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Language models
• How probable is it to encounter (e.g., in news 

articles) the following sentences (word sequences)?
o The government announcement new austerity metrics 

hopping to decrease the deficit.
o The government announced new austerity measures 

hoping to reduce the deficit.
• In many cases, candidate alternative sentences are 

produced. We wish to keep the most probable ones.
o Speech recognition, optical character recognition, 

machine translation, smartphone keyboards, spelling 
and syntax checking, text normalization of social 
media posts…
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n-gram language models
• Notation for sequences of words: 

• n-gram: sequence of n consecutive words. 
o Trigrams: “the government announced”, “government 

announced new”, “announced new austerity”, …
o Bigrams: “the government”, “government announced”, 

“announced new”, “new austerity”, …
o In other cases, sequences of n consecutive characters. 

• Chain rule:

! " !# # # !
!" " " "=!

! ! ! " !# $ # % % $ # $ # & $!
!" # " # # " # " # #= = ⋅ ⋅!

! "
! " # $ " "% & ' ( % & ( % & (!

!" # # # " # # " # # −⋅ !
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How do we estimate the probabilities?
• Simplest approach: maximum likelihood estimates 

from a corpus of C tokens:
!"#$%!"#$%!"#
$%
C

=
!"#$%&'($)*+$*",!&'($)*+$*" - "#$,

!"#$,!"#
$%

$
=

!"#$%&'( %)*++',+-$./!*++',+-$. 0 "#$%&'(/
!"#$%)&'(/!"#

$%
$

=

• Many n-grams (esp. 4-grams, 5-grams, …) will be very 
rare or may not occur even in a large corpus.

o Very poor or zero probability estimates.
o Leading to a zero chain product… 5



Markov assumption
• Bigram language model:

! ! ! " !# $ # % % $ # $ # & $!
!" # " # # " # " # #= = ⋅ ⋅!

! "
! " # $ " "% & ' ( % & ( % & (!

!" # # # " # # " # # −⋅ ! "

! " ! # " !$ % & $ % & $ % & $ % &! !" # $%&'% " # # " # # " # # −⋅ ⋅ !

• Trigram language model: 

! ! " " " ! # ! "$ % & ' $ % & ' $ % & '! " #$%&$ #$%&$ ! " #$%&$ " ! " " "⋅ ⋅ ⋅

! " # " $% & ' ( % & ' (! ! !" # # # " # # #− −!

• Stationarity: We assumed probabilities do not depend on where the 𝑛-grams 
are encountered. E.g., in P(announced | the, government), we do not examine if 
“announced” occurs as the 3rd or 4th or … word in the sentences of the corpus. 

• Strictly speaking, we also need an end pseudo-token. See study exercises. 6



Laplace smoothing
• Even with a Markov assumption, we will still have 

many n-grams that do not occur in the corpus.
• Laplace smoothing for unigrams: if we have |V| 

vocabulary words (distinct words),

• Similarly, e.g., for trigrams: 

• But we over-estimate rare bigrams, trigrams, …

! " #! "!"#$"%C
% '( ) '
* +

+
= =

+

Add a pseudo-occurrence of each 
vocabulary word. More generally, 

of each possible value of the 
random variable (here 𝑊).

! "
! "

! "

# $ $ % "# & $ %
# $ %
! ! !

"#$%#&' ! ! ! !
! !

& ( ( () * ( ( (
& ( ( +

− −
− −

− −

+
= =

+

Add a pseudo-occurrence of each possible 
trigram that starts with 𝑤!"#, 𝑤!"$. There 

are |𝑉| such trigrams in total.
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Add-α smoothing
• For unigrams: if we have |V| vocabulary words,

• Similarly, e.g., for trigrams: 

• Better, but still poor estimates for language models.
o In practice, Laplace and add-α smoothing are not used in 

language models (but often work well in classification tasks).
o See optional reading slides for better estimates for n-gram 

LMs (e.g., Knesser-Ney smoothing, backoff models). 

! "! "!"#$"%C
% '( ) '
* +

α
α
+

= =
+ ⋅

! "
! "

! "

# $ $ %# & $ %
# $ %

! ! !
"#$%#&' ! ! ! !

! !

& ( ( () * ( ( (
& ( ( +

α
α

− −
− −

− −

+
= =

+ ⋅

We tune 𝑎 (0 ≤ 𝑎 ≤ 1) on 
held-out data (see below).

8



Linear interpolation
• We use a linear combination of estimates from n-

gram language models with different n values. 

!"# $ % % $ %& ' ( ) & ' ( )! ! ! ! ! !" # # # " # # #λ− − − −= ⋅ +

! " #$ % & $ &! ! !" # # " #λ λ−⋅ + ⋅
!

"
#$%&' "!

!
λ

=

=∑
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LMs as next word predictors
• Sequence probability using a bigram LM:

! ! ! " !# $ # % % $ # $ # & $!
!" # " # # " # " # #= = ⋅ ⋅!

