
M.Sc. Program in Data Science
Department of Informatics

Optimization Techniques
Linear Programming – Duality theory

Instructor: G. ZOIS
georzois@aueb.com



Outline
• Primal and Dual linear programs

– Searching for upper bounds for the optimal solution

• The duality theorems

– Weak and strong duality

• Complementary slackness optimality conditions

• Solving the dual using simplex

• Economic interpretation of dual variables

– Sensitivity/post-optimality analysis
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Finding lower bounds on the optimal 
solution

• Coming back to our illustrative example
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• Can we easily find a lower bound on the optimal solution?
• Q: Is the optimal solution at least 11?

• Answer: yes because for example, x1 = 2, x2 = 1 is a 
feasible solution with a value of 11



Certificates for upper bounds
• In the opposite direction: Suppose we care for upper 

bounds
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• Can we certify that all feasible solutions are upper bounded 
by some value?

• How can someone convince us that Z ≤ 50?
• Q: Why should we care for upper bounds? 

• Recall it is a profit maximization problem, it could be 
useful to know in advance limitations on possible profit



Certificates for upper bounds
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A first attempt:
•Multiply the first inequality by 3: 3x1 ≤ 12
•Multiply the second by 3: 6x2 ≤ 36
•Add them up
•Hence, for every feasible solution:

Z = 3x1 + 5x2 ≤ 3x1 + 6x2 ≤ 48



Certificates for upper bounds
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Even better:
•Multiply the second inequality by 2: 4x2 ≤ 24
•Multiply the third by 1: 3x1 + 2x2 ≤ 18
•Add them up

Z = 3x1 + 5x2 ≤ 3x1 + 6x2 ≤ 42
•What is the best upper bound we can derive by such 
reasoning?



Certificates for upper bounds
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General strategy:
• We try to construct linear combinations of the constraints
• We will do it parametrically
• Let yi = multiplier of the i-th constraint
• We will not use the nonnegativity constraints

Constraints:
( x1 ≤ 4 ) y1

( 2x2 ≤ 12 ) y2

( 3x1 + 2x2 ≤ 18 ) y3

(y1 + 3y3)x1 + (2y2 + 2y3)x2

≤ 
4y1 + 12y2 + 18y3

Add them up
Þ



Certificates for upper bounds
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What information can we get from:
(y1 + 3y3)x1 + (2y2 + 2y3)x2 ≤ 4y1 + 12y2 + 18y3 (*)

Observation 1: We need that all yi’s are nonnegative
•Otherwise, the inequalities are reversed

Observation 2: In order for (*) to imply an upper bound for 
Z(x) = 3x1 + 5x2, we need that

3x1 + 5x2 ≤ (y1 + 3y3)x1 + (2y2 + 2y3)x2

Hence we need to enforce that:
y1 + 3y3 ≥ 3
2y2 + 2y3 ≥ 5



Certificates for upper bounds
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How can we get the best possible upper bound?
By solving the minimization problem:

min W(y) = 4y1 + 12y2 + 18y3

s.t.
y1 + 3y3 ≥ 3
2y2 + 2y3 ≥ 5
y1, y2, y3 ≥ 0

• This is yet another linear program
• Referred to as the “dual” of the original linear program
• Original program also referred to as the “primal” program 



Primal and Dual Linear Programs
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For every primal linear program, we can construct a unique dual 
linear program

min W(y) = 4y1 + 12y2 + 18y3

s.t.
y1 + 3y3 ≥ 3
2y2 + 2y3 ≥ 5
y1, y2, y3 ≥ 0

• primal maximization LP Þ dual minimization LP
• Number of variables in the dual = number of constraints in the 

primal
• Number of constraints in the dual = number of variables in the 

primal

max Z(x) = 3x1 + 5x2

s.t.
x1 ≤ 4
2x2 ≤ 12
3x1 + 2x2 ≤ 18
x1, x2 ≥ 0
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Primal and Dual Linear Programs
General form of primal and dual programs
Both the primal and the dual are defined on the same set of parameters
Given:
•c1, c2, ..., cn

•b1, b2, ..., bm

•The constraint matrix A = (aij) with 1 ≤ i ≤ m, 1 ≤ j ≤ n,  

Primal program Dual program
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Primal and Dual Linear Programs

Primal program Dual program

More concisely:

