

n-gram language models

2025–26

Ion Androutsopoulos

<http://www.aueb.gr/users/ion/>

Contents

- n -gram language models.
- Estimating probabilities from corpora.
- Entropy, cross-entropy, perplexity.
- Edit distance.
- Context-aware spelling correction.
- Beam-search decoding.

Language models

- **How probable** is it to encounter (e.g., in news articles) the following sentences (word sequences)?
 - *The government announcement new austerity metrics hoping to decrease the deficit.*
 - *The government announced new austerity measures hoping to reduce the deficit.*
- In many cases, **candidate alternative sentences** are produced. We wish to keep the **most probable** ones.
 - Speech recognition, optical character recognition, machine translation, smartphone keyboards, spelling and syntax checking, text normalization of social media posts...

n-gram language models

- **Notation** for sequences of words:

$$\langle w_1, w_2, \dots, w_k \rangle = w_1^k$$

- ***n*-gram**: sequence of ***n consecutive words***.

- **Trigrams**: “the government announced”, “government announced new”, “announced new austerity”, ...
- **Bigrams**: “the government”, “government announced”, “announced new”, “new austerity”, ...
- In other cases, sequences of ***n consecutive characters***.

- **Chain rule**:

$$P(w_1^k) = P(w_1, \dots, w_k) = P(w_1) \cdot P(w_2 \mid w_1) \cdot$$

$$P(w_3 \mid w_1, w_2) \cdot P(w_4 \mid w_1^3) \cdots P(w_k \mid w_1^{k-1})$$

How do we estimate the probabilities?

- Simplest approach: **maximum likelihood estimates** from a **corpus** of C tokens:

$$P_{MLE}(\text{the}) = \frac{c(\text{the})}{C}$$

$$P_{MLE}(\text{government} \mid \text{the}) = \frac{c(\text{the, government})}{c(\text{the})}$$

$$P_{MLE}(\text{announced} \mid \text{the, gov}) = \frac{c(\text{the, gov, announced})}{c(\text{the, gov})}$$

- Many n -grams (esp. 4-grams, 5-grams, ...) will be **very rare** or **may not occur** even in a **large corpus**.
 - Very **poor** or **zero** probability **estimates**.
 - Leading to a **zero chain product**...

Markov assumption

- **Bigram** language model:

$$P(w_1^k) = P(w_1, \dots, w_k) = P(w_1) \cdot P(w_2 \mid w_1) \cdot$$

$$P(w_3 \mid w_1, w_2) \cdot P(w_4 \mid w_1^3) \cdots P(w_k \mid w_1^{k-1}) \simeq$$

$$P(w_1 \mid \text{start}) \cdot P(w_2 \mid w_1) \cdot P(w_3 \mid w_2) \cdots P(w_k \mid w_{k-1})$$

- **Trigram** language model:

$$P(w_1 \mid \text{start}_1, \text{start}_2) \cdot P(w_2 \mid \text{start}_2, w_1) \cdot P(w_3 \mid w_1, w_2) \cdot$$

$$P(w_4 \mid w_2, w_3) \cdots P(w_k \mid w_{k-2}, w_{k-1})$$

- **Stationarity:** We assumed probabilities do not depend on where the n -grams are encountered. E.g., in $P(\text{announced} \mid \text{the, government})$, we do not examine if “announced” occurs as the 3rd or 4th or ... word in the sentences of the corpus.
- Strictly speaking, we also need an *end* pseudo-token. See study exercises.

Laplace smoothing

- Even with a Markov assumption, we will still have many **n -grams** that **do not occur in the corpus**.
- **Laplace smoothing for unigrams:** if we have $|V|$ vocabulary words (distinct words),

$$P_{Laplace}(W = w) = \frac{c(w) + 1}{C + |V|}$$

Add a pseudo-occurrence of each vocabulary word. More generally, of each possible value of the random variable (here W).

- Similarly, e.g., for **trigrams**:

$$P_{Laplace}(W_k = w_k \mid w_{k-2}, w_{k-1}) = \frac{c(w_{k-2}, w_{k-1}, w_k) + 1}{c(w_{k-2}, w_{k-1}) + |V|}$$

Add a pseudo-occurrence of each possible trigram that starts with w_{k-2}, w_{k-1} . There are $|V|$ such trigrams in total.

- But we **over-estimate** rare bigrams, trigrams, ...

Add- α smoothing

- For **unigrams**: if we have $|V|$ vocabulary words,

$$P_{Laplace}(W = w) = \frac{c(w) + \alpha}{C + \alpha \cdot |V|}$$

We tune α ($0 \leq \alpha \leq 1$) on held-out data (see below).

- Similarly, e.g., for **trigrams**:

$$P_{Laplace}(W_k = w_k \mid w_{k-2}, w_{k-1}) = \frac{c(w_{k-2}, w_{k-1}, w_k) + \alpha}{c(w_{k-2}, w_{k-1}) + \alpha \cdot |V|}$$

- Better, but still **poor estimates** for language models.
 - In practice, Laplace and add- α smoothing are **not used in language models** (but often work well in classification tasks).
 - See **optional reading slides** for better **estimates** for n -gram LMs (e.g., Kneser-Ney smoothing, backoff models).

Linear interpolation

- We use a **linear combination** of estimates from **n -gram language models** with different n values.

$$P_{\text{int}}(w_k \mid w_{k-2}, w_{k-1}) = \lambda_1 \cdot P(w_k \mid w_{k-2}, w_{k-1}) + \lambda_2 \cdot P(w_k \mid w_{k-1}) + \lambda_3 \cdot P(w_k) \quad \text{with } \sum_{i=1}^3 \lambda_i = 1$$

LMs as next word predictors

- **Sequence probability** using a bigram LM:

$$P(w_1^k) = P(w_1, \dots, w_k) = P(w_1) \cdot P(w_2 | w_1) \cdot$$

$$P(w_3 | w_1, w_2) \cdot P(w_4 | w_1^3) \cdots P(w_k | w_1^{k-1}) \simeq$$

$$P(w_1 | \text{start}) \cdot P(w_2 | w_1) \cdot P(w_3 | w_2) \cdots P(w_k | w_{k-1})$$

- We can think of the **LM** as a system that **provides the probabilities** $P(w_i | w_{i-1})$, which we then multiply.
 - Or the probabilities $P(w_i | w_{i-2}, w_{i-1})$ for a **trigram LM**.
 - Or the probabilities $P(w_i | h_1^{i-1})$ for an LM that considers all the “**history**” (**previous words**) h_1^{i-1} , e.g., in an **RNN LM**.
 - An **LM** provides a **distribution** $P(w | h_1^{i-1})$ showing how probable it is for **every word** $w \in V$ to be the next one.

Spelling correction/normalization

- The words we see:

He **pls** **gd** **ftball**.

- Possible candidate corrections:

He **please** **god** **football**.

He **plays** **god** **football**.

He **plays** **good** **football**.

He **players** **good** **football**.

...

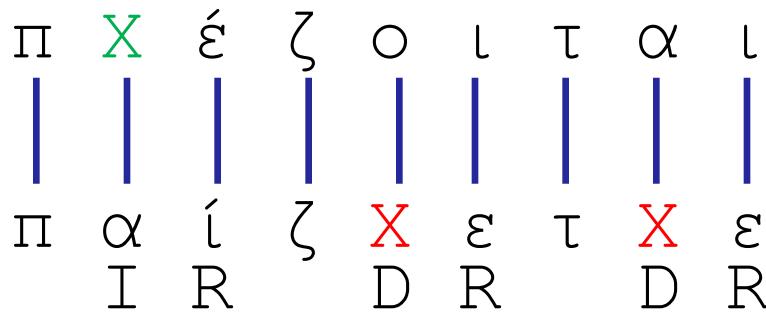
He **pleases** **god** **ball**.

The **green words** are **vocabulary words** with **small distance** (e.g., Levenshtein) from the **out-of-vocabulary words**.

A **language model** estimates **how well** the **words** of each candidate sequence **fit together**.

Edit distance

- Input: **two strings** (e.g., words from **tweet** and **dictionary**).
- What is the **total minimum cost** to **convert one input string to the other**, using particular operators?
- **Levenshtein** distance (one possible edit distance):
 - Operators: **insert** (I, cost 1), **delete** (D, cost 1), **replace** (R, cost 2). Other work may set the cost of R to 1.
- When converting from **Greeklish to Greek**, we may want to set, for example, $R(e, \varepsilon) < R(e, \alpha)$.



We also get an **alignment** of characters. Similarly, we can compute the edit distance and alignment of the **words of two sentences**, by applying I, D, R to words instead of characters.

Actually two types of errors...

- The **wrong words** may actually be **vocabulary words**!
 - 1st type: “he plays good football” → “he **pls gd ftball**”.
 - 2nd type: “he plays good football” → “he **please god ftball**”.
- Let’s **continue to focus** on the 1st type for the moment.
 - The **wrong words** are all **out of vocabulary words** (e.g., words that do not occur at least 10 times in a large corpus).
- For each **wrong word**, get **candidate corrections**:
 - Simplest case: get **vocabulary words** at a **small Levenshtein distance** from the **wrong word**.
 - Alternatively use an edit distance that takes into account the **keyboard layout**, the **visual similarity** of characters etc., possibly modifying the Replace operator accordingly.

Correcting errors of the 1st type

- The words we see:

w_1^k : He **pls** gd ftball.

- Possible candidate corrections:

t_1^k : He **please** god football.

t_1^k : He **plays** god football.

t_1^k : He **plays** good football.

t_1^k : He **players** good football.