! "
! " # $ " "% & ' ( % & ( % & (!

!" # # # " # # " # # −⋅ ! "

! " ! # " !$ % & $ % & $ % & $ % &! !" # $%&'% " # # " # # " # # −⋅ ⋅ !

• We can think of the LM as a system that provides the 
probabilities 𝑷 𝒘𝒊 𝒘𝒊"𝟏 , which we then multiply.

o Or the probabilities 𝑷 𝒘𝒊 𝒘𝒊"𝟐, 𝒘𝒊"𝟏) for a trigram LM.
o Or the probabilities 𝑷 𝒘𝒊 𝒉𝟏𝒊"𝟏) for an LM that considers all 

the “history” (previous words) 𝒉𝟏𝒊"𝟏, e.g., in an RNN LM.

o An LM provides a distribution 𝑷(𝒘|𝒉𝟏𝒊$𝟏) showing how 
probable it is for every word 𝑤 ∈ 𝑉 to be the next one.
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Spelling correction/normalization
• The words we see:

He pls gd ftball.
• Possible candidate corrections: 

He please god football.
He plays god football.
Ηe plays good football.
He players good football.
…
He pleases god ball.

The green words are 
vocabulary words 
with small distance 
(e.g., Levenshtein) 

from the out-of-
vocabulary words.

A language model 
estimates how well 
the words of each 
candidate sequence 

fit together.
11



Edit distance
• Input: two strings (e.g., words from tweet and dictionary).
• What is the total minimum cost to convert one input 

string to the other, using particular operators?
• Levenshtein distance (one possible edit distance):

o Operators: insert (I, cost 1), delete (D, cost 1), replace (R, 
cost 2). Other work may set the cost of R to 1.

• When converting from Greeklish to Greek, we may want 
to set, for example, 𝑅 𝑒, 𝜀 < 𝑅 𝑒, 𝛼 .

π Χ έ ζ ο ι τ α ι

π α ί ζ Χ ε τ Χ ε  
I R   D R   D R

We also get an alignment of 
characters. Similarly, we can 
compute the edit distance and 
alignment of the words of two 
sentences, by applying I, D, R 
to words instead of characters.
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Actually two types of errors…
• The wrong words may actually be vocabulary words!

o 1st type: “he plays good football” à “he pls gd ftball”.
o 2nd type: “he plays good football” à “he please god ftball”.

• Let’s continue to focus on the 1st type for the moment.
o The wrong words are all out of vocabulary words (e.g., words 

that do not occur at least 10 times in a large corpus).

• For each wrong word, get candidate corrections:
o Simplest case: get vocabulary words at a small Levenshtein 

distance from the wrong word.
o Alternatively use an edit distance that takes into account the 

keyboard layout, the visual similarity of characters etc., 
possibly modifying the Replace operator accordingly. 
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Correcting errors of the 1st type
• The words we see:

𝑤%&: He pls gd ftball.
• Possible candidate corrections: 

𝑡%&: He please god football.
𝑡%&: He plays god football.
𝑡%&: Ηe plays good football.
𝑡%&: He players good football.
…
𝑡%&: He pleases god ball.

The green words are 
vocabulary words 
with small distance 
(e.g., Levenshtein) 

from the out-of-
vocabulary words.

A language model 
estimates how well 
the words of each 
candidate sequence 

fit together.
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More to be discussed…
• Exactly how do we combine the edit distances with a 

language model to correct errors of the 1st type?
• How do we correct errors of the 2nd type?
• How do we evaluate a language model?

o Among different language models (e.g., using different 𝑛 or 
smoothing), which one is the best?



A noisy channel model
• We assume that all the words were initially correct, 

but were transmitted through a noisy channel.
o Here the channel distorts the words by occasionally inserting, 

deleting, or replacing letters.

• We try to guess the initial (correct) words from the 
observed ones.
o Initial (correct) words:

o Observed words:
• We seek the most probable initial words:

! ! "# # #!
!" " " "= !

! ! "# # #!
!" " " "= !

! !

! ! !
! ! !

!

" # " $ #% &'()&* " $ # &'()&*
" #! !

! ! !
! ! !

!
" "

# " # $ "" # " $
# $
⋅

= =

channel
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The most probable initial words
• For each observed sequence (e.g., sentence) 𝑤%&:

o We assume that the probability to encounter an observed 
word depends only on the corresponding initial word.

! !

! ! ! ! ! !
" #$%&#' ( ) * #$%&#' ( * ( ) *

! !

! ! ! ! ! !

" "
" # " $ # " # $ "= = ⋅

In each candidate sequence 𝒕𝟏𝒌, 
every wrong word has been replaced 

by a vocabulary word at a small 
distance from the wrong one.

