ATHENS UNIVERSITY
OF ECONOMICS
AND BUSINESS

OIKONOMIKO
MANEMNIEXETHMIO
AOHNAON

M.Sc. Program in Data Science
Department of Informatics

Optimization Techniques

Flows, Matchings, and Covering
Problems

Instructor: G. ZOIS
georzois@aueb.gr

Outline

e |Integrality of LP solutions
— Total unimodularity
e Flows and Matchings

— LP formulations

— Application of total unimodularity

e Vertex Cover and Set Cover

— Combinatorial algorithms with provable guarantees

— LP rounding: a technique for deriving approximation algorithms

Integrality of LP Solutions

Question:
eSuppose we have an integer program of the form

max {c"-x | A-x<b, xintegral}
eTake the LP relaxation by replacing the integrality constraints with x; >
0, fori=1,..,n
eUnder what conditions can we guarantee that all the corner points of
the polyhedron {A - x< b, x > 0} are integral?

*This would enable us to use simplex and solve the initial integer
program

Integrality of LP Solutions

Definition:
e Let A be a matrix with entriesin {0, -1, +1}

e Ais called totally unimodular if for every square submatrix T of A, we
have det(T) € {0, -1, +1}

Example:

Integrality of LP Solutions

Theorem [Hoffman, Kruskal 1956]:

Let A be an integer matrix. The polyhedron {A - x £ b, x 2 0} has integral

corner points for every integral vector b if and only if A is totally
unimodular

Can we test if a matrix is totally unimodular?

e Many times, we can argue by just inspecting the matrix
e But having an algorithm remained an open problem for many years
e [Seymour 1980]: the first polynomial time testing algorithm

Total Unimodularity

Some useful properties

Lemma 1: Let A be a matrix with values in {0, -1, +1} and such that every
column has at most one +1 and at most one -1.

Then A is totally unimodular

Lemma 2: If Ais totally unimodular, then adding a row of the form (0O,
0,..,1,0,...,0) retains total unimodularity

Lemma 3: If the constraint matrix of a LP is totally unimodular, then the
dual LP also has integral optimal corner point solutions

Flows and Matchings

Flows in Networks

(informal) problem statement:

Suppose we want to transport some quantity of a good within a given
network, from some source to a destination

The good can be
— Qil to be transported through a network of oil pipes
— Information through a computer network
- Etc

Constraints: each edge in the network has a capacity, i.e., the
maximum quantity it can carry

* 0il pipes have a volume capacity

* Alinkin a computer network has limits on its bandwidth

Goal: find a way to route the good through the network so as to
maximize the total quantity shipped

Flows in Networks

More formally:
Consider a graph G = (V, E), with a source node s € V, and a sink nodet € V
Capacity constraints: for every edge e € E, there is a capacity c,

A feasible flow is an assignment of a flow f, to every edge so
that
1.f,.<c,
2.For every node other than source and sink:
incoming flow = outgoing flow (preservation of flow)

Goal: find a feasible flow so as to maximize the total
amount of flow coming out of s (or equivalently going into t)

Flow going out of s: E S

(s.u)eE

By preservation of flow this equals: E S

(u,t)eE

Flows in Networks

Example:
e Figure (a): network with capacities

Figure (b): a feasible flow

In fact, the flow in (b) is optimal (7 units)

10

Flows in Networks

Finding a max flow via Linear Programming:
e Suppose we use a variable f,, for the flow carried by each edge
e Then, the objective function and all the constraints are linear

Objective function: E fsu

(s.u)EE

Constraints

1.Capacity constraints: f,, < c,, for every (u,v) € E
2.Non-negativity constraints: f,, > 0, for every (u, v) € E
3.Flow preservation: for every node u # s, t:

Y fu= D S

(wu)EE (u,v)EE

11

Flows in Networks

In the example of Figure (a):
max foa +fop +fec

s.t.
11 capacity constraints
11 non-negativity constraints
5 flow preservation constraints
27 constraints in total

Solving this => max flow = 7

Note: There are more efficient algorithms for solving max flow (not covered
here)

*O(|V| |E|?) [Edmonds, Karp '72]

*O(|V|? |E]|) [Goldberg '87]

*O(|V]| |E]| log(|VI|%/|E|)) [Goldberg, Tarjan '86]

12

Flows in Networks

Certificates of optimality:

Suppose we have not solved the LP, but we have identified a feasible flow

Can we convince ourselves if it is optimal or not?