...

t_1^k : He **pleases** god ball.

The **green words** are **vocabulary words** with **small distance** (e.g., Levenshtein) from the **out-of-vocabulary words**.

A **language model** estimates **how well** the **words** of each candidate sequence **fit together**.

More to be discussed...

- Exactly how do we **combine the edit distances with a language model** to correct **errors of the 1st type**?
- How do we correct **errors of the 2nd type**?
- How do we **evaluate a language model**?
 - Among different language models (e.g., using different n or smoothing), which one is the best?

A noisy channel model

- We assume that **all the words** were **initially correct**, but were **transmitted** through a **noisy channel**.
 - Here the channel distorts the words by occasionally **inserting**, **deleting**, or **replacing** letters.
- We try to **guess the initial** (correct) words **from the observed** ones.
 - Initial (correct) words: $t_1^k = \langle t_1, t_2, \dots, t_k \rangle$
 - Observed words: $w_1^k = \langle w_1, w_2, \dots, w_k \rangle$
- We seek the **most probable initial words**:

$$\hat{t}_1^k = \arg \max_{t_1^k} P(t_1^k | w_1^k) = \arg \max_{t_1^k} \frac{P(t_1^k) \cdot P(w_1^k | t_1^k)}{P(w_1^k)}$$

The most probable initial words

- For each observed sequence (e.g., sentence) w_1^k :

$$\hat{t}_1^k = \arg \max_{t_1^k} P(t_1^k \mid w_1^k) = \arg \max_{t_1^k} P(t_1^k) \cdot P(w_1^k \mid t_1^k)$$

In each **candidate sequence** t_1^k , every **wrong word** has been replaced by a **vocabulary word** at a **small distance** from the wrong one.

Language model
(e.g., trigram model)

Simplest approach:
probabilities **inversely proportional to edit distance**
(with normalization). See
J&M for better ideas.

$$\begin{aligned} P(w_1^k \mid t_1^k) &= P(w_1 \mid t_1^k) \cdot P(w_2 \mid w_1, t_1^k) \cdot \dots \cdot P(w_k \mid w_1^{k-1}, t_1^k) \\ &\simeq P(w_1 \mid t_1) \cdot P(w_2 \mid t_2) \cdot \dots \cdot P(w_k \mid t_k) = \prod_{i=1}^k P(w_i \mid t_i) \end{aligned}$$

- We assume that the **probability** to encounter an **observed word depends only** on the corresponding **initial word**.

Correcting errors of both types

- The words we see:

w_1^k : He **pls** god **ftball**.

- Possible candidate corrections:

t_1^k : He **please** god football.

t_1^k : He **plays** god football.

t_1^k : He **plays** good football.

t_1^k : Her **players** good football.

...

t_1^k : Her **pleases** god ball.

We now **replace every word** (even **vocabulary** words) by other **close vocabulary words** (or the same word).

Again, a **language model** estimates **how well** the **words** of each candidate sequence **fit together**.

Generalization for 2nd type of errors

- Now every observed word may be wrong.

$$\hat{t}_1^k = \arg \max_{t_1^k} P(t_1^k \mid w_1^k) = \arg \max_{t_1^k} P(t_1^k) \cdot P(w_1^k \mid t_1^k)$$

In each **candidate sequence** t_1^k , every **observed word** may have been **replaced** by a **vocabulary word** at a **small distance**. Many **more candidates**!

$$P(w_1^k \mid t_1^k) \simeq \prod_{i=1}^k P(w_i \mid t_i)$$

Language model
(e.g., trigram model)

Again, simplest approach:
probabilities **inversely proportional to edit distance**
(with normalization). See
J&M for better ideas.

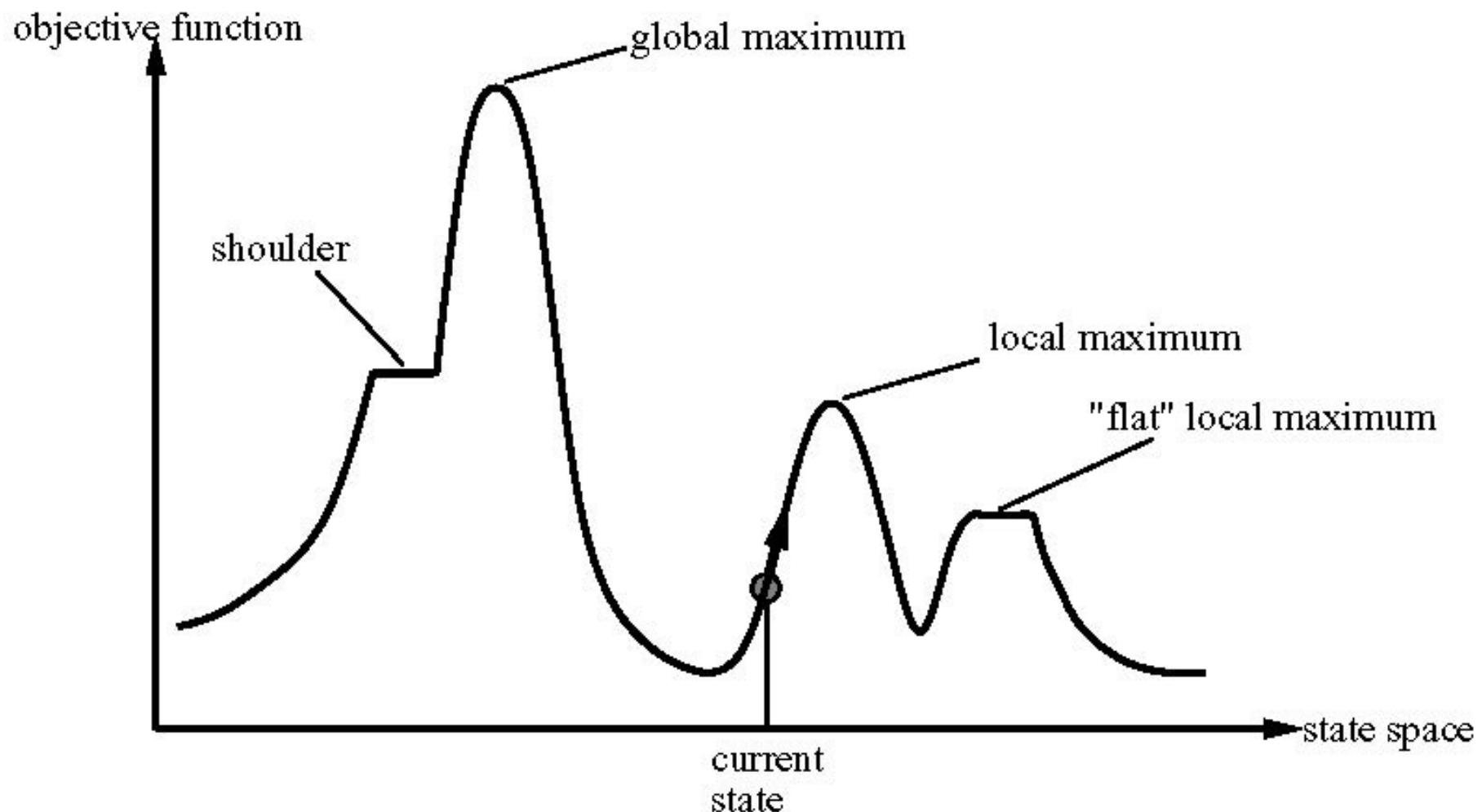
- Finding the best candidate sequence** t_1, \dots, t_k is a “decoding” problem, which can be solved with **heuristic search** (e.g., beam search) or **dynamic programming** (e.g., Viterbi).

Hill climbing search (HC)

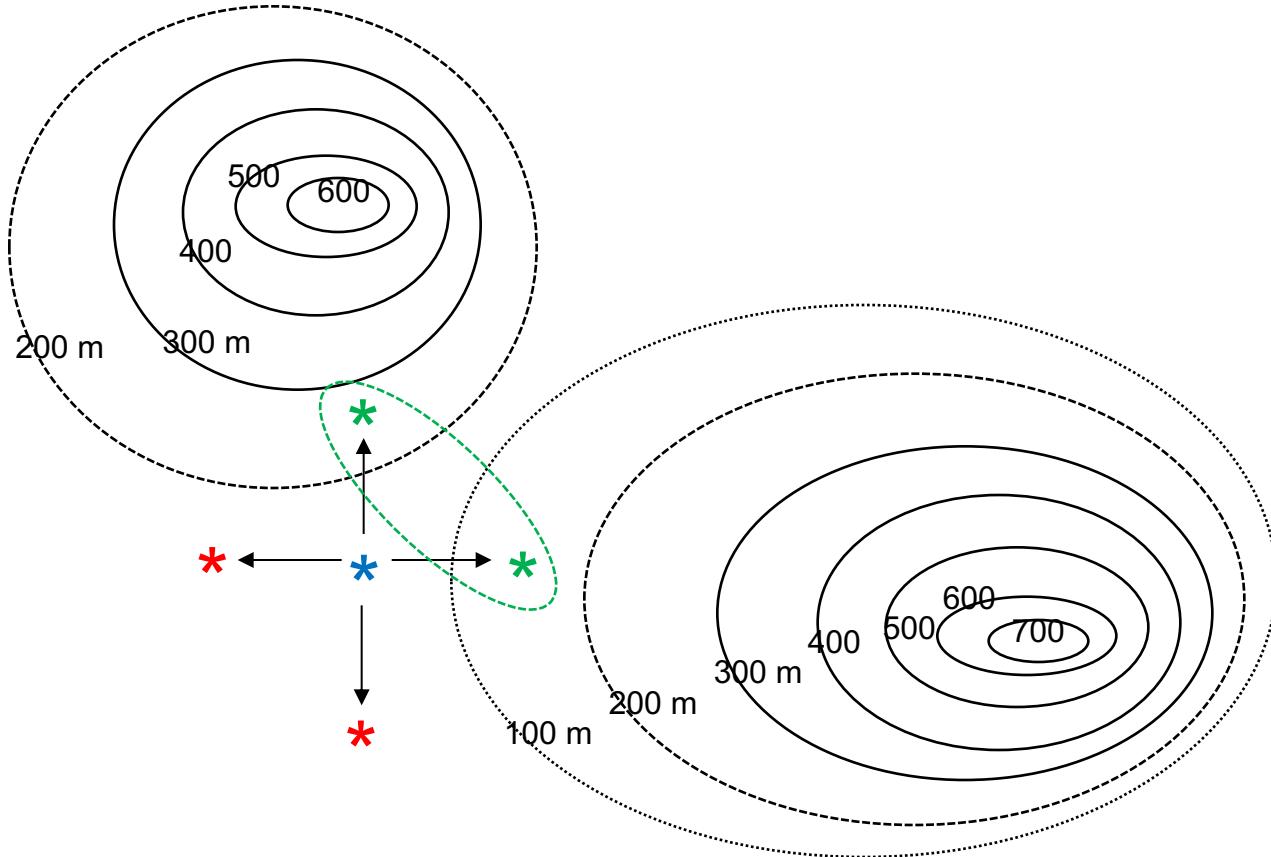
1. Make the **initial state** the **current state**.
2. **Generate** and **assess** the **children-states** of the current state.
3. If **no child-state is better** than the current state, **return the current state**.
4. Make the **best child-state** the **current state**.
5. Go to **step 2**.

