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Our goals
• Formulate problems where the objective function or 

the constraints are not linear

• Understand when can we have efficient algorithms for 
solving “non-linear” programs

– What assumptions are needed for the type of constraints or for 
the objective function?

• Generalize LP duality theory/sensitivity analysis?
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Introduction to convex sets and 
convex functions

4



Convex Sets
We focus on subsets of Rn for some dimension n ≥ 1

- Points here correspond to n-dimensional vectors
- But intuition from low dimensions very useful 
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• Given 2 points x, y Î Rn, a point z lies on the line that 
connects x and y if and only if

z = ax + (1-a) y for some a Î [0, 1]

Definition: A set C Í Rn is convex if for any 2 points x, y Î C, and 
for any a Î [0, 1], we have that ax + (1-a)y Î C
• In geometric terms: the line connecting any 2 points of C, 

must entirely belong to C



Convex Sets
Examples
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Convex sets:

Nonconvex sets:



Convex Sets
Further examples of convex sets

1.All of Rn, for any dimension n ≥ 1

2.The nonnegative orthant: points with all coordinates nonnegative
• Since ax + (1-a)y will also have nonnegative coordinates

3.The set of points contained within a ball
• E.g. {x: ||x||2 ≤ 1}
• Since 

||ax + (1-a)y||2 ≤ ||ax||2 + ||(1-a)y||2 ≤ a||x||2 + (1-a)||y||2 ≤ 1 

4.Intersections of convex sets
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Convex Sets
Further examples of convex sets

5. Feasible region of a linear program
• Convex polygon in 2 dimensions (when it is bounded)
• Convexity follows since it is an intersection of halfspaces

8x1

x2

Feasible 
region-

-

-

- -



Convex Sets
Examples that do not involve Rn

• The exact same definition of convexity can be applied for 
elements that are not points of Rn
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Definition: A real symmetric n x n matrix A is called positive 
semidefinite (PSD) if for every n-dimensional vector z 

zT×A×z ≥ 0 

Claim: The set of PSD matrices is a convex set
i.e., if A and B are PSD matrices, then λΑ + (1-λ)Β is also PSD for 
any λ Î [0, 1]



Convex Functions

• Geometric interpretation: the line connecting any 2 points (x,f(x)) 
(y,f(y)) must lie on or above the graph of the function
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Definition: A function f : Rn ® R is convex if for any 2 points 
x, y, and for any a Î [0, 1], we have that 

f(ax + (1-a)y)  ≤ af(x) + (1-a)f(y) 

f(x)

f(y)

x y



Convex Functions
Examples
•With 1 variable:

• Exponential functions with base > 1: 2x, ex, cx for c ≥ 1
• Polynomial functions: x3, x10, xc, for c ≥ 1
• Linear functions: we have exact equality in the definition

•With many variables
• Exponential functions: ex+y, ex+y+z,  
• Negative of logarithms: - log(x + y)
• The sum of convex functions remains convex
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Convex Functions

• Geometric interpretation: the set 
of points that lie on or above the 
graph of the function should be a 
convex set
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Equivalent definitions
(1)Based on the epigraph

The epigraph of a function f is the set:
epi f = { (x, t): t ≥ f(x) }

f is convex if and only if the epigraph of f is a convex set



Convex Functions
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Equivalent definitions
(2) Based on the partial derivatives

Suppose that f is twice differentiable

For functions with 1 variable: f is convex if and only if 
f’’(x) ≥ 0, for every x
•The first derivative is increasing

e.g. for f(x) = x2, f’’(x) = 2 for 
every x



Convex Functions

For functions with n variables: Define the Hessian of f at point x as 
the n x n array:
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Equivalent definitions
(2) Based on the partial derivatives

A function f is convex if and only if the Hessian is positive semidefinite
for every x
• Easy to see from Slide 13 that this holds for 1 dimension



Convex Functions
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Equivalent definitions
(3) Based on the tangents to the graph of f

f is convex if and only if the graph of f lies on or above all its 
tangents:

f(x)

f(y)

x y

Algebraically in 1 dimension:
•Slope of tangent at x = the 
derivative of f at x
•Hence, if f lies above all its 
tangents, then for every x, y:

f(y) ≥ f(x) + f’(x) (y-x)   (*)



Convex Functions
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Equivalent definitions
(3) Based on the tangents to the graph of f

For functions with n variables:
•Recall the gradient of a function

• The gradient shows the rate of increase/decrease along each 
dimension just as the derivative does for one variable

• Generalizing (*) for many variables:

f(y) ≥ f(x) + Ñf(x)T × (y-x)     (**)
One of the most important properties of convex functions



Concave Functions
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Sometimes we may also discuss concave functions

Definition: A function f : Rn ® R is concave if for any 2 
points x, y, and for any a Î [0, 1], we have that 

f(ax + (1-a)y) ≥ af(x) + (1-a)f(y) 

• If f is concave, -f is convex
• Hence, maximizing a concave function f can be reduced to 

minimizing a convex function



Convex Optimization Problems
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Nonlinear Optimization Problems
General form of optimization problems:
• Both equality and inequality constraints present