Language model 
(e.g., trigram model)

!
! ! ! ! " ! ! ! !# $ % # $ % # $ & % # $ & %! ! ! ! ! !

!" # $ " # $ " # # $ " # # $−= ⋅ ⋅!

! ! " "
!

# $ % # $ % # $ % # $ %
!

! ! " "
"

# $ % # $ % # $ % # $ %
=

⋅ ⋅ =∏! "

Simplest approach: 
probabilities inversely 

proportional to edit distance 
(with normalization). See 
J&M for better ideas.
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Correcting errors of both types
• The words we see:

𝑤%&: He pls god ftball.
• Possible candidate corrections: 

𝑡%&: He please god football.
𝑡%&: He plays god football.
𝑡%&: Ηe plays good football.
𝑡%&: Her players good football.
…
𝑡%&: Her pleases god ball.

We now replace every 
word (even vocabulary 
words) by other close 
vocabulary words (or 

the same word). 

Again, a language model 
estimates how well the 

words of each candidate 
sequence fit together.
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Generalization for 2nd type of errors
• Now every observed word may be wrong.

• Finding the best candidate sequence t1, …, tk is a “decoding” 
problem, which can be solved with heuristic search (e.g., beam 
search) or dynamic programming (e.g., Viterbi).

! !

! ! ! ! ! !
" #$%&#' ( ) * #$%&#' ( * ( ) *

! !

! ! ! ! ! !

" "
" # " $ # " # $ "= = ⋅

In each candidate sequence 𝒕𝟏𝒌, every 
observed word may have been replaced 

by a vocabulary word at a small 
distance. Many more candidates!

Language model 
(e.g., trigram model)

! !
!

" # $ " # $
!

! !
" "

"

# $ % # $ %
=
∏!

Again, simplest approach: 
probabilities inversely 

proportional to edit distance 
(with normalization). See 
J&M for better ideas.
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Hill climbing search (HC)
1. Make the initial state the current state.

   2. Generate and assess the children-states of the 
current state. 

   3. If no child-state is better than the current state, 
return the current state. 

   4. Make the best child-state the current state.  
   5. Go to step 2.

20

Spoiler alert: Most neural networks are also trained 
using a kind of HC (SGD, stochastic gradient descent), 
where the state contains the weights of the network.



Hill climbing 
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(Local) Beam search
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(Local) Beam search
• Like HC, but we keep k states in the search frontier.

– Initially k random states.
• At each step, produce and assess the children-states of 

the k states in the frontier.
– If a final state criterion exists and we reach a final state, stop. 

• Keep the k best of the children-states and repeat.
– Until we exceed a maximum number of iterations.

• We often repeat the search several times, starting from 
different initial k states.
– Random restarts are also useful in HC. 
– In neural nets, restarts with different random initial weights. 
– In spelling correction decoding, there is only one initial state. 
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We search for a path from start to a state of column 𝑘	 = 4 that maximizes
𝑃 𝑡!" 𝑃 𝑤!" 𝑡!" or that minimizes 𝐿" = −λ! log 𝑃 𝑡!" − 𝜆# log 𝑃 𝑤!" 𝑡!" .

start

𝑡! = He

𝑡! = She

𝑡! = Her

... ... ...

𝑘	 = 	0 𝑘	 = 1 𝑘	 = 3 𝑘	 = 4…

25

𝑡" = please

𝑡" = players

𝑡" = plays

...

𝑘	 = 2

𝑡" = pleases

𝑡# = god

𝑡# = good

𝑡! = Here

𝑡# = gone

𝑡# = goat

𝑡! = football

𝑡$ = ball

...

...

For a bigram language model: ∏,-!
" 𝑃 𝑡, 𝑡,.!

With our previous simplifications: ∏,-!
" 𝑃 𝑤, 𝑡,

𝑤! 	= ℎe 𝑤" 	= pls 𝑤# 	= gd 𝑤$ 	= ftball

Beam search decoder



start

𝑡! = He

𝑡! = She

𝑡! = Her

... ... ...
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𝑡" = please

𝑡" = players

𝑡" = plays

...

𝑡" = pleases

𝑡# = god

𝑡# = good

𝑡! = Here

𝑡# = gone

𝑡# = goat

𝑡! = football

𝑡$ = ball

...

...

Beam search decoder

We search for a path from start to a state of column 𝑘	 = 4 that maximizes
𝑃 𝑡!" 𝑃 𝑤!" 𝑡!" or that minimizes 𝐿" = −λ! log 𝑃 𝑡!" − 𝜆# log 𝑃 𝑤!" 𝑡!" .

𝑘	 = 	0 𝑘	 = 1 𝑘	 = 3 𝑘	 = 4…𝑘	 = 2

For a bigram language model: ∏,-!
" 𝑃 𝑡, 𝑡,.!