Spoiler alert: Most **neural networks** are also trained using a **kind of HC (SGD**, stochastic gradient descent), where the **state contains the weights** of the network.

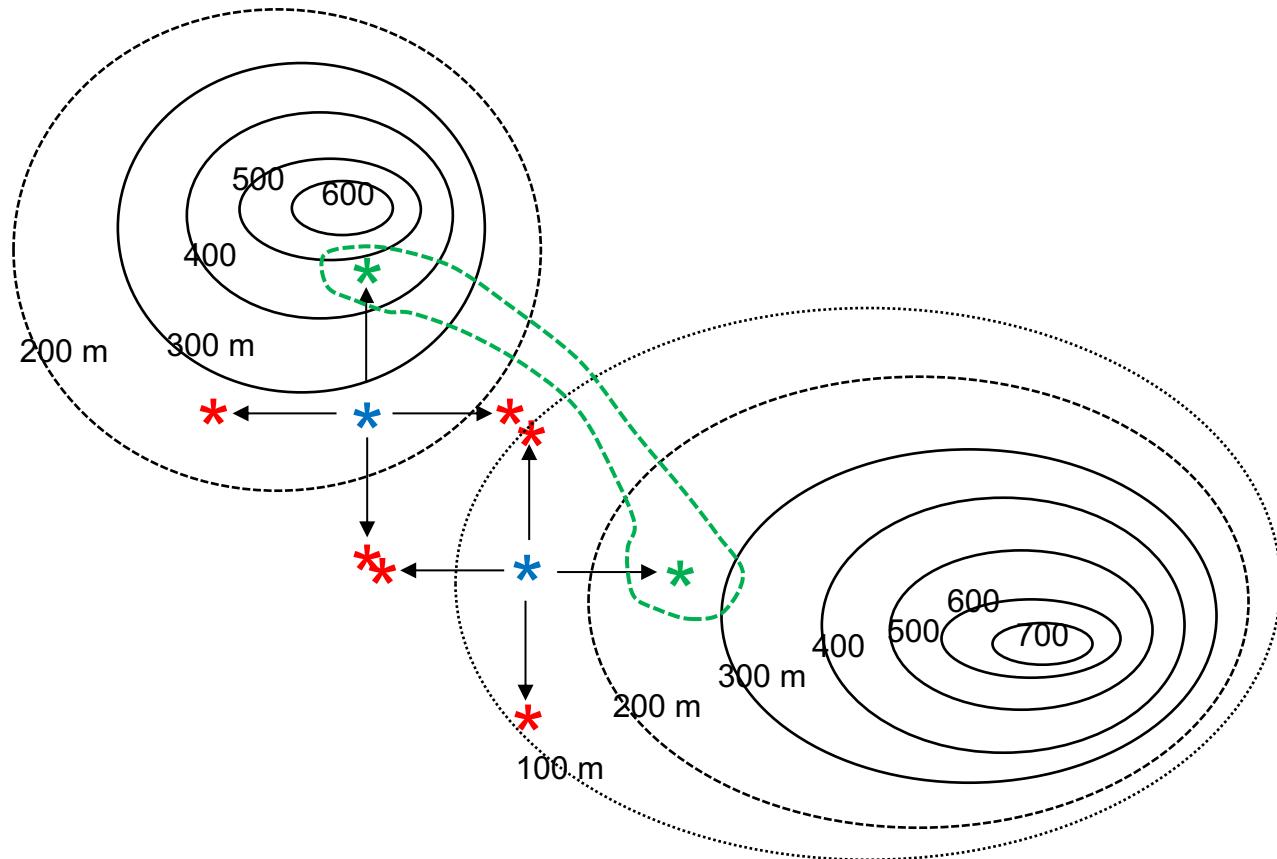
Hill climbing



(Local) Beam search



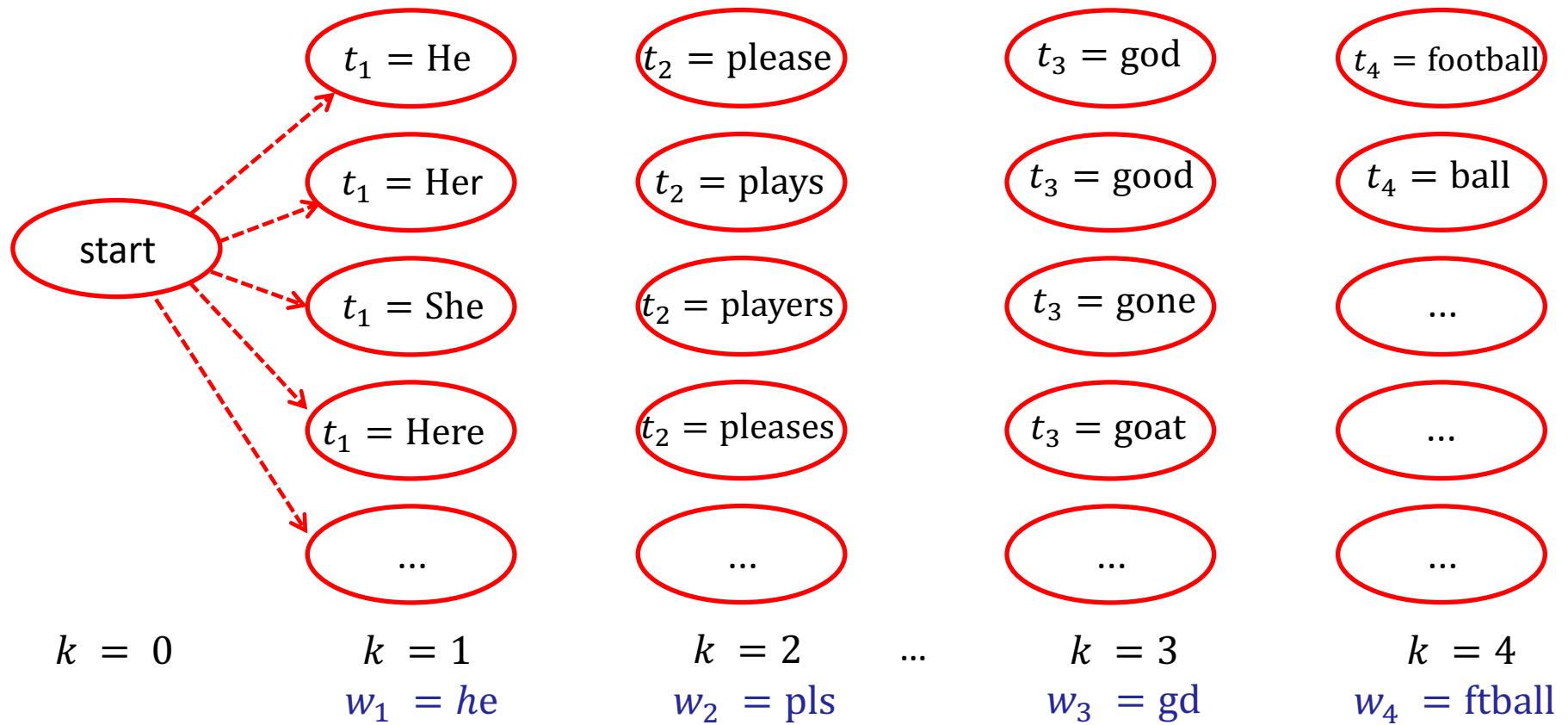
(Local) Beam search



(Local) Beam search

- Like HC, but we keep k states in the **search frontier**.
 - Initially k random states.
- At each step, **produce** and **assess** the **children-states of the k states** in the frontier.
 - If a final state criterion exists and we reach a final state, stop.
- **Keep the k best of the children-states** and repeat.
 - Until we exceed a maximum number of iterations.
- We often **repeat the search several times**, starting from **different initial k states**.
 - Random restarts are also useful in HC.
 - In neural nets, restarts with different random initial weights.
 - In spelling correction decoding, there is only one initial state.

