OIKONOMIKO MANEMIETHMIO AOHN』N

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

M.Sc. Program in Data Science Department of Informatics

Optimization Techniques

Convex Optimization

Outline

- Convex sets
- Definitions and basic concepts
- Convex functions
- Equivalent definitions
- Advantages when optimizing convex functions
- Convex optimization problems
- Unconstrained optimization
- Descent methods
- Constrained optimization
- Lagrange duality and the KKT conditions
- Algorithms

Our goals

- Formulate problems where the objective function or the constraints are not linear
- Understand when can we have efficient algorithms for solving "non-linear" programs
- What assumptions are needed for the type of constraints or for the objective function?
- Generalize LP duality theory/sensitivity analysis?

Introduction to convex sets and convex functions

Convex Sets

We focus on subsets of R^{n} for some dimension $n \geq 1$

- Points here correspond to n-dimensional vectors
- But intuition from low dimensions very useful
- Given 2 points $x, y \in R^{n}$, a point z lies on the line that connects x and y if and only if

$$
z=a x+(1-a) y \text { for some } a \in[0,1]
$$

Definition: A set $\mathrm{C} \subseteq \mathrm{R}^{\mathrm{n}}$ is convex if for any 2 points $\mathrm{x}, \mathrm{y} \in \mathrm{C}$, and for any $a \in[0,1]$, we have that $a x+(1-a) y \in C$

- In geometric terms: the line connecting any 2 points of C , must entirely belong to C

Convex Sets

Examples

Convex sets:

Nonconvex sets:

Convex Sets

Further examples of convex sets

1.All of R^{n}, for any dimension $\mathrm{n} \geq 1$
2.The nonnegative orthant: points with all coordinates nonnegative

- Since ax $+(1-\mathrm{a}) \mathrm{y}$ will also have nonnegative coordinates
3.The set of points contained within a ball
- E.g. $\left\{x:\|x\|_{2} \leq 1\right\}$
- Since

$$
\|a x+(1-a) y\|_{2} \leq\|a x\|_{2}+\|(1-a) y\|_{2} \leq a\|x\|_{2}+(1-a)\|y\|_{2} \leq 1
$$

4.Intersections of convex sets

Convex Sets

Further examples of convex sets

5. Feasible region of a linear program

- Convex polygon in 2 dimensions (when it is bounded)
- Convexity follows since it is an intersection of halfspaces

Convex Sets

Examples that do not involve $\mathbf{R}^{\mathbf{n}}$

- The exact same definition of convexity can be applied for elements that are not points of R^{n}

Definition: A real symmetric $\mathrm{n} \times \mathrm{n}$ matrix A is called positive semidefinite (PSD) if for every n-dimensional vector z

$$
z^{\top} \cdot A \cdot z \geq 0
$$

Claim: The set of PSD matrices is a convex set i.e., if A and B are PSD matrices, then $\lambda A+(1-\lambda) B$ is also PSD for any $\lambda \in[0,1]$

Convex Functions

Definition: A function $f: R^{n} \rightarrow R$ is convex if for any 2 points x, y, and for any $a \in[0,1]$, we have that

$$
f(a x+(1-a) y) \leq a f(x)+(1-a) f(y)
$$

- Geometric interpretation: the line connecting any 2 points ($x, f(x)$) $(y, f(y))$ must lie on or above the graph of the function

Convex Functions

Examples

- With 1 variable:
- Exponential functions with base $>1: 2^{x}, \mathrm{e}^{\mathrm{x}}, \mathrm{c}^{\mathrm{x}}$ for $\mathrm{c} \geq 1$
- Polynomial functions: x^{3}, x^{10}, x^{c}, for $c \geq 1$
- Linear functions: we have exact equality in the definition
-With many variables
- Exponential functions: $\mathrm{e}^{\mathrm{x}+\mathrm{y}}, \mathrm{e}^{\mathrm{x}+\mathrm{y}+\mathrm{z}}$,
- Negative of logarithms: $-\log (x+y)$
- The sum of convex functions remains convex

Convex Functions

Equivalent definitions

(1)Based on the epigraph

The epigraph of a function f is the set:

$$
\text { epi } f=\{(x, t): t \geq f(x)\}
$$

f is convex if and only if the epigraph of f is a convex set

- Geometric interpretation: the set of points that lie on or above the graph of the function should be a convex set

