base > 1: 2%, eX, cXforc2>1
*  Polynomial functions: x3, x10, x¢, forc > 1
 Linear functions: we have exact equality in the definition

e\With many variables
 Exponential functions: ex*V, ex*V*z,
 Negative of logarithms: - log(x + v)
e The sum of convex functions remains convex

11



Convex Functions

Equivalent definitions
(1)Based on the epigraph

The epigraph of a function fis the set:
epi f={(x, t):t>f(x)}
f is convex if and only if the epigraph of f is a convex set

e Geometric interpretation: the set
of points that lie on or above the epif
graph of the function should be a
convex set

12




Convex Functions

Equivalent definitions
(2) Based on the partial derivatives

Suppose that f is twice differentiable

For functions with 1 variable: f is convex if and only if
f”’(x) =2 0, for every x

eThe first derivative is increasing

A

e.g. for f(x) = x?, f’(x) = 2 for
every x

13



Convex Functions

Equivalent definitions

(2) Based on the partial derivatives

For functions with n variables: Define the Hessian of f at point x as

the n x n array:

H(f,x)

?f(x) 8*f(z)
0211 dr10xo
?f(x) 9*f(z)
dxo011 d%xo
?f(x) 9*f(z)
0xr,011 0r,0x9

8%f(z)

or10x,

0% f(z)

61‘9_61‘11

8% f(x)
2z,

-

A function f is convex if and only if the Hessian is positive semidefinite

for every x

* Easy to see from Slide 13 that this holds for 1 dimension

14



Convex Functions

Equivalent definitions
(3) Based on the tangents to the graph of f

fis convex if and only if the graph of f lies on or above all its
tangents:

Algebraically in 1 dimension:

4 eSlope of tangent at x = the
derivative of f at x
S e s ,
eHence, if f lies above all its
tangents, then for every x, y:
f(x) fly) 2 f(x) + f'(x) (y-x) (¥)
>

15



Convex Functions

Equivalent definitions
(3) Based on the tangents to the graph of f

For functions with n variables:
eRecall the gradient of a function

Vi(z) — (c?g)"(‘l)’ c)g'(‘:z.)’”q ag(‘l))
1 I9 In
e The gradient shows the rate of increase/decrease along each
dimension just as the derivative does for one variable
e Generalizing (*) for many variables:

fly) 2 f(x) + VE(x)" - (y-x)  (*¥)
One of the most important properties of convex functions 16



Concave Functions

Sometimes we may also discuss concave functions

Definition: A function f : R™ — R is concave if for any 2
points x, y, and for any a € [0, 1], we have that
f(ax + (1-a)y) = af(x) + (1-a)f(y)

e |ffis concave, -f is convex

e Hence, maximizing a concave function f can be reduced to
minimizing a convex function

17



Convex Optimization Problems

18



Nonlinear Optimization Problems

General form of optimization problems:

e Both equality and inequality constraints present

min f(zx)

We say the above is a convex optimization problem when
ef(x) is a convex function

eEach g; is a convex function
eEach h; is an affine function, h,=a"x—b,

19



Convex Optimization

Applications of convex optimization:

e Machine learning: linear regression (least squares),
classification (logistic regression, support vector machines)

e Statistics: parameter estimation
e Control theory

e Signal processing

e And many many more...

20



Convex Optimization

For general non-convex problems, almost no hope

There is no general approach that can work for any arbitrary
optimization problem

Some families of non-convex problems can be handled

But when working under assumptions like convexity, or

related properties (e.g. strong convexity), we can have
guarantees for convergence and running time

Still however not a standard technology, contrary to LP
solvers

— Commercial availability not as large as for LP solving but gradually
changing

21



Unconstrained
Convex Optimization

22



Unconstrained Optimization

We start with the easier version that has no constraints

Suppose we just want to minimize a function f : R" > R
without any further constraints

—  Still interesting problem with many applications

Assumption: f is twice continuously differentiable

Necessary condition for a point x™ to be a minimum is

Vi(x*)=0

BUT: for an arbitrary function f:

— This is not a sufficient condition, many other points may satisfy this
(such as local optima)

23



Unconstrained Optimization

We start with the easier version that has no constraints

Suppose we just want to minimize a function f : R" > R
without any further constraints
—  Still interesting problem with many applications