Beam search decoder

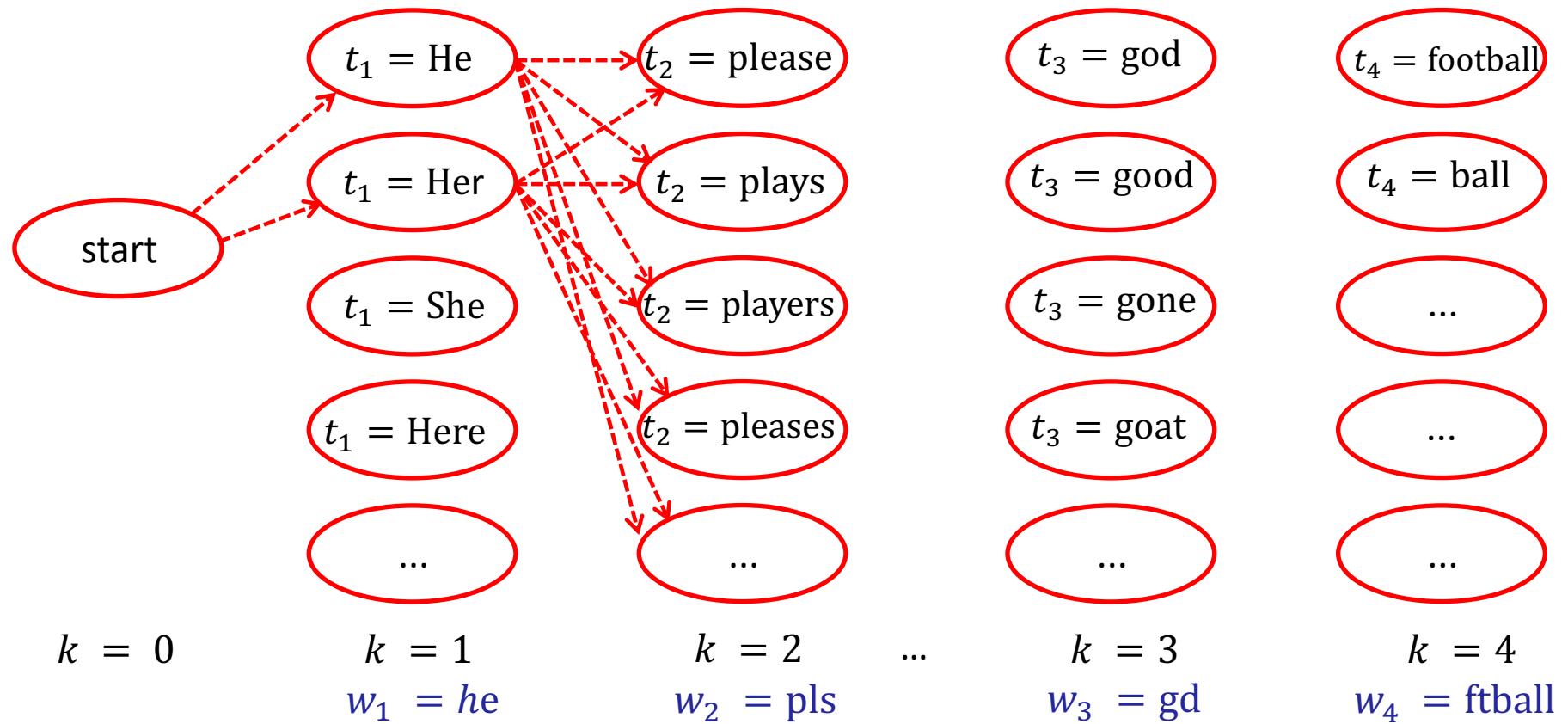


We search for a path from *start* to a state of column $k = 4$ that maximizes $P(t_1^k)P(w_1^k|t_1^k)$ or that minimizes $L_k = -\lambda_1 \log P(t_1^k) - \lambda_2 \log P(w_1^k|t_1^k)$.

With our previous simplifications: $\prod_{i=1}^k P(w_i|t_i)$

For a bigram language model: $\prod_{i=1}^k P(t_i|t_{i-1})$

Beam search decoder



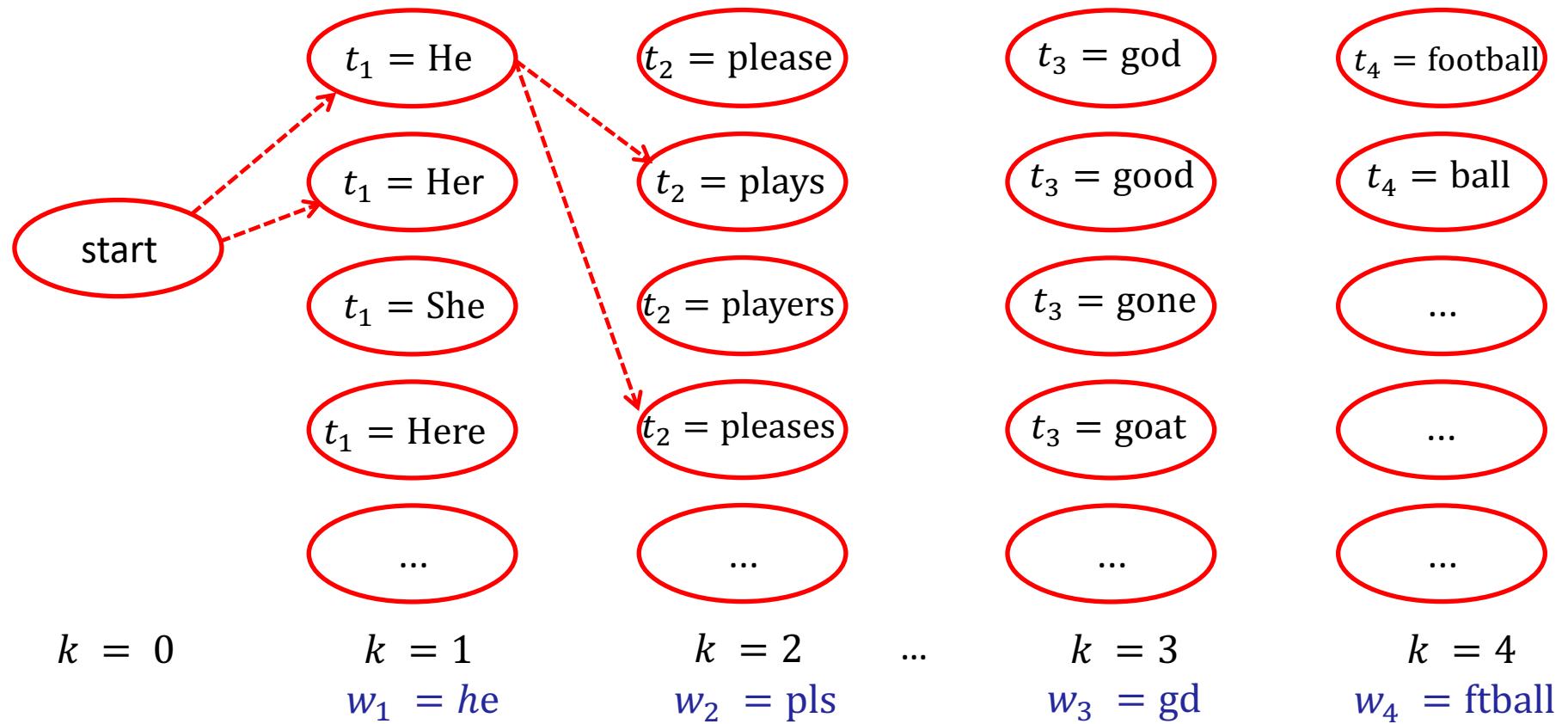
We search for a path from *start* to a state of column $k = 4$ that maximizes $P(t_1^k)P(w_1^k|t_1^k)$ or that minimizes $L_k = -\lambda_1 \log P(t_1^k) - \lambda_2 \log P(w_1^k|t_1^k)$.

With our previous simplifications: $\prod_{i=1}^k P(w_i|t_i)$

For a bigram language model: $\prod_{i=1}^k P(t_i|t_{i-1})$

For each k , we keep the b (here $b = 2$) best paths only.