Claim: The dual of the dual program is the primal program!
• i.e., following the same approach of multiplying the dual 

constraints with variables, you get exactly the primal!
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Primal and Dual Linear Programs

Primal variables

Dual
variables

Concise tabular format:

x1 x2 ... xn
Right 
side

y1 a11 a12 a1n ≤ b1

y2 a21 a22 a2n ≤ b2
... ...
ym am1 am2 amn ≤ bm

Right 
side ≥ c1 ≥ c2 ... ≥ cn

• Primal program: Read constraints along the rows
• Dual program: Read constraints along the columns
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Primal and Dual Linear Programs

Primal program Dual program

Coming back to our example

min W(y) = 4y1 + 12y2 + 18y3

s.t.
y1 + 3y3 ≥ 3
2y2 + 2y3 ≥ 5
y1, y2, y3 ≥ 0

max Z(x) = 3x1 + 5x2

s.t.
x1 ≤ 4
2x2 ≤ 12
3x1 + 2x2 ≤ 18
x1, x2 ≥ 0

• Optimal solution to the primal: We have seen it is 36 (x1 = 2, x2 = 6)
• Optimal solution to the dual: It is also 36 (y1 = 0, y2 = 3/2, y3 = 1)

Is this a coincidence?
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Duality theorems
The Weak Duality Theorem:
Consider a primal linear program and its corresponding dual program such 
that both have feasible solutions
•Let x be a feasible solution to the primal program with cost Z(x) = cTx
•Let y be a feasible solution to the dual program with cost W(y) = bTy
Then Z(x) ≤ W(y)

Proof of weak duality:
•Since y is a feasible solution of the dual, we have: c ≤ AT × y
•Thus cT × x ≤ (AT × y)T × x = (yT × A) × x  = yT × (A × x) ≤ yT × b = bT × y = W(y)   

Note: We were expecting that this should be the case
• We constructed the dual as an attempt to find upper bounds on the 

optimal solution of the primal
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Duality theorems

The Strong Duality Theorem:
For any pair of primal and dual linear programs, 
• The primal program has an optimal solution if and only if the dual has an 

optimal solution
• If x* and y* are optimal solutions to the primal and dual respectively, then 

Z(x*) = W(y*) i.e. cT × x* = bT × y*

Proof by using the weak duality theorem and exploiting further 
properties of the 2 programs

In fact, we can have something stronger:
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Duality theorems

Consider the feasible solutions: x = (0, 14, 0, 5) and y = (11, 0, 6)
• Z(x) = 29
• W(y) = 29
• The duality theorems directly imply that these are optimal solutions!

Example:
Primal program Dual program

min W(y) = y1 + 55y2 + 3y3

s.t.
y1 + 5y2 - y3 ≥ 4
-y1 + y2 + 2y3 ≥ 1
-y1 + 3y2 + 3y3 ≥ 5
3y1 + 8y2 - 5y3 ≥ 3
y1, y2, y3 ≥ 0

max Z(x) = 4x1 + x2 + 5x3 + 3x4

s.t.
x1 - x2 - x3 + 3x4 ≤ 1

5x1 + x2 + 3x3 + 8x4 ≤ 55
-x1 + 2x2 + 3x3 - 5x4   ≤ 3
x1, x2, x3, x4 ≥ 0
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Derivation of the dual LP
Suppose we have a primal LP not in standard form

• How can we construct the dual then?
• We can always bring the LP to standard form
• But there is no need to
• Suppose we have a maximization problem with inequality and equality 

constraints
• We can apply almost the same procedure

– One dual variable per constraint
– For equality constraints Þ dual variable not needed to be nonnegative
– For primal variables that are not constrained to be nonnegative Þ corresponding dual 

constraint must be an equality constraint
– Objective function formed as before
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Derivation of the dual LP
Example: Find the dual of the following LP

max Z(x) = 4x1 + x2 + 5x3 + 3x4

s.t.
x1 + 2x2 - x3 + 3x4 ≤ 1

5x1 + x2 + 4x3 + 8x4 = 20
2x1 + 5x2 + 2x3 - 5x4   ≤ 3
x1, x3 ≥ 0
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Consequences of the duality 
theorems

The following are the only possible situations that can 
occur:
• If the primal has feasible solutions and the feasible 

region is bounded, then both the primal and the 
dual have an optimal solution with the same value 
for their objective function

• If the primal is unbounded, then the dual is 
infeasible

• If the primal is infeasible, then 
– Either the dual is infeasible as well
– Or the dual is unbounded

OPT

Cost of feasible 
solutions for 
the dual

Cost of feasible 
solutions for 
the primal

+∞

- ∞
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Consequences of the duality 
theorems

OPT

Cost of feasible 
solutions for 
the dual

Cost of feasible 
solutions for 
the primal

+∞

- ∞

Optimal 
solution

Unbounded Infeasible

Optimal 
solution

✓ ✗ ✗

Unbounded ✗ ✗ ✓

Infeasible ✗ ✓ ✓

Primal

D
u
a
l
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Consequences of the duality 
theorems

Is the dual infeasible or unbounded?