With our previous simplifications: ∏,-!
" 𝑃 𝑤, 𝑡,

𝑤! 	= ℎe 𝑤" 	= pls 𝑤# 	= gd 𝑤$ 	= ftball

For each 𝑘, we keep 
the 𝑏 (here 𝑏 = 	2) 
best paths only.



start

𝑡! = He

𝑡! = She

𝑡! = Her

... ... ...

27

𝑡" = please

𝑡" = players

𝑡" = plays

...

𝑡" = pleases

𝑡# = god

𝑡# = good

𝑡! = Here

𝑡# = gone

𝑡# = goat

𝑡! = football

𝑡$ = ball

...

...

Beam search decoder

We search for a path from start to a state of column 𝑘	 = 4 that maximizes
𝑃 𝑡!" 𝑃 𝑤!" 𝑡!" or that minimizes 𝐿" = −λ! log 𝑃 𝑡!" − 𝜆# log 𝑃 𝑤!" 𝑡!" .

𝑘	 = 	0 𝑘	 = 1 𝑘	 = 3 𝑘	 = 4…𝑘	 = 2

For a bigram language model: ∏,-!
" 𝑃 𝑡, 𝑡,.!

With our previous simplifications: ∏,-!
" 𝑃 𝑤, 𝑡,

𝑤! 	= ℎe 𝑤" 	= pls 𝑤# 	= gd 𝑤$ 	= ftball

For each 𝑘, we keep 
the 𝑏 (here 𝑏 = 	2) 
best paths only.



start

𝑡! = He

𝑡! = She

𝑡! = Her

... ... ...
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𝑡" = please

𝑡" = players

𝑡" = plays

...

𝑡" = pleases

𝑡# = god

𝑡# = good

𝑡! = Here

𝑡# = gone

𝑡# = goat

𝑡! = football

𝑡$ = ball

...

...

Beam search decoder

We search for a path from start to a state of column 𝑘	 = 4 that maximizes
𝑃 𝑡!" 𝑃 𝑤!" 𝑡!" or that minimizes 𝐿" = −λ! log 𝑃 𝑡!" − 𝜆# log 𝑃 𝑤!" 𝑡!" .

𝑘	 = 	0 𝑘	 = 1 𝑘	 = 3 𝑘	 = 4…𝑘	 = 2

For a bigram language model: ∏,-!
" 𝑃 𝑡, 𝑡,.!

With our previous simplifications: ∏,-!
" 𝑃 𝑤, 𝑡,

𝑤! 	= ℎe 𝑤" 	= pls 𝑤# 	= gd 𝑤$ 	= ftball

For each 𝑘, we keep 
the 𝑏 (here 𝑏 = 	2) 
best paths only.



start

𝑡! = He

𝑡! = She

𝑡! = Her

... ... ...
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𝑡" = please

𝑡" = players

𝑡" = plays

...

𝑡" = pleases

𝑡# = god

𝑡# = good

𝑡! = Here

𝑡# = gone

𝑡# = goat

𝑡! = football

𝑡$ = ball

...

...

Beam search decoder

We search for a path from start to a state of column 𝑘	 = 4 that maximizes
𝑃 𝑡!" 𝑃 𝑤!" 𝑡!" or that minimizes 𝐿" = −λ! log 𝑃 𝑡!" − 𝜆# log 𝑃 𝑤!" 𝑡!" .

𝑘	 = 	0 𝑘	 = 1 𝑘	 = 3 𝑘	 = 4…𝑘	 = 2

For a bigram language model: ∏,-!
" 𝑃 𝑡, 𝑡,.!

With our previous simplifications: ∏,-!
" 𝑃 𝑤, 𝑡,

𝑤! 	= ℎe 𝑤" 	= pls 𝑤# 	= gd 𝑤$ 	= ftball

For each 𝑘, we keep 
the 𝑏 (here 𝑏 = 	2) 
best paths only.



start

𝑡! = He

𝑡! = She

𝑡! = Her

... ... ...
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𝑡" = please

𝑡" = players

𝑡" = plays

...

𝑡" = pleases

𝑡# = god

𝑡# = good

𝑡! = Here

𝑡# = gone

𝑡# = goat

𝑡! = football

𝑡$ = ball

...

...

Beam search decoder

We search for a path from start to a state of column 𝑘	 = 4 that maximizes
𝑃 𝑡!" 𝑃 𝑤!" 𝑡!" or that minimizes 𝐿" = −λ! log 𝑃 𝑡!" − 𝜆# log 𝑃 𝑤!" 𝑡!" .

𝑘	 = 	0 𝑘	 = 1 𝑘	 = 3 𝑘	 = 4…𝑘	 = 2

For a bigram language model: ∏,-!
" 𝑃 𝑡, 𝑡,.!