Convex Functions

Equivalent definitions

(2) Based on the partial derivatives

Suppose that f is twice differentiable
For functions with 1 variable: f is convex if and only if
$f^{\prime \prime}(x) \geq 0$, for every x
-The first derivative is increasing

$$
\begin{aligned}
& \text { e.g. for } f(x)=x^{2}, f^{\prime \prime}(x)=2 \text { for } \\
& \text { every } x
\end{aligned}
$$

Convex Functions

Equivalent definitions

(2) Based on the partial derivatives

For functions with n variables: Define the Hessian of f at point x as the $\mathrm{n} \times \mathrm{n}$ array:

$$
H(f, x)=\left[\begin{array}{cccc}
\frac{\partial^{2} f(x)}{\partial^{2} x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{2}} & \ldots & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial^{2} x_{2}} & \ldots & \frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ldots & \vdots \\
\frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{2}} & \ldots & \frac{\partial^{2} f(x)}{\partial^{2} x_{n}}
\end{array}\right]
$$

A function f is convex if and only if the Hessian is positive semidefinite for every x

- Easy to see from Slide 13 that this holds for 1 dimension

Convex Functions

Equivalent definitions

(3) Based on the tangents to the graph of f
f is convex if and only if the graph of f lies on or above all its tangents:

Algebraically in 1 dimension:

- Slope of tangent at $x=$ the derivative of f at x
-Hence, if f lies above all its tangents, then for every x, y :

$$
f(y) \geq f(x)+f^{\prime}(x)(y-x) \quad(*)
$$

Convex Functions

Equivalent definitions

(3) Based on the tangents to the graph of f

For functions with n variables:
-Recall the gradient of a function

$$
\nabla f(x)=\left(\frac{\partial f(x)}{\partial x_{1}}, \frac{\partial f(x)}{\partial x_{2}}, \ldots, \frac{\partial f(x)}{\partial x_{n}}\right)
$$

- The gradient shows the rate of increase/decrease along each dimension just as the derivative does for one variable
- Generalizing (*) for many variables:

$$
f(y) \geq f(x)+\nabla f(x)^{\top} \cdot(y-x) \quad(* *)
$$

One of the most important properties of convex functions

Concave Functions

Sometimes we may also discuss concave functions

Definition: A function $f: R^{n} \rightarrow R$ is concave if for any 2
points x, y, and for any $a \in[0,1]$, we have that

$$
f(a x+(1-a) y) \geq a f(x)+(1-a) f(y)
$$

- If f is concave, $-f$ is convex
- Hence, maximizing a concave function f can be reduced to minimizing a convex function

Convex Optimization Problems

Nonlinear Optimization Problems

General form of optimization problems:

- Both equality and inequality constraints present

$$
\begin{array}{ll}
\min & f(x) \\
\text { s. t.: } \\
& g_{i}(x) \leq 0, \quad i=1,2, \ldots, m \\
& h_{i}(x)=0, \quad i=1,2, \ldots, p
\end{array}
$$

We say the above is a convex optimization problem when
$\bullet f(x)$ is a convex function

- Each g_{i} is a convex function
- Each h_{i} is an affine function, $h_{i}=a_{i}^{\top} x-b_{i}$

Convex Optimization

Applications of convex optimization:

- Machine learning: linear regression (least squares), classification (logistic regression, support vector machines)
- Statistics: parameter estimation
- Control theory
- Signal processing
- And many many more...