Example: Consider the following primal LP 

Primal program
max Z(x) = x1 +2x2

s.t.
x1 + x2 = 1

2x1 + 2x2 = 3
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The Complementary Slackness 
Conditions

• We can relate even further the optimal solutions of the 2 programs
• Note that every primal variable corresponds to a constraint in the dual
• Every dual variable corresponds to a constraint in the primal
• Consider a constraint of the primal, e.g. 3x1 + 2x2 ≤ 18
• Given a feasible solution, we say that a constraint is tight or binding if it is 

satisfied with equality
• Recall that at a corner point optimal solution we will have some tight 

constraints (by the definition of corner point solutions)
• Can we tell which constraints will be tight? 
• The complementary slackness conditions relate the tightness of a 

constraint with the value of the corresponding dual variable
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The Complementary Slackness 
Conditions

• Back to our example:

max Z(x) = 3x1 + 5x2

s.t.
x1 ≤ 4
2x2 ≤ 12
3x1 + 2x2 ≤ 18
x1, x2 ≥ 0

min W(y) = 4y1 + 12y2 + 18y3

s.t.
y1 + 3y3 ≥ 3
2y2 + 2y3 ≥ 5
y1, y2, y3 ≥ 0

• Primal optimal: x1 = 2, x2 = 6, Dual optimal: y1 = 0, y2 = 3/2, y3 = 1
Observation on the primal constraints:
• x1 ≤ 4: loose, dual variable: y1 = 0
• 2x2 ≤ 12: tight, dual variable: y2 > 0
• 3x1 + 2x2 ≤ 18: tight, dual variable: y3 > 0
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The Complementary Slackness 
Conditions

Theorem: 
•Let x be a feasible solution of a primal program

max { Z(x) = cT × x | A × x ≤ b, x ≥ 0} 
•Let y be a feasible solution of the corresponding dual program

min { W(y) = bT × y | AT × y ≥ c, y ≥ 0} 
•Let Ai := i-th row of A, and Aj := j-th column, for i=1,...,m, j=1,...,n

Then x and y are optimal solutions to the primal and the dual respectively if 
and only if

• For every j = 1,...,n, either xj = 0 or (Aj)T × y = cj i.e., xj × (cj - (Aj)T × y) = 0
• For every i = 1,...,m, either yi = 0 or Ai × x = bi i.e., yi × (bi - Ai × x) = 0

Interpretation: For feasible solutions x, y to be optimal for primal and dual
•If a primal constraint is not tight, the corresponding dual variable should be 
set to 0
•If a dual constraint is not tight, the corresponding primal variable should be 
set to 0
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The Complementary Slackness 
Conditions

One more way to look at it: 
• Recall that in the augmented form of the primal program, we added m 

slack variables
• For i = 1,..., m, xn+i = bi - Ai × x
• We can also define slack variables in the dual program
• For j = 1,..., n, ym+j = cj - Aj × y

The complementary slackness conditions can be written as:
• For every j = 1,...,n,  xj × ym+j = 0
• For every i = 1,...,m,  yi × xn+i = 0

Complementarity refers to the fact that in the augmented form, 
either one variable of the primal or a corresponding dual variable has to be 0
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The Complementary Slackness 
Conditions

Example of using the complementary slackness conditions

Primal program Dual program

• Suppose we solve first the dual and find: y = (11, 0, 6)
• Checking the dual constraints, and by complementary slackness we 

know that x1 = 0, x3 = 0 
• Also since y1 > 0, y3 > 0, first and third primal constraints are tight 
• Hence solving a system of 2 equations,  we get x = (0, 14, 0, 5)

max Z(x) = 4x1 + x2 + 5x3 + 3x4

s.t.
x1 - x2 - x3 + 3x4 ≤ 1

5x1 + x2 + 3x3 + 8x4 ≤ 55
-x1 + 2x2 + 3x3 - 5x4   ≤ 3
x1, x2, x3, x4 ≥ 0

min W(y) = y1 + 55y2 + 3y3

s.t.
y1 + 5y2 - y3 ≥ 4
-y1 + y2 + 2y3 ≥ 1
-y1 + 3y2 + 3y3 ≥ 5
3y1 + 8y2 - 5y3 ≥ 3
y1, y2, y3 ≥ 0
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Back to the simplex algorithm
Can we solve the dual simultaneously with the primal?