Definition: Given a graph G = (V, E), an s-t cut is a partition of the
vertices into 2 sets, say L, R, suchthat s L,t e R

Capacity of an s-t cut: sum of capacities of edges crossing the cut in
the direction from Lto R

13

Flows in Networks

capacity of cut =7

Clearly:

max flow < capacity of any s-t cut

(cannot send more flow to t than the capacity of the cut)
Hence:
max flow < capacity of minimum s-t cut
14

Flows in Networks

In fact we have equality:

The max-flow min-cut theorem:
For any graph G = (V, E) with capacities on its edges,

max flow = capacity of minimum s-t cut

In our example, the cut (L, R) shows immediately that the flow of 7 units in
Figure (b) is optimal!

Note: One way to prove the max-flow min-cut theorem is by using LP-Duality

15

Flows in Networks

e Suppose that all the capacity constraints are integers
e Could we then ask for an integral flow?

Theorem:

For any directed graph G = (V, E), the constraint matrix of the
max flow LP is totally unimodular

Hence, the optimal solution is attained by an integral flow

16

Flows in Networks

Sketch of proof
eLet’s look at the constraint matrix of the LP
eNeed to convert first the equality constraints into <-constraints

Definition: For a directed graph G, the node-arc incidence matrixisanxm
matrix M where
* n=number of nodes
* m =number of edges
* Foranedgee=(u,v), M=
O, ifiisnotan endpoint of e
 +1,ifi=u (the tail of edge €)
e« -1,ifi=v (the head of edge €)

We can write the constraint matrix of our problem in terms of M
17

Flows in Networks

Sketch of proof

— — e BylLemma 1, M is totally
unimodular

M e By Lemma 2, M together with |
underneath is also totally
————————————————— unimodular

e With a little more thought, it can
-M be shown that the whole matrix
is totally unimodular as well

18

Matching Problems

Consider an undirected graph G = (V, E)

Definition: A matching M is a collection of edges M < E, such that no 2 edges
share a common vertex

Given a matching M, a vertex u is called matched if there exists an
edge eeM such that e has u as one of its endpoints

19

Matching Problems

Examples
¢ o a matchingin a
bipartite graph
v3
v4
A matching in
¢ ;’\1 \Z general graphs
ve O ~ - 9 (vertex v8is
Y unmatched)

\'A) 20
‘76

Matching Problems

Types of matching problems that arise in optimization:

e Maximal matching: find a matching where no more edges can be added

e Maximum matching: find a matching with the maximum possible number
of edges

e Perfect matching: find a matching where every vertex is matched (if one
exists)

e Maximum weight matching: given a weighted graph, find a matching with
maximum possible total weight

e Minimum weight perfect matching: given a weighted graph, find a perfect
matching with minimum cost

All the above problems can be solved in polynomial time (several algorithms

and publications over the last decades)
21

Matching Problems

e Trivial algorithm for maximal matching:

Start from the empty set of edges

Keep adding edges that do not have common endpoints to the current
solution

Stop when it is not possible to add an edge that does not have any
common endpoint with the edges already picked

The selected set of edges forms a maximal matching

e More sophisticated algorithms required for maximum
matching and perfect matching

22

Matching in Bipartite Graphs

An interesting special case for matching problems:

A graph G = (V, E) is called bipartite if V can be partitioned into 2 sets V,, V,
such that all edges connect a vertex from V; with a vertex from V,

BOYS GIRLS
Al Alice
Bob Beatrice
Chet Carol
Dan Danielle

Q: How can we find a maximum matching in a bipartite
graph? 23

Matching in Bipartite Graphs

We can reduce this to a max-flow problem, and hence to Linear

Programming
Al (Alice>
Bob .Beatrice
O e (&)
TN
(Dan>

e Orient all edges from left to right

e Add a source node s, connect it to all of U
e Add asinknodet, connectallof Vtot

e Capacities: set them to 1 for all edges

24

Matching in Bipartite Graphs

Hence:

e a maximum matching for bipartite graphs can be computed in polynomial
time

e The graph has a perfect matching if and only if the max flow in the
modified graph equals n

But wait a minute...
What if the max flow we found assigns an outgoing flow of 0.65 to

an edge and 0.35 to another edge?