Assumptions from now on (unless otherwise stated)
— fis convex, and twice continuously differentiable
— The minimum of f is attained (and # +o° or -o0)

24



Unconstrained Optimization

Why is it nice to be convex:

Theorem: For a convex function f, a point x™ is a global minimum
of fif and only if Vf(x") =0

Proof:
Recall the basic property of convex functions, i.e., inequality (**):
f(y) = f(x) + VE(x)" - (y-x) for any 2 points x, y

e Suppose there exists x” for which Vf(x*) =0

e Then for every pointy, inequality (**) implies f(y) = f(x")
e Hence x” is a global minimum

25



Unconstrained Optimization

Why is it nice to be convex:

e The theorem makes our lives much easier (not trivial however)
— It suffices to find a point where the derivatives become 0

— Local minima are global minima, as with linear programs (recall the
terminating condition of simplex)

— If we can solve analytically the system Vf(x) = 0, then no need for an
algorithm

e |n many cases convexity helps us exploit the geometric
intuition we have from polyhedra or linear programming

problems

26



Unconstrained Optimization

Algorithms for convex unconstrained optimization:

e |terative algorithms, updating a current feasible solution

e They produce a sequence of points x(@, x(1) ..., xk) with the
property that

f(xK) > p* ask > e
— p*is what we are after: p* =inf, f(x)
— We may never find the actual optimal solution
— But we can get very close, in fact arbitrarily close if we allow enough
iterations
e We can view these algorithms as iterative methods for solving
the system Vf(x) =0

27



Descent Methods

General form of descent methods

e Make a local update towards an appropriate direction
e Stop when Vf(x) is close to 0

e Initialization: k=0, pick a starting point x{°), and a step size a,
e Update:
— Check if stopping criterion satisfied
— If not, x{k+1) = x(k) + o, Ax(k)
— k++
e Usual stopping criterion: ||Vf(x®)||, <€
Terminology:
e Ax: search direction

e, : step size, with o, >0
28



Descent Methods

How should we pick the search direction?

Need to ensure that for every iteration k, f(x*1) < f(x()

Convexity, i.e. using (**), implies it suffices to enforce that:
VE(x®)T . Axt < 0

Hence: choosing the (negative) gradient itself for the search
direction is a safe choice!

29



The Gradient Descent Method

One of the simplest algorithms in optimization: Descend

according to the gradient direction

Initialization: k=0, pick a starting point x{°), and a step size a,
Update:

—Check if stopping criterion satisfied

—If not, xk*1) = xk) — g, VF(x(¥)

—k++

Stopping criterion ||[V(x®) ||, < €

- Ifeg, ||VI(xW) ||, < (2me)'?, where m is a lower bound on the
minimum eigenvalue of H(f, x) then f(x) —p* <€

30



The Gradient Descent Method

How should we pick the step size a,?

e Firstidea: Exact line search
— Find the minimum value of f along the gradient direction:

a, = argmin, f(xk - sVf(x(k))

— 1-dimensional problem
— E.g., we could solve it via Newton’s method

— But often too time consuming in practice

31



The Gradient Descent Method

How should we pick the step size o, ?

e Second idea: Backtracking line search, an approximate
solution to the exact line search

— Try to approximately minimize f along the ray x - sVf(xk))
— Essentially make sure the function decreases “enough”
— Many variants in the literature, e.g.
Keep setting s:= s until

f(x - sV(xK))) < f(xk) — as - ||VF(x®) ||%,
forB<1,a<1/2

— Works well in practice

32



Descent Methods

Example 1:
Consider the function f(xq,z9) = 22 + 222 — 21119

Execute the first 2 steps of gradient descent with exact line
search, starting from x© = (1, 1)

33



Descent Methods

Example 2:
: : 1
Consider the function f(zy, z9) = 5(;{% +yz3), 7>0

Start at x(© = (y, 1)
After k iterations of gradient descent, we get:

- () (353

Run with y =10

4+

T2
-
%
2

—10 0 10 34



Convergence analysis

Can we establish convergence properties for the gradient
descent method?