• YES! The simplex algorithm solves both
• It suffices to look at the tableau form of simplex
• All the necessary information is located on row (0) of the tableau 

A more detailed look at simplex:
• During all iterations, simplex maintains a primal feasible solution along 

with a candidate dual solution
• In all iterations before the last one, the candidate dual solution is 

infeasible and the primal is non-optimal
• In the last iteration, simplex finds both a primal feasible and a dual 

feasible with the same objective value, hence both are optimal
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Back to the simplex algorithm

• Candidate dual solution: coefficients of the slack variables in row (0)
• Here: y1 = 0, y2 = 0, y3 = 0 
• Coefficient of the original primal variables x1, x2: indicate the slack in the 

dual constraints
– Negative sign: dual constraints are violated
– Indeed the solution y1 = 0, y2 = 0, y3 = 0 violates all the constraints of the dual

Basis
Coefficients Right

sideZ x1 x2 x3 x4 x5
Z 1 -3 -5 0 0 0 0

x3 0 1 0 1 0 0 4

x4 0 0 2 0 1 0 12

x5 0 3 2 0 0 1 18

Recall Iteration 0 in our illustrative example
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Back to the simplex algorithm

• Candidate dual solution: y1 = 0, y2 = 5/2, y3 = 0 
• Coefficient of x1 negative: indicates that the first dual constraint is 

violated
– Indeed the current dual solution is infeasible, violating that  y1 + 3y3 ≥ 3

Tableau at the end of Iteration 1

Basis
Coefficients Right

sideZ x1 x2 x3 x4 x5
Z 1 -3 0 0 5/2 0 30

x3 0 1 0 1 0 0 4

x2 0 0 1 0 1/2 0 6

x5 0 3 0 0 -1 1 6
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Back to the simplex algorithm

Interpretation:
•Initial iteration: coefficients of x1 and x2: –c1 and –c2 respectively 
•z1 and z2: values added to the initial coefficients while running simplex
•But recall that c1 and c2 are also the right hand sides in the dual constraints
•z1 – c1: surplus variable for the first dual constraint
•What does simplex try to achieve? Nonnegative coefficients in all of row (0)
•In such a case: dual constraints satisfied, and dual variables nonnegative
•Þ dual feasible solution with same value as primal feasible Þ optimal 
solutions for both

In general: look at row (0) in any iteration:

Basis
Coefficients Right 

sideZ x1 x2 x3 x4 x5
Z 1 z1 – c1 z2 – c2 y1 y2 y3 w
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Back to the simplex algorithm

• Candidate dual solution: y1 = 0, y2 = 3/2, y3 = 1 
• All coefficients in row (0) nonnegative
• We can conclude that we have both a primal and a dual optimal solution
• Primal solution: x1 = 2, x2 = 6 read from right sides of last 2 rows

Tableau at the end of Iteration 2

Basis
Coefficients Right

sideZ x1 x2 x3 x4 x5
Z 1 0 0 0 3/2 1 36

x3 0 0 1 1 1/3 -1/3 2

x2 0 0 1 0 1/2 0 6

x1 0 1 0 0 -1/3 1/3 2
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Back to the simplex algorithm
Advantages of using simplex for the dual?