With our previous simplifications: ∏,-!
" 𝑃 𝑤, 𝑡,

𝑤! 	= ℎe 𝑤" 	= pls 𝑤# 	= gd 𝑤$ 	= ftball

For each 𝑘, we keep 
the 𝑏 (here 𝑏 = 	2) 
best paths only.



start

𝑡! = He

𝑡! = She

𝑡! = Her

... ... ...

31

𝑡" = please

𝑡" = players

𝑡" = plays

...

𝑡" = pleases

𝑡# = god

𝑡# = good

𝑡! = Here

𝑡# = gone

𝑡# = goat

𝑡! = football

𝑡$ = ball

...

...

Beam search decoder

We search for a path from start to a state of column 𝑘	 = 4 that maximizes
𝑃 𝑡!" 𝑃 𝑤!" 𝑡!" or that minimizes 𝐿" = −λ! log 𝑃 𝑡!" − 𝜆# log 𝑃 𝑤!" 𝑡!" .

𝑘	 = 	0 𝑘	 = 1 𝑘	 = 3 𝑘	 = 4…𝑘	 = 2

For a bigram language model: ∏,-!
" 𝑃 𝑡, 𝑡,.!

With our previous simplifications: ∏,-!
" 𝑃 𝑤, 𝑡,

𝑤! 	= ℎe 𝑤" 	= pls 𝑤# 	= gd 𝑤$ 	= ftball

For each 𝑘, we keep 
the 𝑏 (here 𝑏 = 	2) 
best paths only.



Smart keyboards

Images from: http://www.swiftkey.net/ 32
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More to be discussed…
• Exactly how do we combine the edit distances with a 

language model to correct errors of the 1st type?
• How do we correct errors of the 2nd type?
• How do we evaluate a language model?

o Among different language models (e.g., using different 𝑛 or 
different smoothing), which one is the best?
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Encoding example and entropy
• Let the possible values of a random variable C be:

– c1 with P(c1) = 1/4,  c2 with P(c2) = 1/4, c3 with P(c3) = 1/2. 

• A good encoding:
– Use fewer bits for more probable values.
– c1 à 10, c2 à 11. We use –log2(1/4) = 2 bits.
– c3 à 0. We use –log2(1/2) = 1 bits.
– Exp. number of transmitted bits: 1/4	 : 	2	 + 	1/4	 : 	2	 + 	1/2	 : 	1	 = 	1.5

• Information theory says the ideal encoding (lowest expected 
number of transmitted bits) uses –log2P(ci) bits for value ci.

– We may need to use a slightly different number of bits in practice, if the 
P(ci) probabilities are not powers of 2.

• With an ideal encoding (as above), the expected number of 
transmitted bits is the Entropy 𝐻(𝐶) of 𝐶.
– It shows how uncertain we are about the value of 𝐶, i.e., how much 

information (in bits) we need to transmit to let somebody know its value.
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Entropy
• Entropy of a random variable C:

– How uncertain we are about the value of C.
– How much information (in bits, with an ideal encoding) we 

need to receive to be certain about the value of C.
– What is the expected number of bits (with an ideal encoding) 

that we need to receive to be certain about the value of 𝐶.

!" # " # $%& " #
!

! !
"

# $ % $ " % $ "= − = ⋅ =∑
Expected value Bits used by the 

ideal encoding 
for each value. 

l If C has only two possible values:

Probabilities estimated from training data.
! !" # " $# %&' " $# " (# %&' " (#! " # " # " # " # "= − = ⋅ = − = ⋅ =
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Example
• Collection of 800 training e-mail messages.

– Messages received in the past, manually classified.
– 200 spam. 600 ham (non-spam).

• Estimate the entropy of C using the training messages.
– C = 1 (spam) ή C = 0 (ham).
– log23 = 1.585

• Repeat when all the training messages are in one 
category (all spam, or all ham). 

• Repeat when we have an equal number of training 
messages per category (400 spam, 400 ham). 

! !" # " $# %&' " $# " (# %&' " (#! " # " # " # " # "= − = ⋅ = − = ⋅ =



Cross-entropy
• The entropy of a random variable C shows how 

uncertain we are about its value.

o How many bits (expected value) we need to transmit (or 
receive) with an ideal encoding to transmit (receive) its value.

• If we use an encoding based on inaccurate probability 
estimates Pm instead of the correct probabilities P:

o We need to transmit more bits, because we don’t use an ideal 
encoding (which uses –log2P(ci) bits per value).

!" # " # $%& " #
!

! !
"

# $ % $ " % $ "= − = ⋅ =∑

!" # " # $%& " # " #
!

"

# " ! "
$

% C # C $ # C $ % C= − = ⋅ = ≥∑
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Cross-entropy – continued
• If we have two models Pm1(C), Pm2(C) both trying to 

estimate the correct probabilities P(C), which one is the  
best?

o The one with the smallest cross-entropy.
o It allows transmitting the values of C using fewer bits.
o Its encoding is based on more accurate probability estimates. 