Convex Optimization

- For general non-convex problems, almost no hope
- There is no general approach that can work for any arbitrary optimization problem
- Some families of non-convex problems can be handled
- But when working under assumptions like convexity, or related properties (e.g. strong convexity), we can have guarantees for convergence and running time
- Still however not a standard technology, contrary to LP solvers
- Commercial availability not as large as for LP solving but gradually changing

Unconstrained

Convex Optimization

Unconstrained Optimization

- We start with the easier version that has no constraints
- Suppose we just want to minimize a function $f: R^{n} \rightarrow R$ without any further constraints
- Still interesting problem with many applications
- Assumption: f is twice continuously differentiable
- Necessary condition for a point x^{*} to be a minimum is

$$
\nabla f\left(x^{*}\right)=0
$$

- BUT: for an arbitrary function f:
- This is not a sufficient condition, many other points may satisfy this (such as local optima)

Unconstrained Optimization

- We start with the easier version that has no constraints
- Suppose we just want to minimize a function $f: R^{n} \rightarrow R$ without any further constraints
- Still interesting problem with many applications
- Assumptions from now on (unless otherwise stated)
- f is convex, and twice continuously differentiable
- The minimum of f is attained (and $\neq+\infty$ or $-\infty$)

Unconstrained Optimization

Why is it nice to be convex:

Theorem: For a convex function f, a point x^{*} is a global minimum of f if and only if $\nabla f\left(x^{*}\right)=0$

Proof:
Recall the basic property of convex functions, i.e., inequality (${ }^{* *}$):

$$
f(y) \geq f(x)+\nabla f(x)^{\top} \cdot(y-x) \text { for any } 2 \text { points } x, y
$$

- Suppose there exists x^{*} for which $\nabla f\left(x^{*}\right)=0$
- Then for every point y, inequality $\left({ }^{* *}\right)$ implies $f(y) \geq f\left(x^{*}\right)$
- Hence x^{*} is a global minimum

Unconstrained Optimization

Why is it nice to be convex:

- The theorem makes our lives much easier (not trivial however)
- It suffices to find a point where the derivatives become 0
- Local minima are global minima, as with linear programs (recall the terminating condition of simplex)
- If we can solve analytically the system $\nabla f(x)=0$, then no need for an algorithm
- In many cases convexity helps us exploit the geometric intuition we have from polyhedra or linear programming problems

Unconstrained Optimization

Algorithms for convex unconstrained optimization:

- Iterative algorithms, updating a current feasible solution
- They produce a sequence of points $x^{(0)}, x^{(1)}, \ldots, x^{(k)}$ with the property that

$$
f\left(x^{(k)}\right) \rightarrow p^{*} \text { as } k \rightarrow \infty
$$

- p^{*} is what we are after: $p^{*}=\inf _{x} f(x)$
- We may never find the actual optimal solution
- But we can get very close, in fact arbitrarily close if we allow enough iterations
- We can view these algorithms as iterative methods for solving the system $\nabla \mathrm{f}(\mathrm{x})=0$

Descent Methods

General form of descent methods

- Make a local update towards an appropriate direction
- Stop when $\nabla \mathrm{f}(\mathrm{x})$ is close to 0
- Initialization: $\mathrm{k}=0$, pick a starting point $\mathrm{x}^{(0)}$, and a step size α_{0}
- Update:
- Check if stopping criterion satisfied
- If not, $x^{(k+1)}=x^{(k)}+\alpha_{k} \Delta x^{(k)}$
- k++
- Usual stopping criterion: $\left\|\nabla f\left(x^{(k)}\right)\right\|_{2} \leq \varepsilon$

Terminology:

- Δx : search direction
$\bullet \alpha_{k}$: step size, with $\alpha_{k}>0$

Descent Methods

How should we pick the search direction?

- Need to ensure that for every iteration $k, f\left(x^{(k+1)}\right) \leq f\left(x^{(k)}\right)$
- Convexity, i.e. using $\left({ }^{* *}\right)$, implies it suffices to enforce that:

$$
\nabla f\left(x^{(k)}\right)^{\top} \cdot \Delta x^{(k)}<0
$$

- Hence: choosing the (negative) gradient itself for the search direction is a safe choice!

The Gradient Descent Method

One of the simplest algorithms in optimization: Descend according to the gradient direction

- Initialization: $k=0$, pick a starting point $x^{(0)}$, and a step size α_{0}
- Update:
-Check if stopping criterion satisfied
-If not, $x^{(k+1)}=x^{(k)}-\alpha_{k} \nabla f\left(x^{(k)}\right)$
-k++
- Stopping criterion $\left\|\nabla f\left(x^{(k)}\right)\right\|_{2} \leq \varepsilon$
- If e.g., $\left\|\nabla f\left(x^{(k)}\right)\right\|_{2} \leq(2 m \varepsilon)^{1 / 2}$, where m is a lower bound on the minimum eigenvalue of $H(f, x)$, then $f(x)-p^{*} \leq \varepsilon$

The Gradient Descent Method

How should we pick the step size α_{k} ?