We say the above is a convex optimization problem when
•f(x) is a convex function
•Each gi is a convex function
•Each hi is an affine function, hi = ai

T x – bi
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Convex Optimization
Applications of convex optimization:
• Machine learning: linear regression (least squares), 

classification (logistic regression, support vector machines)
• Statistics: parameter estimation
• Control theory
• Signal processing
• And many many more...
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Convex Optimization
• For general non-convex problems, almost no hope
• There is no general approach that can work for any arbitrary 

optimization problem
• Some families of non-convex problems can be handled
• But when working under assumptions like convexity, or 

related properties (e.g. strong convexity), we can have 
guarantees for convergence and running time

• Still however not a standard technology, contrary to LP 
solvers
– Commercial availability not as large as for LP solving but gradually 

changing



Unconstrained 
Convex Optimization
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Unconstrained Optimization
• We start with the easier version that has no constraints

• Suppose we just want to minimize a function f : Rn ® R 
without any further constraints
– Still interesting problem with many applications

• Assumption: f is twice continuously differentiable

• Necessary condition for a point x* to be a minimum is 
Ñf(x*) = 0

• BUT: for an arbitrary function f:
– This is not a sufficient condition, many other points may satisfy this 

(such as local optima) 23



Unconstrained Optimization
• We start with the easier version that has no constraints

• Suppose we just want to minimize a function f : Rn ® R 
without any further constraints
– Still interesting problem with many applications

• Assumptions from now on (unless otherwise stated)
– f is convex, and twice continuously differentiable
– The minimum of f is attained (and ≠ +∞ or -∞) 
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Unconstrained Optimization
Why is it nice to be convex:

Theorem: For a convex function f, a point x* is a global minimum 
of f if and only if Ñf(x*) = 0

Proof:
Recall the basic property of convex functions, i.e., inequality (**):

f(y) ≥ f(x) + Ñf(x)T × (y-x) for any 2 points x, y

• Suppose there exists x* for which Ñf(x*)  = 0 
• Then for every point y, inequality (**) implies f(y) ≥ f(x*) 
• Hence x* is a global minimum
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Unconstrained Optimization
Why is it nice to be convex:

• The theorem makes our lives much easier (not trivial however) 
– It suffices to find a point where the derivatives become 0 
– Local minima are global minima, as with linear programs (recall the 

terminating condition of simplex)
– If we can solve analytically the system Ñf(x) = 0, then no need for an 

algorithm

• In many cases convexity helps us exploit the geometric 
intuition we have from polyhedra or linear programming 
problems

26



Unconstrained Optimization
Algorithms for convex unconstrained optimization:

• Ιterative algorithms, updating a current feasible solution
• They produce a sequence of points x(0), x(1),..., x(k) with the 

property that
f(x(k)) → p*  as k → ∞

– p* is what we are after: p* = infx f(x)
– We may never find the actual optimal solution
– But we can get very close, in fact arbitrarily close if we allow enough 

iterations

• We can view these algorithms as iterative methods for solving 
the system Ñf(x) = 0
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Descent Methods
General form of descent methods

• Make a local update towards an appropriate direction
• Stop when Ñf(x) is close to 0

• Initialization: k=0, pick a starting point x(0), and a step size α0
• Update:

– Check if stopping criterion satisfied
– If not, x(k+1) = x(k) + αk Δx(k)

– k++
• Usual stopping criterion: ||Ñf(x(k))||2 ≤ ε
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Terminology:
•Δx: search direction
•αk: step size, with αk > 0 



Descent Methods
How should we pick the search direction?

• Need to ensure that for every iteration k, f(x(k+1)) ≤ f(x(k))
• Convexity, i.e. using (**), implies it suffices to enforce that:

Ñf(x(k))T × Δx(k) < 0

• Hence: choosing the (negative) gradient itself for the search 
direction is a safe choice!
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The Gradient Descent Method
One of the simplest algorithms in optimization: Descend 

according to the gradient direction

• Initialization: k=0, pick a starting point x(0), and a step size α0
• Update:

–Check if stopping criterion satisfied
–If not, x(k+1) = x(k) – αk Ñf(x(k))
–k++

• Stopping criterion ||Ñf(x(k)) ||2 ≤ ε
– If e.g., ||Ñf(x(k)) ||2 ≤ (2mε)1/2 , where m is a lower bound on the 

minimum eigenvalue of Η(f,x), then f(x) – p* ≤ ε
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The Gradient Descent Method
How should we pick the step size αk?

• First idea: Exact line search 
– Find the minimum value of f along the gradient direction:

αk = argmins f(x(k) - sÑf(x(k)))

– 1-dimensional problem
– E.g., we could solve it via Newton’s method
– But often too time consuming in practice
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The Gradient Descent Method
How should we pick the step size αk?