Observation: Because of total unimodularity, we get an integral
flow as a solution, and hence a proper matching as our output

25

Matching in Bipartite Graphs

An approach without going through flows
eStart with the integer program that describes the matching problem
e|nteger programming formulation:

— Use an integer variable x, for every edge ecE

— Let §(v) = set of edges that have v as one of their endpoints, (the matching should select
at most one of them for every node v)

max E Te

ecE
St
Y z.<1,WweV

ecd(v)

e € {0,1}, Vee E
LP relaxation:
ejust setx, 20
eNo need to add x, £ 1, it is implied by the other constraints 26

Matching in Bipartite Graphs

Constraint matrix of the LP relaxation
e We only have the constraints

Y ze<LWweV
ecd(v)
e This yields precisely the node-arc incidence matrix for undirected graphs
e Given anodek, and an edge e = (u, v), the entry at row k and column e
equals
- 0,ifkzu k#v
— 1,ifk=u,ork=v

Theorem:

The node-arc incidence matrix of an undirected graph is totally
unimodular if and only if the graph is bipartite (do it as an exercise)

Hence, solving the LP will give us an integer solution, i.e., a

maximum matching 27

Approximation Algorithms for
Vertex Cover and Set Cover

28

Approximation Algorithms

Matchings and flows (integral or not) are tractable problems

1 call to an LP solver suffices
What about harder problems (e.g. NP-complete problems)

Can we still use LP methods to find a solution?

— We do not expect to always find an optimal solution

— But we could hope to prove bounds on the approximation quality
For more on LP-based methodologies for approximation
algorithms, see

— D. Shmoys, D. Williamson. The Design of Approximation Algorithms,
Cambridge University Press, 2011

29

Approximation Algorithms

Recall the definitions from last lecture Max Min

4
<«

v

Given an instance | of an optimization problem: OPT
* OPT(l) = optimal solution
e C(l) = cost of solution returned by the algorithm under consideration

Definition: An algorithm A, for a minimization problem I, achieves an
approximation factor of p (p > 1), if for every instance | of the problem,

A returns a solution with:
C(I) <p OPT(I)

(analogous definition for maximization problems)

30

Vertex Cover (VC)

Recall the (optimization) version:

VERTEX COVER (VQ):

I: A graph G = (V,E)

Q: Find a cover C < V of minimum size, i.e.,asetCcV, s.t. V (u, v) € E, either
ue Corv e C(or both)

Weighted version:

WEIGHTED VERTEX COVER (WV():
I: A graph G =(V,E), and a weight w(u) for every vertex ueV
Q: Find a subset C < V covering all edges of G, s.t. W = 2 w(u) is minimized

ucC

Many different approximation techniques have been “tested” on vertex cover

31

Vertex Cover in Bipartite Graphs

Let’s start again with this special case

eTake the LP relaxation of maximum matching
eFind the dual linear program

eMake the variables of the dual then to be in {0, 1}

Primal LP Dual LP
max Z;r,e min Zyv
ecE veV
. L &
Z Ie S 1’ \V/l’ 6 V yu —'l— yv Z]._.‘ \V/(E’ - (u., L‘) E E
ecd(v)

g 2D Veec E

The integer version of the dual LP is precisely the vertex cover
problem!

32

Vertex Cover in Bipartite Graphs

An application of LP Duality + Total Unimodularity

By Lemma 3, the dual LP of matching also has integer optimal
solutions

Theorem (Konig):
In a bipartite graph G,
Maximum Matching = Minimum Vertex Cover

e Hence, the problem can be solved efficiently for bipartite
graphs (no need for approximation algorithms)
e Equality no longer holds for general, non-bipartite graphs

33

Vertex Cover (VC)

We will focus first on the unweighted version

Natural greedy algorithms: start picking nodes according to some criterion until
all edges are covered

15t approach:

Greedy-any-node

C:=0;

while E # & do

{ choose arbitrarily a vertex u € V;

delete u and its incident edges from G;
Add uto C}

What is the approximation ratio of this algorithm ?

34

Vertex Cover (VC)

2"d natural approach: start picking nodes and at each step choose the node
with the maximum degree

Greedy-best-node

C:=0;

while E # & do

{ choose the vertex u € V with the largest degree; (break ties arbitrarily)
delete u and its incident edges from G;
Add uto C}

Theorem: Greedy-best-node is an O(log n)-approximation algorithm

35

Vertex Cover (VC)

e The O(logn) ratio of Greedy-best-node is tight
e Canyou find an example?

Q: Are there constant factor approximation
algorithms?