• Suppose we have a LP with many constraints but few variables
• Dual of such an LP: many variables and few constraints
• We have seen that the complexity of simplex in practice seems to be 

proportional to the number of constraints
• Hence: it can be more beneficial in such cases to treat the dual as the 

linear program we want to solve
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An Economic Interpretation of Dual 
Variables

Let us recall how we formulated our illustrative example

• A manufacturing company selling glass and aluminum products is trying to 
invest in launching 2 new products

• The company has 3 plants
– Plant 1: for processing aluminum
– Plant 2: for processing glass
– Plant 3: for assembling and finalizing products

• Product 1 requires processing in Plant 1 and Plant 3
• Product 2 requires processing in Plant 2 and Plant 3
• Since the company processes other products as well, there are constraints 

on the amount of time available in each plant.
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An Economic Interpretation of Dual 
Variables

As a result:
max Z(x) = 3x1 + 5x2

s.t.
x1 ≤ 4
2x2 ≤ 12
3x1 + 2x2 ≤ 18
x1, x2 ≥ 0

• Variables: they express level of output for each product
• Coefficients in objective function: profit per unit of each product
• Right hand side parameters: the constraint for each available resource
• For this example: Resources Û Plants
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An Economic Interpretation of Dual 
Variables

In general, consider a LP in standard form
max Z(x) = c1x1 + c2x2 + ... + cnxn

s.t.
Ai x  ≤ bi, for i = 1,..., m
xi ≥ 0, for i = 1,..., n

Such problems typically arise by applications where:
• We have n products, m resources
• Variable xj: expresses level of output of product j
• Coefficient cj: profit per unit of product j
• Parameter aij from matrix A: how many units of resource i are needed 

per unit of product j
• Parameter bi: Upper bound on the available amount of resource i
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An Economic Interpretation of Dual 
Variables

In general, consider a LP in standard form
max Z(x) = c1x1 + c2x2 + ... + cnxn

s.t.
Ai x  ≤ bi, for i = 1,..., m
xi ≥ 0, for i = 1,..., n

Objective of the dual:  b1y1 + b2y2 + ... + bmym
• Optimal dual solution has same value as the optimal profit
• Interpretation of dual variable yi: contribution per unit of resource i to 

the total profit
• Hence, we can evaluate the effect on the profit by having bi units of 

resource i available
• More importantly: we can estimate the change on the profit if we 

increase the availability of resource i by 1 unit
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An Economic Interpretation of Dual 
Variables

• Back to our example:

• Optimal dual solution:  y1 = 0, y2 = 3/2, y3 = 1
• Why is y1 = 0? 
• By complementary slackness, because the constraint x1 ≤ 4 is loose at 

the primal optimal (x1 = 2)
• Even if we increase availability in Plant 1, we will not get a better 

solution!
• Hence no need to consider changing the current usage of Plant 1

max Z(x) = 3x1 + 5x2

s.t.
x1 ≤ 4
2x2 ≤ 12
3x1 + 2x2 ≤ 18
x1, x2 ≥ 0

min W(y) = 4y1 + 12y2 + 18y3

s.t.
y1 + 3y3 ≥ 3
2y2 + 2y3 ≥ 5
y1, y2, y3 ≥ 0
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An Economic Interpretation of Dual 
Variables

Sensitivity analysis (or post-optimality analysis):
• Checking how solutions change as we vary the input parameters
• Very useful in operations research

– Data may only represent estimates of the real parameters
– We may also want to see if it is worth increasing the availability of 

some resources
• Do we need to solve the new LP from the beginning if we change e.g., the 

availability of a resource?
• It turns out we can save significantly in re-computing optimal solutions
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An Economic Interpretation of Dual 
Variables

Sensitivity analysis (or post-optimality analysis):
Theorem:
•Consider a LP in the form 
max { Z(x) = cT × x | A × x ≤ b, x ≥ 0}
•Let Z* be the value of the optimal solution and y1, y2,...,ym be an optimal 
dual solution
•Consider now a “perturbed” LP with each ti “relatively small”

max Z(x) 
s.t.
Ai × x  ≤ bi + ti , for i = 1,..., m
x ≥ 0

• Then, new optimal = Z* + y1t1 + y2t2 + ... + ymtm
• No need to re-solve the new LP
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Further applications of Duality theory

Indicatively:

• Nonlinear programming: The duality framework can be generalized to 
convex programs or other forms of optimization problems

• Economic modeling and analysis
– Computation of economic equilibria or pricing can be facilitated by the duality 

framework 

• Design and analysis of algorithms, especially approximation algorithms for 
NP-hard problems

– E.g., Primal-dual methods, LP-rounding methods
– We will see some of these in later lectures 
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Further applications of Duality theory

Game theory: Computing Nash equilibria in zero-sum games
• One of the first applications of duality
• Initial proof for existence of equilibria by von Neumann did not yield an 

algorithm
• See Chapter 15 in [Hillier-Lieberman]