- First idea: Exact line search
- Find the minimum value of f along the gradient direction:

$$
\alpha_{k}=\operatorname{argmin}_{s} f\left(x^{(k)}-s \nabla f\left(x^{(k)}\right)\right)
$$

- 1-dimensional problem
- E.g., we could solve it via Newton's method
- But often too time consuming in practice

The Gradient Descent Method

How should we pick the step size α_{k} ?

- Second idea: Backtracking line search, an approximate solution to the exact line search
- Try to approximately minimize f along the ray $x-s \nabla f\left(x^{(k)}\right)$
- Essentially make sure the function decreases "enough"
- Many variants in the literature, e.g.

Keep setting $s:=\beta s$ until

$$
f\left(x-s \nabla f\left(x^{(k)}\right)\right) \leq f\left(x^{(k)}\right)-\alpha s \cdot\left\|\nabla f\left(x^{(k)}\right)\right\|_{2}^{2}
$$

for $\beta<1, \alpha<1 / 2$

- Works well in practice

Descent Methods

Example 1:

Consider the function $f\left(x_{1}, x_{2}\right)=x_{1}^{2}+2 x_{2}^{2}-2 x_{1} x_{2}$

Execute the first 2 steps of gradient descent with exact line search, starting from $x^{(0)}=(1,1)$

Descent Methods

Example 2:

Consider the function $f\left(x_{1}, x_{2}\right)=\frac{1}{2}\left(x_{1}^{2}+\gamma x_{2}^{2}\right), \quad \gamma>0$
Start at $x^{(0)}=(\gamma, 1)$
After k iterations of gradient descent, we get:

$$
x^{(k)}=\left(\gamma\left(\frac{\gamma-1}{\gamma+1}\right)^{k},\left(-\frac{\gamma-1}{\gamma+1}\right)^{k}\right)
$$

Run with $\gamma=10$

Convergence analysis

Can we establish convergence properties for the gradient descent method?

- Empirically, it works well on average for convex functions
- Theoretically, upper bounds can be obtained when assuming strong convexity

Definition: A function is strongly convex when there exists $m>0$ such that for any x ,

$$
H(f, x) \geq m \cdot I
$$

- I is the identity matrix

Convergence analysis

- Strong convexity together with $\left({ }^{* *}\right)$ implies that there also exists upper bounds on the Hessian
- Hence, there exist $m>0$ and $M>0$ such that for every x :

$$
m \cdot l \leq H(f, x) \leq M \cdot I
$$

- Convergence results on the number of iterations depend on
- mand M
- The initial solution $x^{(0)}$
- The accuracy parameter in the stopping criterion
- Note: we may not be aware of the values for m and M
- It might be difficult to estimate for some functions
- So, we may not know how many iterations we need
- Still, these bounds are conceptually useful
- They provide a guarantee that the method converges

Convergence analysis

- A relatively loose analysis with exact line search
- Theorem: For strongly convex functions, the number of iterations required by the gradient descent method is bounded by

$$
\log \left(\left(f\left(x^{(0)}\right)-p^{*}\right) / \varepsilon\right) / \log (1 / c)
$$

where
$-c=1-m / M<1$

- $\mathrm{p}^{*}=\mathrm{min}_{\mathrm{x}} \mathrm{f}(\mathrm{x})$
$-\varepsilon=$ accuracy parameter (= final suboptimality)
- $f\left(x^{(0)}\right)-p^{*}=$ initial suboptimality
- Thus, nominator $=\log$ of initial suboptimality to final suboptimality
- Conclusions: The error $f\left(x^{(k)}\right)-p^{*}$ converges to 0 at least as fast as a geometric series
- i.e., linear convergence
- With backtracking line search, slightly worse bounds can also be established

The Newton Method

A different descent method with favorable performance

- It is instructive to see first the method in 1 dimension
- When $n=1$, we search for a point x, where $f^{\prime}(x)=0$
- Suppose after k iterations, we have reached a point x_{k}
- How shall we move to the next iteration and pick x_{k+1} ?