36

Vertex Cover (VC)

A different approach:

e To design an approximation algorithm for a minimization problem, we need
to find a good lower bound on the optimal solution, for every instance

e We will resort to matching

e Consider an instance of Vertex Cover on a graph G
e Let M be any matching in the graph

e Observation: OPT 2 |M|

— The optimal solution needs at least one vertex to cover each of the matched
edges

e But we cannot just pick any matching, since it may not be a cover

Matching-based VC

C=0;

Find a maximal matching M;

For every (u, v) € M, add bothuandvtoC
Output C

37

Vertex Cover (VC)

Theorem: Matching-based VC is a 2-approximation algorithm

Proof:

Claim: The solution returned by the algorithm is a vertex cover
e Suppose not

e Then there is an uncovered edge (u, v)

e But then we could add this edge to the matching M

e Contradiction with the fact that M is a maximal matching

Cost of the solution: |C| =2 |M| £2 OPT (by the observation)
Hence a 2-approximation

38

Vertex Cover (VC)

A way to implement the maximal matching based algorithm

Greedy-any-edge

C:=0;

while E # & do

{ choose arbitrarily an edge (u,v) € E;

delete u and v and their incident edges from G;
Adduandv to C; }

The edges selected by the algorithm form a maximal matching (no 2 edges
share a common vertex)

Remark: In contrast to greedy-any-node, greedy-any-edge achieves a
constant factor approximation

39

Vertex Cover (VC)

Tightness of the 2-approximation

Example:

G

C=2n

OPT=n

40

Vertex Cover (VC)

Greedy-any-edge is almost the best known algorithm for VC
Is there a better approximation algorithm ?

We know a lower bound of 1.36 on the approximation factor for VC,
l.e.,

Unless P=NP, VC cannot be approximated with a ratio smaller than 1.36

1 36 ? 2—-01/4/logn)

BEST KNOWN BEST KNOWN
LOWER BOUND APPROXIMATION RATIO

Big open problem!!

41

Weighted Vertex Cover (WVC)

The algorithms we have seen so far do not apply to the weighted case

A maximal matching does not guarantee anything about the total weight
of the solution returned

Can we have constant approximations here as well?

For this, we will resort to techniques from Linear and Integer
Programming

42

Integer Programming Formulations

e Modeling Vertex Cover as an integer program:

Weighted Vertex Cover

min Z, w(u) x,

S.t.
X,+%x,21 V(uv)etE
X, €10,1} YueV

LP relaxation: Set x, € [0,1]
Recall main observation from last week:
eFor minimization problems: LP-OPT < IP-OPT

43

LP Relaxations and Rounding

Solving the LP, we get a fractional solution

But what can we do with it? It is after all not a valid solution for our original
problem

E.g., what is the meaning of having x, = 0.8 for a vertex cover instance?

LP-rounding: the process of constructing an integral solution to the original
problem, given an optimal fractional solution of the corresponding LP

The process is problem-specific, but there are some general guidelines

A natural first idea: objects with a high fractional value may be preferred
(e.g., ifin the LP, x, = 0.8, it may be beneficial to include vertex u in an
integral solution)

44

LP Relaxations and Rounding

General scheme for LP rounding:

N

Write down an IP for the problem we want to solve

Convert IP to LP

Solve the LP to obtain a fractional solution

 If the solution is integral, we are done

Find a way to convert the fractional solution to an integral one

 The constructed solution should not lose much in the objective
function from LP-OPT

Prove that the integral solution has a good approximation

guarantee

* Exploit the main observation to derive bounds with respect to
OPT

45

LP Rounding for WVC

1. First solve:

min 2, w(u) x,

s.t.
X,+x,21 V(uv)ekE
X, €[0,1]] VYVueV

2. Let {x,},y be the optimal fractional solution

3. Rounding: Include in the cover all vertices v, for which x, > %
Rationale: Vertices with a high fractional value are more likely to be
important for the cover. We also stay “close” in value to LP-OPT

Theorem: The LP rounding algorithm achieves a 2-approximation for
the Weighted Vertex Cover problem

46

Rounding for WVC

Let C be the collection of vertices picked

Claim 1: Cis a valid vertex cover

e\We started with a feasible LP solution

eHence, for every edge (u, v), x, +x,2 1

eThus either x, 2% orx, 2%

*By the way we constructed our solution, either u or v belongs to C
eHence, every edge is covered

47

Rounding for WVC

Claim2: C achieves a 2-approximation for WVC
Let C be the collection of vertices picked
C corresponds to the integral solution:y,=1ifu € C, y, = 0 otherwise