Beam search decoder



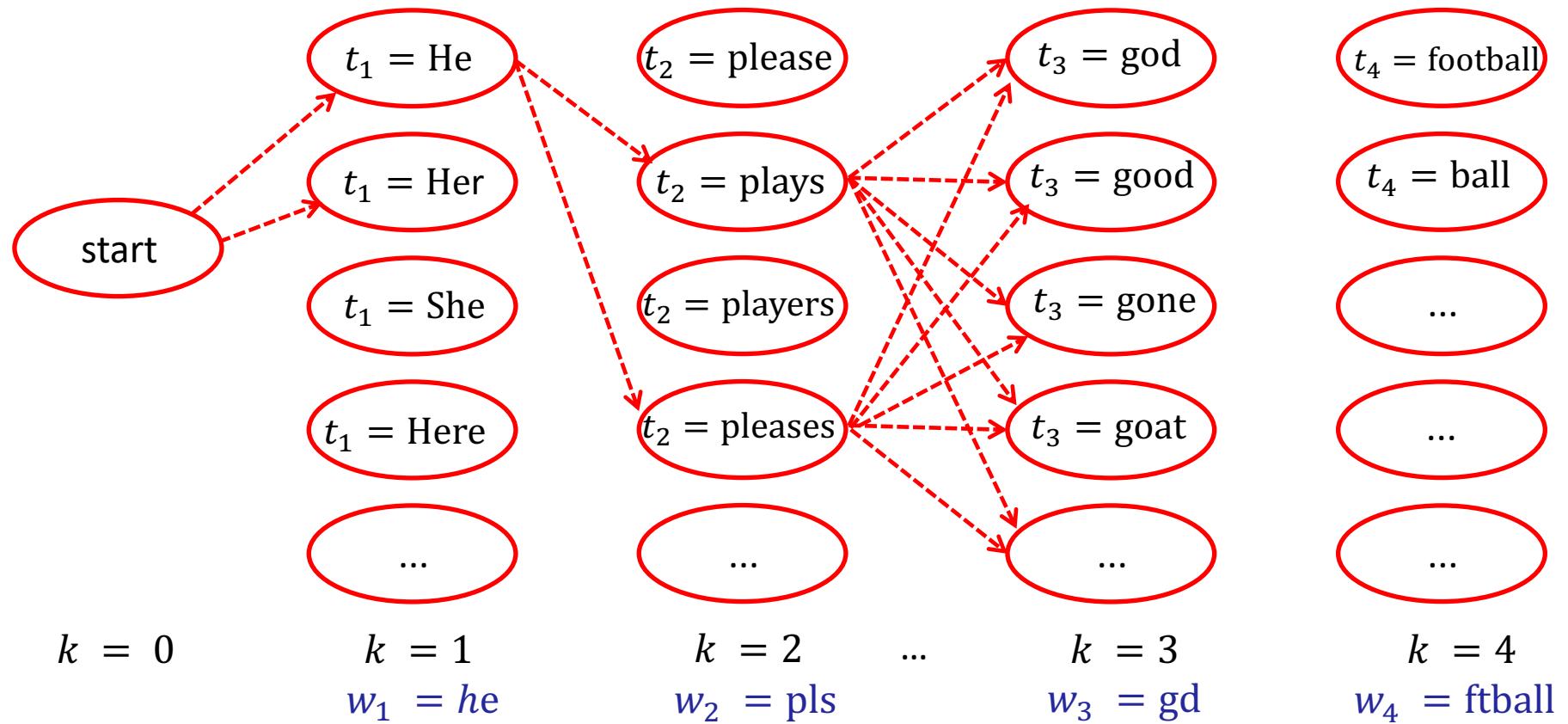
We search for a path from *start* to a state of column $k = 4$ that maximizes $P(t_1^k)P(w_1^k|t_1^k)$ or that minimizes $L_k = -\lambda_1 \log P(t_1^k) - \lambda_2 \log P(w_1^k|t_1^k)$.

With our previous simplifications: $\prod_{i=1}^k P(w_i|t_i)$

For a bigram language model: $\prod_{i=1}^k P(t_i|t_{i-1})$

For each k , we keep the b (here $b = 2$) best paths only.

Beam search decoder



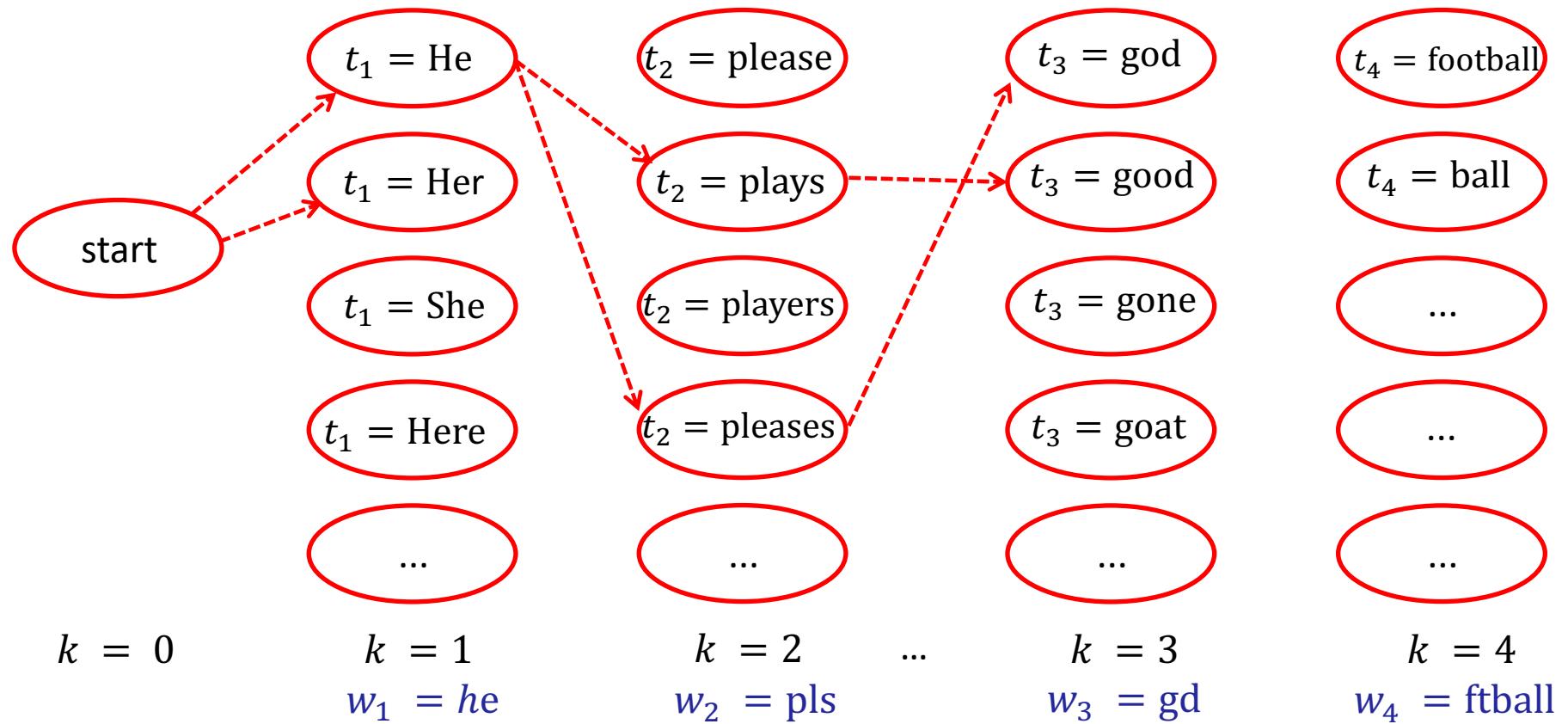
We search for a path from *start* to a state of column $k = 4$ that maximizes $P(t_1^k)P(w_1^k|t_1^k)$ or that minimizes $L_k = -\lambda_1 \log P(t_1^k) - \lambda_2 \log P(w_1^k|t_1^k)$.

With our previous simplifications: $\prod_{i=1}^k P(w_i|t_i)$

For a bigram language model: $\prod_{i=1}^k P(t_i|t_{i-1})$

For each k , we keep the b (here $b = 2$) best paths only.

Beam search decoder



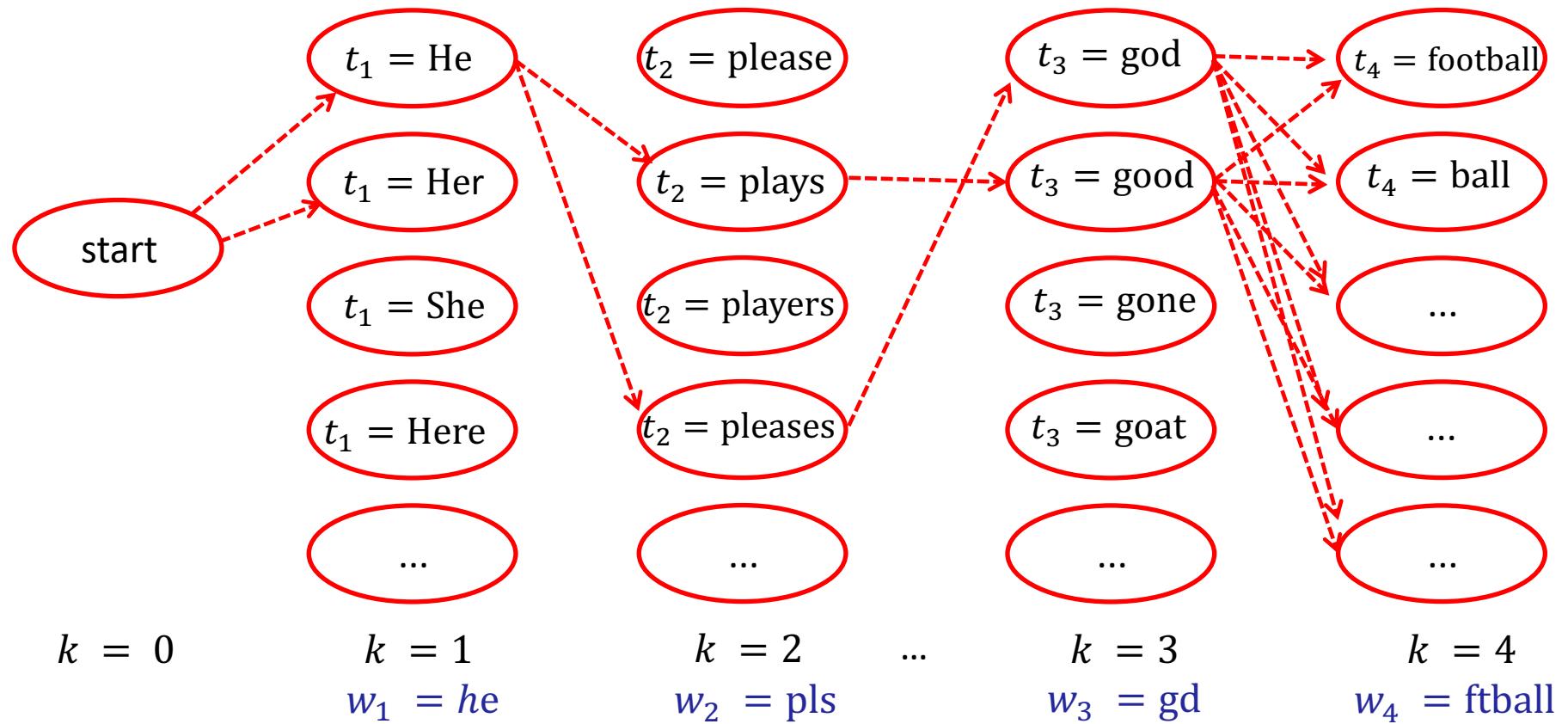
We search for a path from *start* to a state of column $k = 4$ that maximizes $P(t_1^k)P(w_1^k|t_1^k)$ or that minimizes $L_k = -\lambda_1 \log P(t_1^k) - \lambda_2 \log P(w_1^k|t_1^k)$.