e Empirically, it works well on average for convex functions

e Theoretically, upper bounds can be obtained when
assuming strong convexity

Definition: A function is strongly convex when there exists m>0
such that for any x,

H(f, x) 2 m-|
— | is the identity matrix

35



Convergence analysis

e Strong convexity together with (**) implies that there also
exists upper bounds on the Hessian

e Hence, there exist m>0 and M>0 such that for every x:
m-l < H(f, x) £ M-I
e Convergence results on the number of iterations depend on
— mand M

— The initial solution x(©
— The accuracy parameter in the stopping criterion

e Note: we may not be aware of the values for m and M
— It might be difficult to estimate for some functions
— So, we may not know how many iterations we need

e Still, these bounds are conceptually useful
— They provide a guarantee that the method converges

36



Convergence analysis

e Arelatively loose analysis with exact line search

e Theorem: For strongly convex functions, the number of

iterations required by the gradient descent method is
bounded by

log((f(x\?) —p”)/€) / log(1/c)
where
— c=1-m/M<1
— p"=min, f(x)
— € = accuracy parameter (= final suboptimality)
— f(x19) — p* = initial suboptimality
— Thus, nominator = log of initial suboptimality to final suboptimality

e Conclusions: The error f(xX)) — p* converges to O at least as
fast as a geometric series
— i.e., linear convergence

e With backtracking line search, slightly worse bounds can also
be established 37



The Newton Method

A different descent method with favorable performance

e |tisinstructive to see first the method in 1 dimension

— When n=1, we search for a point x, where f'(x) =0
— Suppose after k iterations, we have reached a point x,
— How shall we move to the next iteration and pick x,,?

Newton’s method for n=1:
X1 = X — (F(x)/F7 (%))

Also referred to as the Newton-Raphson method

38



The Newton Method

Newton’s method for n=1:
X1 = X — (F(x)/F7 (%))

A Geometric interpretation:

eConsider the plot of the derivative f’

*By convexity the first derivative is an

increasing function

eDraw the tangent at x,

eSlope of the tangent = f”(x,)

eFind the point where the tangent hits

the x-axis

*This is given by solving the equation
0 = (x) + 7 (x) (X = )

)E,.- - - - - -
.~
-

Rabe
2<
o [
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The Newton Method

Newton’s method for n=1:
X1 = X — (F(x)/F7 (%))

Algebraic intuition:
A eConsider the 2"9 order Taylor
approximation:
F(Xier) = FOxi) + T (%) (Xiern = Xi) + 7 (%) (Xpesa-
X )%/ 2
eHow would we choose to move from x,
to X411 ?
eSet derivative (with respect to x,,,) =0
= X1 = X — F'(x)/17(x)
*X,.1 IS the minimizer of g
o|f f is close to a quadratic function, then
» the Newton step is close to the best
possible 40
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The Newton Method

For many variables, we can generalize the same intuition:

e 2" order Taylor approximation for a function of n variables
e Now x and 0 are n-dimensional vectors

f(x+6) =f(x) + VF(x)"- 6+ % 6" - H(f, x) - 6

If we try to minimize with respect to 6 (=Ax), we get that:
6 = - H(f, x)* V{(x)

e |s this a descent direction?

e To be aligned with the convexity of f we need to check that:
-VE(x)T - (H(f, x)1 - Vf(x)) <O,

But the Hessian is a PSD matrix!

41



The Newton Method

Summarizing:

e Initialization: k=0, pick a starting point x{°), and a step size a,
e Update:

— Check if stopping criterion satisfied

— If not, x{k+1) = x(k — g, H(f, xK))1 . VF(xK)

— k++
e Usual stopping criterion:

— Let A:= (VF(x)T . H(f, xK) . VF(x(k)))1/2

— Stop when 1/2A%’<¢

— A is called the Newton decrement

— Useful parameter for the analysis of the method

42



The Newton Method

e Progress made using the 2"d order approximation

\
A
A
\

\
\
\
The 2nd order/ :

approx. of f

43



The Newton Method

e Pros

— Itis fast in general

— Scales well with problem size

— Performance not depend on problem parameters (?)
e Cons

— Cost of computing the Hessian

e Convergence analysis
— Can be established in a similar way as with gradient descent
— Theoretical upper bound: proportional to f(x\?)) — p°

44



