ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

M.Sc. Program in Data Science Department of Informatics

Optimization Techniques

George Zois

georzois@aueb.gr

Content – Topics to be covered

- Continuous Optimization
 - Linear Programming
 - Models and Formulation
 - Simplex, variants and other algorithms
 - LP Duality Theory and applications
 - Convex Optimization
 - Convex sets and convex functions
 - Unconstrained convex optimization, descent methods
 - Constrained optimization
 - Applications to Machine Learning
 - Linear Regression
 - Support Vector Machines

Content – Topics to be covered

- Discrete Optimization
 - Integer Programming and Combinatorial Optimization
 - Integer Programming formulations
 - Branch and bound techniques
 - Design of approximation algorithms
 - Algorithms with provable approximation guarantees
 - Local Search Algorithms
 - Tabu search
 - Simulated Annealing

Main focus & prerequisites

- Basic algorithmic ideas behind commercial optimization tools
- Theoretical foundations

Required background:

- There are no formal requirements to take the course
- It helps if you have taken undergrad courses on calculus, discrete math or algorithms
- Generally, it suffices if you have developed an elementary math background via courses in your undergrad program

Timeline

- Continuous Optimization (6 lectures)
 - Linear Programming: Lectures 1-3
 - Models and formulations
 - Simplex, variants and other algorithms
 - LP Duality Theory
 - Convex Optimization: Lectures 4-5
 - Unconstrained optimization, descent methods
 - Constrained optimization
 - Applications to Machine Learning: Lecture 6
 - Regression
 - Support Vector Machines

Timeline

• Discrete Optimization (4 lectures)

- Combinatorial Optimization: Lectures 7-8
 - Integer Programming
 - Branch and bound
- Local search: Lecture 9-10
 - Basic version and variants
 - Simulated Annealing
 - Tabu search

Bibliography

- [HL] F. Hillier, G. Lieberman, "Introduction to Operations Research", 10th edition, [Chapters 2-4, 6, 12]
 - For Linear Programming, Integer Programming, Branch and Bound
- [BV] S. Boyd, L. Vandenberghe, "Convex Optimization", [Chapters 1-4, 9-10]
 - For Convex optimization
- [KT] J. Kleinberg, E. Tardos, "Algorithm Design" [Chapters 11-12]
 - For local search and for approximation algorithms
- More material will also be provided throughout the lectures
- and many many resources on the WWW

Grading Scheme

•	 1 programming project You can work in groups of 2 people It will be announced in Lecture 6 	25%
•	Final exam	60%
•	2 Problem set – Individual	15%

– The 1st will be announced by Lecture 3 and the 2nd by Lecture 7.

Communication

- Office hours (Lefkados 33 & Evelpidwn 47A, 8th floor, office 801):
 - Thursdays: 11:00 14:00
 - Or by appointment
- You can always email me regarding questions
- Eclass: Optimization Techniques 2023
 Please check for announcements in a weekly basis