With our previous simplifications: $\prod_{i=1}^k P(w_i|t_i)$

For a bigram language model: $\prod_{i=1}^k P(t_i|t_{i-1})$

For each k , we keep the b (here $b = 2$) best paths only.

Beam search decoder



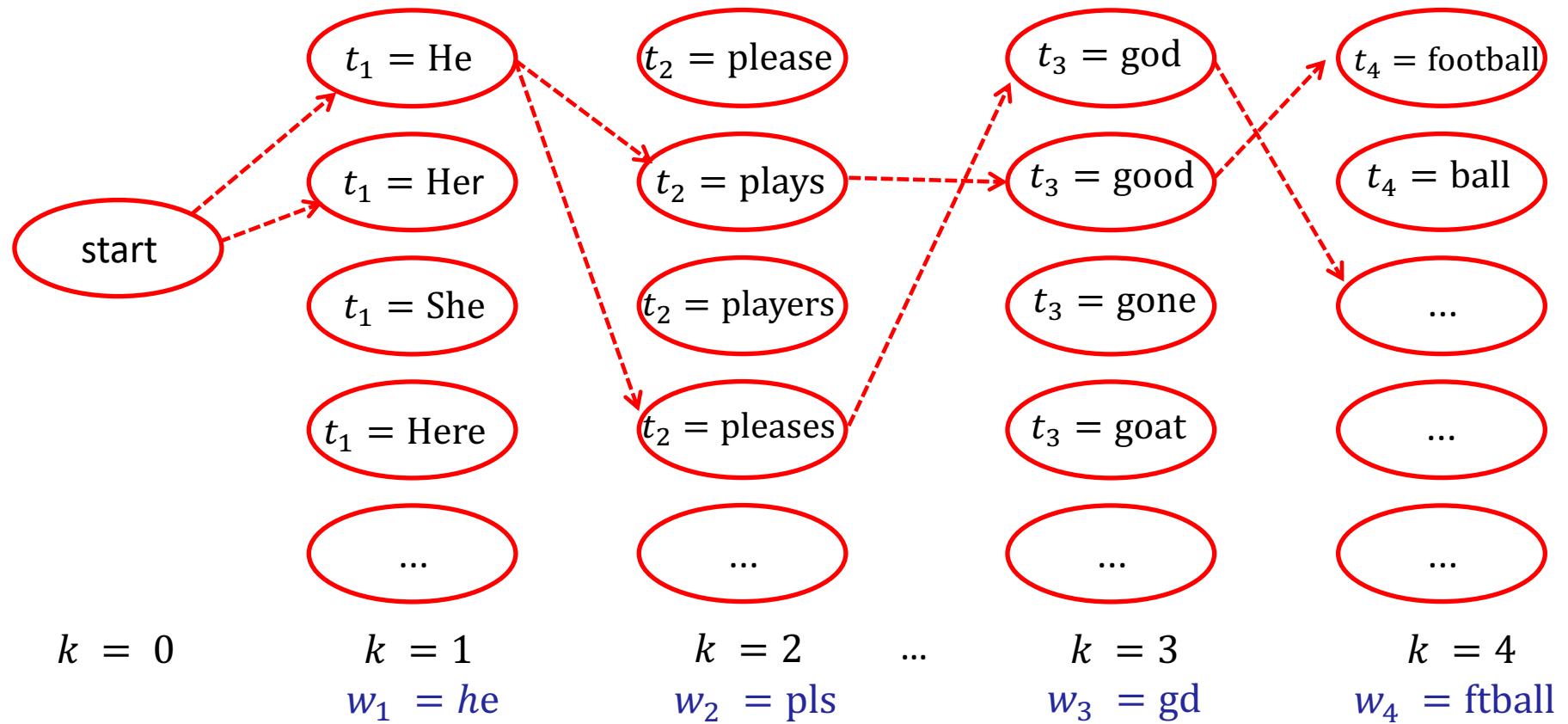
We search for a path from *start* to a state of column $k = 4$ that maximizes $P(t_1^k)P(w_1^k|t_1^k)$ or that minimizes $L_k = -\lambda_1 \log P(t_1^k) - \lambda_2 \log P(w_1^k|t_1^k)$.

With our previous simplifications: $\prod_{i=1}^k P(w_i|t_i)$

For a bigram language model: $\prod_{i=1}^k P(t_i|t_{i-1})$

For each k , we keep the b (here $b = 2$) best paths only.

Beam search decoder



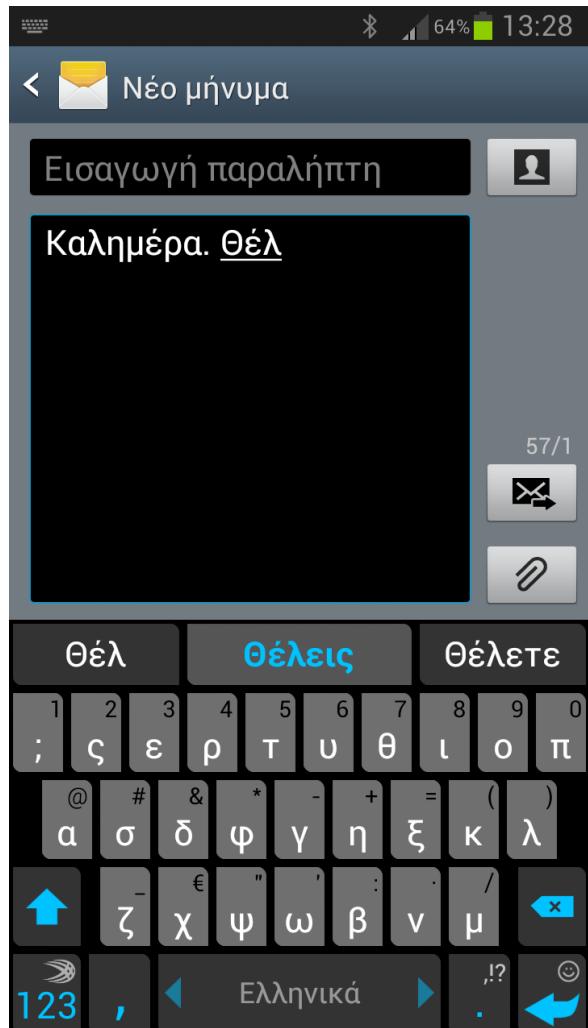
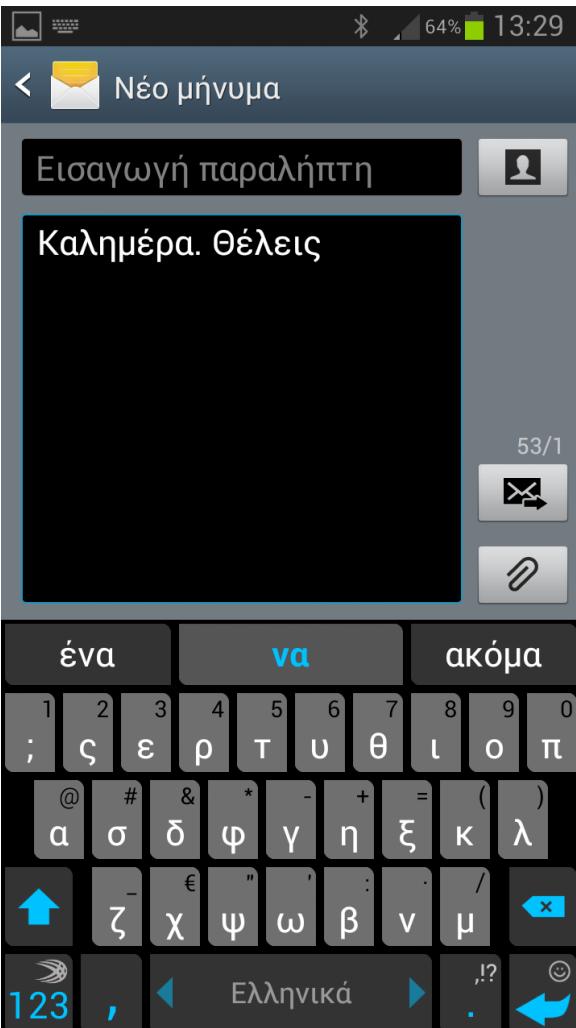
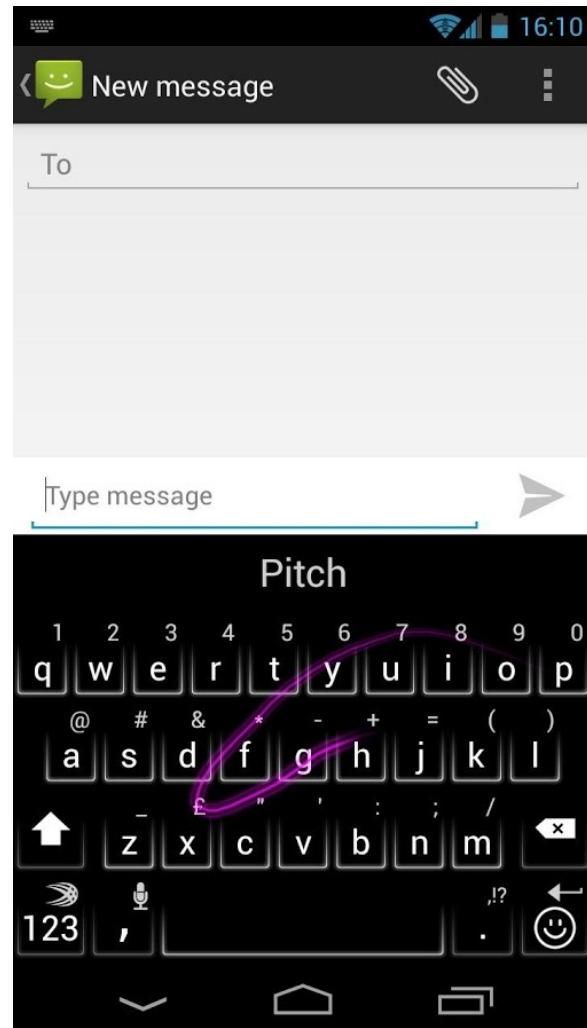
We search for a path from *start* to a state of column $k = 4$ that maximizes $P(t_1^k)P(w_1^k|t_1^k)$ or that minimizes $L_k = -\lambda_1 \log P(t_1^k) - \lambda_2 \log P(w_1^k|t_1^k)$.