• Kullback–Leibler divergence (relative entropy):
𝐷34(𝑃| 𝑃5 = 𝐻6! 𝐶 − 𝐻 𝐶 =)

7"

𝑃 𝐶 = 𝑐8 log9
𝑃(𝐶 = 𝑐8)
𝑃5(𝐶 = 𝑐8)

! " !# $ # $ %&' # $ # $
!

"

# " ! "
$

% C # C $ # C $ % C= − = ⋅ = ≥∑
! ! !" # " # $%& " # " #

!
"

# " ! "
$

% C # C $ # C $ % C= − = ⋅ = ≥∑
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Cross-entropy with 1-hot 𝑃(𝐶 = 𝑐!)
• If the correct probability distribution is 1-hot: 

o i.e., for some 𝑖∗, 𝑃 𝑐>∗ = 1; for all other 𝑖 ≠ 𝑖∗, 𝑃 𝑐> = 0.
o E.g., in classification with a single correct label per instance.

𝐻?!(𝐶) = −9
@"

𝑃 𝐶 = 𝑐> : log# 𝑃A 𝐶 = 𝑐> =

= − log# 𝑃A 𝐶 = 𝑐>∗
o The same as the negative log-likelihood of the “correct” 𝑐>∗ .
o The probability assigned by the model to the “correct” 𝑐>∗ . 

• For two models:
𝐻?!$

(𝐶) = − log# 𝑃A$ 𝐶 = 𝑐>∗
𝐻?!%

(𝐶) = − log# 𝑃A% 𝐶 = 𝑐>∗

o The best model has the lowest cross-entropy, or highest log-
likelihood of the correct answer. 39

May not be 1-hot, e.g., if 
multiple human  
annotators do not agree.



Evaluating LMs with cross-entropy
• The correct probability distribution for the next word 𝑊B (given 

the history ℎ$
B"$) in a test corpus is 1-hot: 

o For some 𝑤∗ ∈ 𝑉, 𝑃 𝑊B = 𝑤∗|ℎ$
B"$ = 1; and for every other 

𝑤 ≠ 𝑤∗ ∈ 𝑉, 𝑃 𝑊B = 𝑤|ℎ$
B"$ = 0.

𝐻?!(𝑊B) = −9
C∈E

𝑃 𝑊B = 𝑤|ℎ$
B"$ : log# 𝑃A 𝑊B = 𝑤|ℎ$

B"$ =

= − log# 𝑃A 𝑊B = 𝑤∗|ℎ$
B"$

• For all the 𝑵	word occurrences (positions) of a test corpus:
𝐻*% 𝑊+

, = −
1
𝑁'-.+

,
'
/∈1

𝑃 𝑊- = 𝑤|ℎ+
-2+ , log3 𝑃4 𝑊- = 𝑤|ℎ+

-2+

= −
1
𝑁
'

-.+

,
log3 𝑃4 𝑊- = 𝑤-∗|ℎ+

-2+

o The negative log-likelihood the model gives to the test corpus.
40

Per-word 
cross-enropy



Evaluating LMs with cross-entropy
• For two models evaluated on the same test corpus:

𝐻?!$
𝑊$

F = −
1
𝑁
9

BG$

F
log# 𝑃A$ 𝑊> = 𝑤>∗|ℎ$

B"$

𝐻?!%
𝑊$

F = −
1
𝑁9BG$

F
log# 𝑃A% 𝑊> = 𝑤>∗|ℎ$

B"$

o The best model is the one with the lowest cross-entropy.
o It gives a higher log-likelihood to the test corpus.
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Cross-Entropy and Perplexity
• For example, if a bigram language model is used: 

−
1
𝑁
[log? 𝑃@ 𝑤%∗ 𝑠𝑡𝑎𝑟𝑡 + log? 𝑃@ 𝑤?∗ 𝑤%∗ +…]

• Usually perplexity scores are published:

Perplexity = 2B:; C<= ≅	2$
%
E FGH> I;(K∗

<
=)

• The lower the perplexity, the better the model.
o Alternative interpretation: a language model with perplexity r is 

as uncertain (same entropy) about the next word as a model 
that selects uniformly and independently words from a 
vocabulary of 𝒓 words.
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From P. Blunsom’s presentation “From Language Modelling to Machine Translation” 
http://videolectures.net/deeplearning2015_blunsom_machine_translation/  43

− log𝑃 𝑤>∗|𝑤>"$∗ -
− log𝑃 𝑤>∗|𝑤>"#∗ , 𝑤>"$∗ -

− $
F
∑>G$F log 𝑃 𝑤>∗|𝑤>"$∗ -

− !
/
∑,-!/ log 𝑃 𝑤,∗|𝑤,.#∗ , 𝑤,.!∗

-



Training, development, test data
• Training data:

o Used to estimate (learn) the probabilities of n-grams.
o More generally, we train our model on these data.