Note:y, <2 x,, foreveryu e V

Given this and the main observation:

SOL = Z w(u) = Z w(u) - yy < Z gl) -2 iy = 2-LP-OPT" = 2-0PT

uecC ucV ucV

48

Set Cover

SET COVER (SC):
I: a set U of n elements
a family F=1{S,, S,, ...,S,,,} of subsets of U
Q: Find @ minimum size subset C — F covering all elements of U, i.e.:

USZ. =U and|C| is minimized

S;eC
Weighted version:

WEIGHTED SET COVER (WSC):
I: a set U of n elements

a family F=1{S,, S,, ..., S} of subsets of U
a weight w(S;) for each set S,

Q: Find a minimum weight subset C — F covering all elements of U, i.e.,

LJS, =U and W = > w(S,) is minimized

S;eC S;eC

Set Cover vs Vertex Cover

(weighted) vertex cover is a special case of (weighted) set cover
Consider a vertex cover instance on a graph G = (V, E)

Let U = E (i.e., we need to cover the edges)

One set per vertex, S, ={(u,v) | (u,v) e E}, |F| = |V]

In the weighted case, weight of set S, = w(u)

(8¢
@

50

Set Cover vs Vertex Cover

e f,=frequency of an element u € U = # of sets S, that u belongs to
e f=max,cy{f,}="~frequency of the most frequent element

e |ff=2(and w(S;) =1) then (W)SC reduces to (W)VC:
- G=(V,E), F=V,U=E
— We want to cover the edges by nodes
— S, is the set of edges covered by node u

There are approximation algorithms for WSC,
and hence, for SC, WVC and VC, of ratios:
— Oflog n) (n: the size of the universe U) by a greedy approach

— f, using an LP rounding approach
e Extending the 2-approximation for weighted vertex cover

51

Weighted Set Cover (WSC)

In a similar spirit as for Vertex Cover:

Greedy-best-set

C=0;
while C# U do C: elements covered before iteration i
{ choose the best set S; S: Set chosen at iteration i

remove S from F;

C:=CUS;}
Q: What does “best set” mean ?
S covers |S-C| new elements

Covering those elements costs w(S)
w(S)

|§-C]

Every element x € S essentially costs

Best set: the set with the smallest cost-effectiveness

= p(x) = “cost-effectiveness” of S

52

Weighted Set Cover (WSC)

Approximation analysis of Greedy-best-set

Let x; X5 ..., X ..., X, be the order in which the elements of U are covered
$1 5, ... S, ... betheorderin which sets are chosen by the algorithm
Suppose set S; covers element x;

OPT
n-k+1

i—1
C = USJ elements covered by iterations 1,2,...,i-1
j=1

Claim: p(x,)<

e U-C: uncovered elements before iteration i

e |U-C| 2n-k+1, since element x, is covered in iteration i

53

Weighted Set Cover (WSC)

e These elements of U-C are covered in the optimal solution by some sets at
a cost of at most OPT

e Among them there must be one set with cost-effectiveness at most
< OPT < OPT
\U-C| n—-k+1
e thesetS, was picked by the algorithm as the set with the best cost-
effectiveness at that moment (and it covered x,)

_ OPT
e thatis p(xk)ﬁn_k+1
WIZp(xk)S oPT ZOPTZLZOPT-H,? = O(logn)OPT
k=1 o h—k+1 .

54

LP Rounding for WSC

LP relaxation of Set Cover:

min Exs
S
s.t

zxszl, VueU

UUES

x, =0, VSeF

Q: How should we round a fractional solution?

95

Rounding for WSC

LP rounding:

eSolve the LP relaxation
eFractional solution x = {x}..; of cost LP-OPT
eRounding: if xs 2 1/f, then include S in the cover

Theorem: The LP Rounding algorithm achieves an

approximation ratio of f for the WSC problem

56

Rounding for WSC

Proof:
Let C be the collection of sets picked

Claim 1: Cis a valid set cover

Assume not
* Then there exists some u that is not covered

« =>For each set S for which ueS, xs < 1/f
* But then:

1 1 1
s<=H{S:ueSt=—f <—f =1
Ex 7181 } ff ff

e 3 contradiction since we found a violated LP constraint

Y

Rounding for WSC

Proof:
Let C be the collection of sets picked

Claim 2: C achieves an f-approximation

Proof very similar to the proof for WVC

58