With our previous simplifications: $\prod_{i=1}^k P(w_i|t_i)$

For a bigram language model: $\prod_{i=1}^k P(t_i|t_{i-1})$

For each k , we keep the b (here $b = 2$) best paths only.

Smart keyboards



Images from: <http://www.swiftkey.net/>

More to be discussed...

- Exactly how do we **combine the edit distances with a language model** to correct **errors of the 1st type**?
- How do we correct **errors of the 2nd type**?
- How do we **evaluate a language model**?
 - Among different language models (e.g., using different n or different smoothing), which one is the best?

Encoding example and entropy

- Let the **possible values** of a random variable C be:
 - c_1 with $P(c_1) = 1/4$, c_2 with $P(c_2) = 1/4$, c_3 with $P(c_3) = 1/2$.
- A good **encoding**:
 - Use **fewer bits for more probable values**.
 - $c_1 \rightarrow 10$, $c_2 \rightarrow 11$. We use $-\log_2(1/4) = 2$ bits.
 - $c_3 \rightarrow 0$. We use $-\log_2(1/2) = 1$ bits.
 - Exp. number of transmitted bits: $1/4 \cdot 2 + 1/4 \cdot 2 + 1/2 \cdot 1 = 1.5$
- Information theory says the **ideal encoding** (lowest expected number of transmitted bits) uses $-\log_2 P(c_i)$ **bits for value** c_i .
 - We may need to use a slightly different number of bits in practice, if the $P(c_i)$ probabilities are not powers of 2.
- **With an ideal encoding** (as above), the **expected number of transmitted bits is the Entropy** $H(C)$ of C .
 - It shows **how uncertain we are about the value of** C , i.e., **how much information (in bits) we need to transmit** to let somebody know its value.

Entropy

- Entropy of a random variable C :
 - How **uncertain** we are about the **value of C** .
 - How **much information** (in bits, with an ideal encoding) we need to receive **to be certain** about the value of C .
 - What is the **expected number of bits** (with an ideal encoding) that we need to receive **to be certain** about the value of C .

$$H(C) = - \sum_{c_i} P(C = c_i) \cdot \log_2 P(C = c_i)$$

Expected value Bits used by the ideal encoding for each value.

- If C has only two possible values:

$$H(C) = -P(C = 1) \cdot \log_2 P(C = 1) - P(C = 0) \cdot \log_2 P(C = 0)$$

Probabilities estimated from training data.

Example

- Collection of **800 training** e-mail messages.
 - Messages received in the past, manually classified.
 - **200 spam. 600 ham** (non-spam).
- Estimate the **entropy of C** using the training messages.
 - $C = 1$ (spam) $\dot{\wedge}$ $C = 0$ (ham).
 - $\log_2 3 = 1.585$
- Repeat when **all the training messages are in one category** (**all spam**, or **all ham**).
- Repeat when we have an **equal number** of training messages **per category** (**400 spam, 400 ham**).

$$H(C) = -P(C=1) \cdot \log_2 P(C=1) - P(C=0) \cdot \log_2 P(C=0)$$

Cross-entropy

- The **entropy** of a random variable C shows **how uncertain** we are about its value.

$$H(C) = - \sum_{c_i} P(C = c_i) \cdot \log_2 P(C = c_i)$$

- **How many bits** (expected value) we need to **transmit** (or receive) with an **ideal encoding** to transmit (receive) its value.
- If we use an **encoding** based on **inaccurate probability estimates** P_m instead of the correct probabilities P :

$$H_{P_m}(C) = - \sum_{c_i} P(C = c_i) \cdot \log_2 P_m(C = c_i) \geq H(C)$$

- We need to **transmit more bits**, because we don't use an ideal encoding (which uses $-\log_2 P(c_i)$ bits per value).

Cross-entropy – continued

- If we have **two models** $P_{m1}(C)$, $P_{m2}(C)$ both trying to **estimate the correct probabilities** $P(C)$, which one is the **best**?

$$H_{P_{m1}}(C) = -\sum_{c_i} P(C = c_i) \cdot \log_2 P_{m1}(C = c_i) \geq H(C)$$

$$H_{P_{m2}}(C) = -\sum_{c_i} P(C = c_i) \cdot \log_2 P_{m2}(C = c_i) \geq H(C)$$

- The one with the **smallest cross-entropy**.
- It allows **transmitting** the values of C using **fewer bits**.
- Its **encoding is based on more accurate probability estimates**.
- **Kullback–Leibler divergence** (relative entropy):

$$D_{KL}(P || P_m) = H_{P_m}(C) - H(C) = \sum_{c_i} P(C = c_i) \log_2 \frac{P(C = c_i)}{P_m(C = c_i)}$$

Cross-entropy with 1-hot $P(C = c_i)$

- If the **correct probability distribution** is 1-hot:
 - i.e., for some i^* , $P(c_{i^*}) = 1$; for all other $i \neq i^*$, $P(c_i) = 0$.
 - E.g., in **classification** with a **single correct label** per instance.

May not be 1-hot, e.g., if
multiple human
annotators do not agree.

$$H_{P_m}(C) = - \sum_{c_i} P(C = c_i) \cdot \log_2 P_m(C = c_i) =$$
$$= - \log_2 P_m(C = c_{i^*})$$

- The same as the **negative log-likelihood** of the “correct” c_{i^*} .
- The probability assigned by the model to the “correct” c_{i^*} .
- For **two models**:

$$H_{P_{m_1}}(C) = - \log_2 P_{m_1}(C = c_{i^*})$$

$$H_{P_{m_2}}(C) = - \log_2 P_{m_2}(C = c_{i^*})$$

- The **best model** has the **lowest cross-entropy**, or **highest log-likelihood** of the correct answer.

Evaluating LMs with cross-entropy

- The **correct probability distribution** for the **next word** W_j (given the **history** h_1^{j-1}) in a **test corpus** is **1-hot**:
 - For some $w^* \in V$, $P(W_j = w^* | h_1^{j-1}) = 1$; and for every other $w \neq w^* \in V$, $P(W_j = w | h_1^{j-1}) = 0$.

$$\begin{aligned} H_{P_m}(W_j) &= - \sum_{w \in V} P(W_j = w | h_1^{j-1}) \cdot \log_2 P_m(W_j = w | h_1^{j-1}) = \\ &= - \log_2 P_m(W_j = w^* | h_1^{j-1}) \end{aligned}$$

- For all the **N word occurrences** (positions) of a **test corpus**:

$$\begin{aligned} H_{P_m}(W_1^N) &= - \frac{1}{N} \sum_{j=1}^N \sum_{w \in V} P(W_j = w | h_1^{j-1}) \cdot \log_2 P_m(W_j = w | h_1^{j-1}) \\ \text{Per-word} \quad \nearrow & \\ \text{cross-entropy} &= - \frac{1}{N} \sum_{j=1}^N \log_2 P_m(W_j = w_j^* | h_1^{j-1}) \end{aligned}$$

- The **negative log-likelihood** the model gives to the **test corpus**.

Evaluating LMs with cross-entropy

- For **two models** evaluated on the **same test corpus**:

$$H_{P_{m_1}}(W_1^N) = -\frac{1}{N} \sum_{j=1}^N \log_2 P_{m_1}(W_i = w_i^* | h_1^{j-1})$$

$$H_{P_{m_2}}(W_1^N) = -\frac{1}{N} \sum_{j=1}^N \log_2 P_{m_2}(W_i = w_i^* | h_1^{j-1})$$

- The **best model** is the one with the **lowest cross-entropy**.
- It gives a **higher log-likelihood** to the **test corpus**.