• Development data: 
o Used to select models (e.g., 2-gram or 3-gram LM), tune 

hyper-parameters (e.g., λ of interpolated LMs), select best 
training epochs (in neural networks) etc. 

o If we make these choices by evaluating on test data, we 
indirectly train our model on the test dataset!

• Test data: 
o Used for the final evaluation of our model, to see how 

well it performs on unseen data.
44



Training, development, test data

test datatraining data

n-gram probability 
estimates (more generally, 
learning algorithm applied 

to this subset)

perplexity (or 
other score, 
for hyper-
parameter 

tuning etc.)

development data

final perplexity 
(or other score, to 

check the 
performance on 

unseen data)

45

• In competitions, the test data may not be publicly available.
• We may have to use the development data as test data.
• A small subset of the training data may have to be “held 

out” as development data (e.g., for hyper-parameter tuning). 
o This reduces the size of the training set. 
o And a small development set, may not be representative.



Cross-validation
• Instead of holding out development data from the training 

data:
o Divide the training data into n parts (e.g., 5), often preserving 

class ratios (e.g., positives/negatives) in all parts (“stratified”).
o Perform n iterations (folds) to obtain a score (e.g., accuracy) 

for a particular combination of hyper-parameter values. 
o In each iteration, use a different part as development data and 

the other n – 1 parts as training data.
o Average (e.g., accuracy) over the iterations to obtain a score 

for the particular combination of hyper-parameter values.
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Slide from the talk of Barbara Plank on Encoder-Decoder Models at AthNLP 2024 
(https://athnlp.github.io/2024/presentations.html). 

https://athnlp.github.io/2024/presentations.html
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Additional optional study slides



Kneser-Ney smoothing
• E.g., for bigrams 𝑤&$%, 𝑤&:

ü green, apple
ü green, paper
ü green, book
ü …
ü … 
× green, mouse
× green, cyclotron
× green, York
× …

Encountered in the corpus, i.e.,
𝑐 𝑤!"$, 𝑤! > 0. Steal probability 

mass from each estimate @ C&'$,C&
@ C&'$

, i.e., 

use @ C&'$,C& "I
@ C&'$

 , where 𝐷 is constant.

Not encountered in the corpus, i.e.,
𝑐 𝑤!"$, 𝑤! = 0. Distribute to them the 

probability mass stolen from all the 
encountered 𝒘𝒌"𝟏, 𝒘𝒌 that had the 
same 𝒘𝒌"𝟏 (“green”). Distribute 

proportionally to 𝑷(𝒘𝒌) (e.g., “mouse” 
is more frequent than “cyclotron”).
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Kneser-Ney smoothing
• Formula for ideas of previous slide (D is constant):

o α values needed to ensure that probabilities sum up to 1.

!
!

!!

!

" # $ # %&'% " # $ (
" $" ) $
" $ " $# %*+,*

! !
! !

!"# ! !

! !

$ % % & $ % %
$ %D % %
( % D %








 >= 
 ⋅

50



Improved K-N smoothing
• Instead of P(wk), distribute the stolen probability mass 

proportionally to:

𝑃𝑟𝑒𝑣 𝑤& =
𝑝𝑟𝑒𝑣 𝑤&

∑P∈R	∶	T K@A<,P UV 𝑝𝑟𝑒𝑣 𝑣

	

where:
𝑝𝑟𝑒𝑣 𝑤& = 𝑤 ∈ 𝑉 ∶ 𝑐 𝑤,𝑤& > 0

How many vocabulary (distinct) words occur immediately before 
wk in the corpus. E.g., “York” may occur almost always after “New”; 
hence “green York” should not be given much of the probability mass 

stolen from the encountered bigrams that start with “green”.

The denominator ensures that the 𝑃𝑟𝑒𝑣 𝑤!  scores of all the 
words 𝑤! that need to receive stolen probability mass sum to 1.
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Improved K-N smoothing

!
!

!!

!

" # $ # %&'% " # $ (
" $" ) $
" $ " $# %*+,*

! !
! !

!"# ! !

! !

$ % % & $ % %
$ %D % %
( % D)*+ %








 >= 
 ⋅
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𝑎 𝑤&$% =
𝐷

𝑐(𝑤&$%)
N 𝑤 ∈ 𝑉: 𝑐 𝑤&$%, 𝑤 > 0

Total probability mass stolen from bigrams that start with 𝑤!"$ 
(𝑤!"$ =“green” in our example).



Katz backoff 
• Consult an n-gram model with a smaller n, whenever 

necessary. For example, when using a trigram model:

• The α values are needed to ensure that:

o Consult the book of Jurafsky & Martin for formulae to 
compute the α values and (many) other smoothing methods.

! " !
! "

! " "

# $ % &% '()' # & *
# $ % &

# % & # $ &% '+,-+

!
! ! ! !

"#$% ! ! !
! ! "#$% ! !