Newton's method for $\mathrm{n}=1$:

$$
x_{k+1}=x_{k}-\left(f^{\prime}\left(x_{k}\right) / f^{\prime \prime}\left(x_{k}\right)\right)
$$

Also referred to as the Newton-Raphson method

The Newton Method

Newton's method for $\mathrm{n}=1$:

$$
x_{k+1}=x_{k}-\left(f^{\prime}\left(x_{k}\right) / f^{\prime \prime}\left(x_{k}\right)\right)
$$

Geometric interpretation:

- Consider the plot of the derivative f^{\prime}
- By convexity the first derivative is an increasing function
- Draw the tangent at x_{k}
- Slope of the tangent = $\mathrm{f}^{\prime \prime}\left(\mathrm{x}_{\mathrm{k}}\right)$
-Find the point where the tangent hits the x-axis
-This is given by solving the equation

$$
0=f^{\prime}\left(x_{k}\right)+f^{\prime \prime}\left(x_{k}\right)\left(x-x_{k}\right)
$$

The Newton Method

Newton's method for $\mathrm{n}=1$:

$$
x_{k+1}=x_{k}-\left(f^{\prime}\left(x_{k}\right) / f^{\prime \prime}\left(x_{k}\right)\right)
$$

Algebraic intuition:

-Consider the $2^{\text {nd }}$ order Taylor approximation:

$$
\begin{gathered}
f\left(x_{k+1}\right)=f\left(x_{k}\right)+f^{\prime}\left(x_{k}\right)\left(x_{k+1}-x_{k}\right)+f^{\prime \prime}\left(x_{k}\right)\left(x_{k+1}-\right. \\
\left.x_{k}\right)^{2} / 2
\end{gathered}
$$

- How would we choose to move from x_{k} to x_{k+1} ?
-Set derivative (with respect to x_{k+1}) $=0$

$$
\Rightarrow x_{k+1}=x_{k}-f^{\prime}(x) / f^{\prime \prime}(x)
$$

- X_{k+1} is the minimizer of g
- If f is close to a quadratic function, then the Newton step is close to the best possible

The Newton Method

For many variables, we can generalize the same intuition:

- $2^{\text {nd }}$ order Taylor approximation for a function of n variables
- Now x and δ are n-dimensional vectors

$$
f(x+\delta)=f(x)+\nabla f(x)^{\top} \cdot \delta+1 / 2 \delta^{\top} \cdot H(f, x) \cdot \delta
$$

If we try to minimize with respect to $\delta(=\Delta x)$, we get that:

$$
\delta=-H(f, x)^{-1} \nabla f(x)
$$

- Is this a descent direction?
- To be aligned with the convexity of f we need to check that: $-\nabla f(x)^{\top} \cdot\left(H(f, x)^{-1} \cdot \nabla f(x)\right)<0$,
But the Hessian is a PSD matrix!

The Newton Method

Summarizing:

- Initialization: $\mathrm{k}=0$, pick a starting point $\mathrm{x}^{(0)}$, and a step size α_{0}
- Update:
- Check if stopping criterion satisfied
- If not, $x^{(k+1)}=x^{(k)}-\alpha_{k} H\left(f, x^{(k)}\right)^{-1} \cdot \nabla f\left(x^{(k)}\right)$
- k++
- Usual stopping criterion:
- Let $\lambda:=\left(\nabla f\left(x^{(k)}\right)^{\top} \cdot H\left(f, x^{(k)}\right) \cdot \nabla f\left(x^{(k)}\right)\right)^{1 / 2}$
- Stop when $1 / 2 \lambda^{2} \leq \varepsilon$
$-\lambda$ is called the Newton decrement
- Useful parameter for the analysis of the method

The Newton Method

- Progress made using the $2^{\text {nd }}$ order approximation

The Newton Method

- Pros
- It is fast in general
- Scales well with problem size
- Performance not depend on problem parameters (?)
- Cons
- Cost of computing the Hessian
- Convergence analysis
- Can be established in a similar way as with gradient descent
- Theoretical upper bound: proportional to $f\left(x^{(0)}\right)-p^{*}$