• Second idea: Backtracking line search, an approximate 
solution to the exact line search
– Try to approximately minimize f along the ray x - sÑf(x(k))
– Essentially make sure the function decreases “enough”
– Many variants in the literature, e.g.
Keep setting s:= βs until

f(x - sÑf(x(k))) ≤ f(x(k)) – αs × ||Ñf(x(k)) ||22
for β < 1, α < 1/2 

– Works well in practice
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Descent Methods
Example 1:
Consider the function

Execute the first 2 steps of gradient descent with exact line 
search, starting from x(0) = (1, 1)
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Descent Methods
Example 2:
Consider the function

Start at x(0) = (γ, 1)
After k iterations of gradient descent, we get:

34

Run with γ = 10



Convergence analysis
Can we establish convergence properties for the gradient 

descent method?

• Empirically, it works well on average for convex functions
• Theoretically, upper bounds can be obtained when 

assuming strong convexity

Definition: A function is strongly convex when there exists m>0 
such that for any x, 

H(f, x) ≥ m×I
– I is the identity matrix
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Convergence analysis
• Strong convexity together with (**) implies that there also 

exists upper bounds on the Hessian
• Hence, there exist m>0 and M>0 such that for every x: 

m×I ≤ H(f, x) ≤ M×I
• Convergence results on the number of iterations depend on

– m and M
– The initial solution x(0)
– The accuracy parameter in the stopping criterion

• Note: we may not be aware of the values for m and M
– It might be difficult to estimate for some functions
– So, we may not know how many iterations we need 

• Still, these bounds are conceptually useful
– They provide a guarantee that the method converges
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Convergence analysis
• A relatively loose analysis with exact line search
• Theorem: For strongly convex functions, the number of 

iterations required by the gradient descent method is 
bounded by

log((f(x(0)) – p*)/ε) / log(1/c)
where

– c = 1 – m/M < 1
– p* = minx f(x)
– ε = accuracy parameter (= final suboptimality)
– f(x(0)) – p* = initial suboptimality
– Thus,  nominator = log of initial suboptimality to final suboptimality

• Conclusions: The error f(x(k)) – p* converges to 0 at least as 
fast as a geometric series
– i.e., linear convergence 

• With backtracking line search, slightly worse bounds can also 
be established 37



The Newton Method
A different descent method with favorable performance

• It is instructive to see first the method in 1 dimension
– When n=1, we search for a point x, where f’(x) = 0
– Suppose after k iterations, we have reached a point xk
– How shall we move to the next iteration and pick xk+1?
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Newton’s method for n=1:
xk+1 = xk – (f’(xk)/f’’(xk))

Also referred to as the Newton-Raphson method 



The Newton Method
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Newton’s method for n=1:
xk+1 = xk – (f’(xk)/f’’(xk)) 

Geometric interpretation:
•Consider the plot of the derivative f’
•By convexity the first derivative is an 
increasing function
•Draw the tangent at xk
•Slope of the tangent = f’’(xk)
•Find the point where the tangent hits 
the x-axis
•This is given by solving the equation

0 = f’(xk) + f’’(xk)(x – xk) 



The Newton Method
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Newton’s method for n=1:
xk+1 = xk – (f’(xk)/f’’(xk)) 

Algebraic intuition:
•Consider the 2nd order Taylor 
approximation: 
f(xk+1) = f(xk) + f’(xk)(xk+1 - xk) + f’’(xk)(xk+1-

xk)2/2
•How would we choose to move from xk
to xk+1?
•Set derivative (with respect to xk+1) = 0 
Þ xk+1 = xk – f’(x)/f’’(x)

•Xk+1 is the minimizer of g  
•If f is close to a quadratic function, then 
the Newton step is close to the best 
possible



The Newton Method
For many variables, we can generalize the same intuition:

• 2nd order Taylor approximation for a function of n variables
• Now x and δ are n-dimensional vectors

f(x+δ) = f(x) + Ñf(x)T × δ + ½ δΤ × H(f, x) × δ
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If we try to minimize with respect to δ (=Δx), we get that:
δ = - Η(f, x)-1 Ñf(x) 

• Is this a descent direction? 
• To be aligned with the convexity of f we need to check that:

-Ñf(x)Τ × (Η(f, x)-1 × Ñf(x)) < 0, 
But the Hessian is a PSD matrix! 



The Newton Method
Summarizing: 

• Initialization: k=0, pick a starting point x(0), and a step size α0
• Update:

– Check if stopping criterion satisfied
– If not, x(k+1) = x(k) – αk Η(f, x(k))-1 × Ñf(x(k))
– k++

• Usual stopping criterion:
– Let   λ := (Ñf(x(k))T × Η(f, x(k)) × Ñf(x(k)))1/2

– Stop when  1/2λ2 ≤ ε
– λ is called the Newton decrement
– Useful parameter for the analysis of the method
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The Newton Method
• Progress made using the 2nd order approximation
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The 2nd order 
approx. of f



The Newton Method

• Pros
– It is fast in general
– Scales well with problem size
– Performance not depend on problem parameters (?)

• Cons
– Cost of computing the Hessian

• Convergence analysis
– Can be established in a similar way as with gradient descent
– Theoretical upper bound: proportional to f(x(0)) – p*
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