& ' ' ' ( '
& ' ' '

# ' ' & ' '
  

 
  

 >
= 

⋅

! !
!

!

" # $% &'(& " % $ )
" # $

" $ " $% &*+,*
! ! ! !

"#$% ! !
! !

& ' ' ( ' '
& ' '

# ' & '
 




>
=  ⋅

!" # $ !
!

"#$% ! !
& '

( & & −
∈

=∑! "# $ % & "
!

"#$% ! ! !
& '

( & & &− −
∈

=∑
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Computing Levenshtein distance
• How can we convert:

πέζοι to  παίζω
based on shorter (by one final letter) forms of  
πέζοι and/or παίζω?
• 1st way: Delete the last letter of πέζοι and convert 

πέζο to παίζω.
πέζο ι à παίζω

Del(ι) + cost(πέζο, παίζω)
• 2nd way: Convert πέζοι to παίζ and add ω to the end 

of παίζ.
πέζοι à παίζ  ω

cost(πέζοι, παίζ) + Ins(ω)
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Computing Levenshtein distance (ΙΙ)
• 3rd way: Convert πέζο to παίζ and replace ι by ω.

πέζο ι à παίζ  ω
cost(πέζο, παίζ) + Rep(ι, ω)

• Which way is the best?
− The one with the smallest cost.
− At each step, we consider all three ways and we 

select the cheapest one (Ins, Del, or Rep). 
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Computing Levenshtein distance
# π α ί ζ ε τ ε

# 0 1 2 3 4 5 6 7
π 1
έ 2
ζ 3
ο 4
ι 5
τ 6
α 7
ι 8

Del (+1)

What is the (min) cost to 
convert “#πέζ” to “#”?

What is the (min) cost to 
convert “#” to “#παί”?

Ins (+1)

Cost to delete «ζ» and 
convert “#πέ” to “#”.

Cost to convert “#” to
“#πα” and insert “ί”.
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1+1=2

# π α ί ζ ε τ ε
# 0 1 2 3 4 5 6 7
π 1 0
έ 2
ζ 3
ο 4
ι 5
τ 6
α 7
ι 8

Del (+1)

What is the (min) cost to 
convert “#π” to “#π”?

Ins (+1)

Rep (+2, or
0 for same 
letter)

1+1=2

0+0=0

1st way: Delete the “π” of the first 
(vertical) string and convert the 

remaining string “#” to “#π”.

2nd way: Convert the “#π” of 
the first string to “#” and add 

“π” to the resulting string.
3rd way: Convert the “#” of the first 
string to “#” and replace the “π” of 
the first string by “π” (same letter).

Computing Levenshtein distance
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# π α ί ζ ε τ ε
# 0 1 2 3 4 5 6 7
π 1 0 1
έ 2
ζ 3
ο 4
ι 5
τ 6
α 7
ι 8

Del (+1)

What is the (min) cost to 
convert “#π” to “#πα”;

Ins (+1)

Rep (+2, or
0 for same 
letter)

0+1=1

2+1=3
1+2=3

1st way: Delete the “π” of the first 
(vertical) string and convert the 
remaining string “#” to “#πα”.

2nd way: Convert the “#π” of the 
first string to “#π” (no change) and 

add “α” to the resulting string.
3rd way: Convert the “#” of the first 
string to “#π” and replace the “π” of 

the first string by “α”.

Computing Levenshtein distance
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# π α ί ζ ε τ ε
# 0 1 2 3 4 5 6 7
π 1 0 1 2 3 4 5 6
έ 2 1 2 3 4 3 4 5
ζ 3 2 3 4 3 4 5 6
ο 4 3 4 5 4 5 6 7
ι 5 4 5 4 5 6 7 8
τ 6 5 6 5 6 7 6 7
α 7 6 5 6 7 8 7 8
ι 8 7 6 5 6 7 8 9

Del (+1)

Ins (+1)

Rep (+2, or
0 for same 
letter)

Shaded cells show 
one of the possible 

alignments.

For each cell, the 
outgoing arrows 

point to the 
neighbor(s) the 

cell’s (best) value is 
based on.

Computing Levenshtein distance
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Recommended reading
• Jurafsky & Martin (2nd ed.): chapter 4 (not sections 

4.5.2, 4.5.3, 4.7.1, 4.9.2), sections 3.10, 3.11, 5.9.
o Available at AUEB’s library.
o See also the free draft of the 3rd edition: 

http://web.stanford.edu/~jurafsky/slp3/
• For more information, consult chapters 2 and 6 of 

Manning & Schütze’s book Foundations of Statistical 
Natural Language Processing, MIT Press, 1999.
o Available at AUEB’s library.
o Chapter 2 introduces basic concepts of probability 

theory, entropy, the noisy channel etc.
o Chapter 6 covers n-gram language models.

http://web.stanford.edu/~jurafsky/slp3/