Cross-Entropy and Perplexity

- For example, if a **bigram language model** is used:

$$-\frac{1}{N} [\log_2 P_m(w_1^* | \text{start}) + \log_2 P_m(w_2^* | w_1^*) + \dots]$$

- Usually **perplexity** scores are published:

$$\text{Perplexity} = 2^{H_{P_m}(w_1^n)} \approx 2^{-\frac{1}{N} \log_2 P_m(w_1^* | \dots)}$$

- The **lower** the perplexity, the **better** the model.
 - Alternative interpretation: a language model with **perplexity r** is **as uncertain** (same entropy) **about the next word** as a model that selects **uniformly and independently** words from a **vocabulary of r words**.

Comparison 1–4-Gram

$$-\log P(w_i^* | w_{i-1}^*)$$

$$-\log P(w_i^* | w_{i-2}^*, w_{i-1}^*)$$

word	unigram	bigram	trigram	4-gram
i	6.684	3.197	3.197	3.197
would	8.342	2.884	2.791	2.791
like	9.129	2.026	1.031	1.290
to	5.081	0.402	0.144	0.113
commend	15.487	12.335	8.794	8.633
the	3.885	1.402	1.084	0.880
rapporteur	10.840	7.319	2.763	2.350
on	6.765	4.140	4.150	1.862
his	10.678	7.316	2.367	1.978
work	9.993	4.816	3.498	2.394
.	4.896	3.020	1.785	1.510
</s>	4.828	0.005	0.000	0.000
average	8.051	4.072	2.634	2.251
perplexity	265.136	16.817	6.206	4.758

From P. Blunsom's presentation “*From Language Modelling to Machine Translation*”

http://videolectures.net/deeplearning2015_blunsom_machine_translation/

Training, development, test data

- **Training data:**
 - Used to **estimate** (learn) the **probabilities of n -grams**.
 - More generally, we **train our model** on these data.
- **Development data:**
 - Used to **select models** (e.g., 2-gram or 3-gram LM), **tune hyper-parameters** (e.g., λ of interpolated LMs), **select best training epochs** (in neural networks) etc.
 - If we **make these choices by evaluating on test data**, we indirectly **train our model on the test dataset!**
- **Test data:**
 - Used for the final **evaluation of our model**, to see how well it performs on **unseen data**.

Training, development, test data

n-gram probability estimates (more generally, learning algorithm applied to this subset)

training data

perplexity (or other score, for hyper-parameter tuning etc.)

development data

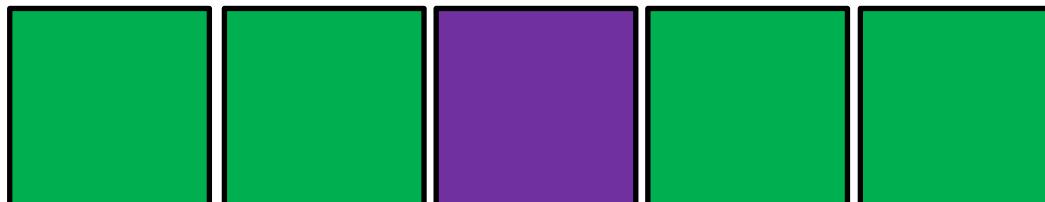
final perplexity (or other score, to check the performance on unseen data)

test data

- In competitions, the **test data may not be publicly available**.
- We may have to use the **development data as test data**.
- A **small subset** of the **training data** may have to be “**held out**” as development data (e.g., for hyper-parameter tuning).
 - This **reduces** the size of the **training set**.
 - And a **small development** set, **may not be representative**.

Cross-validation

- **Instead of holding out development data** from the training data:
 - Divide the training data into **n parts** (e.g., 5), often **preserving class ratios** (e.g., positives/negatives) in all parts (“stratified”).
 - Perform **n iterations** (folds) to obtain a **score** (e.g., accuracy) for a particular **combination of hyper-parameter values**.
 - In each iteration, use a **different part** as **development data** and the **other $n - 1$ parts** as **training data**.
 - **Average** (e.g., accuracy) **over the iterations** to obtain a score for the particular combination of hyper-parameter values.



Further issues with n-gram LMs

- What about similar words?
 - *she bought a bicycle*
 - *she purchased a bicycle*
- Long-distance dependencies?
 - *for programming she yesterday purchased her own brand new laptop*
 - *for running she yesterday purchased her brand new sportswatch*

cannot share strength
among similar words

cannot handle long-distance
dependencies

Adapted from Graham Neubig

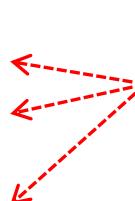
Additional optional study slides

Kneser-Ney smoothing

- E.g., for bigrams w_{k-1}, w_k :

- ✓ green, apple
- ✓ green, paper
- ✓ green, book
- ✓ ...
- ✓ ...

- ✗ green, mouse
- ✗ green, cyclotron
- ✗ green, York
- ✗ ...



Encountered in the corpus, i.e.,
 $c(w_{k-1}, w_k) > 0$. **Steal probability mass** from each estimate $\frac{c(w_{k-1}, w_k)}{c(w_{k-1})}$, i.e.,
use $\frac{c(w_{k-1}, w_k) - D}{c(w_{k-1})}$, where D is constant.

Not encountered in the corpus, i.e.,
 $c(w_{k-1}, w_k) = 0$. **Distribute to them the probability mass stolen from all the encountered w_{k-1}, w_k that had the same w_{k-1} ("green"). Distribute proportionally to $P(w_k)$** (e.g., "mouse" is more frequent than "cyclotron").

Kneser-Ney smoothing

- Formula for ideas of previous slide (D is constant):

$$P_{KN}(w_k \mid w_{k-1}) = \begin{cases} \frac{c(w_{k-1}, w_k) - D}{c(w_{k-1})}, & \text{if } c(w_{k-1}, w_k) > 0 \\ a(w_{k-1}) \cdot P(w_k), & \text{else} \end{cases}$$

- α values needed to ensure that probabilities sum up to 1.

Improved K-N smoothing

- Instead of $P(w_k)$, distribute the stolen probability mass proportionally to:

$$Prev(w_k) = \frac{prev(w_k)}{\sum_{v \in V : c(w_{k-1}, v) = 0} prev(v)}$$

The denominator ensures that the $Prev(w_k)$ scores of all the words w_k that need to receive stolen probability mass **sum to 1**.

where:

$$prev(w_k) = |\{w \in V : c(w, w_k) > 0\}|$$

How many vocabulary (distinct) words occur immediately before w_k in the corpus. E.g., “York” may occur almost always after “New”; hence “green York” should not be given much of the probability mass stolen from the encountered bigrams that start with “green”.

Improved K-N smoothing

$$P_{KN}(w_k \mid w_{k-1}) = \begin{cases} \frac{c(w_{k-1}, w_k) - D}{c(w_{k-1})}, & \text{if } c(w_{k-1}, w_k) > 0 \\ a(w_{k-1}) \cdot \text{Prev}(w_k), & \text{else} \end{cases}$$

$$a(w_{k-1}) = \frac{D}{c(w_{k-1})} \cdot |\{w \in V : c(w_{k-1}, w) > 0\}|$$

Total probability mass stolen from bigrams that start with w_{k-1}
(w_{k-1} = “green” in our example).

Katz backoff

- Consult an n -gram model with a **smaller n , whenever necessary**. For example, when using a trigram model:

$$P_{Katz}(w_k \mid w_{k-2}, w_{k-1}) = \begin{cases} P(w_k \mid w_{k-2}, w_{k-1}), & \text{if } c(w_{k-2}^k) > 0 \\ a(w_{k-2}, w_{k-1}) \cdot P_{Katz}(w_k \mid w_{k-1}), & \text{else} \end{cases}$$

$$P_{Katz}(w_k \mid w_{k-1}) = \begin{cases} P(w_k \mid w_{k-1}), & \text{if } c(w_{k-1}, w_k) > 0 \\ a(w_{k-1}) \cdot P(w_k), & \text{else} \end{cases}$$

- The α values are needed to ensure that:

$$\sum_{w_k \in V} P_{Katz}(w_k \mid w_{k-2}, w_{k-1}) = 1 \quad \sum_{w_k \in V} P_{Katz}(w_k \mid w_{k-1}) = 1$$

- Consult the book of Jurafsky & Martin for formulae to compute the α values and (many) other smoothing methods.

Computing Levenshtein distance

- How can we **convert**:

$\piέζοι$ to $\piαιζω$

based on shorter (by one final letter) forms of $\piέζοι$ and/or $\piαιζω$?

- 1st way: Delete the last letter of $\piέζοι$ and convert $\piέζο$ to $\piαιζω$.

$\piέζο \cancel{\imath} \rightarrow \piαιζω$

$\text{Del}(\imath) + \text{cost}(\piέζο, \piαιζω)$

- 2nd way: Convert $\piέζοι$ to $\piαιζ$ and add ω to the end of $\piαιζ$.

$\piέζοι \rightarrow \piαιζ \textcircled{\omega}$

$\text{cost}(\piέζοι, \piαιζ) + \text{Ins}(\omega)$

Computing Levenshtein distance (II)

- 3rd way: Convert $\pi\acute{\epsilon}\zeta o$ to $\pi a\acute{i}\zeta$ and replace l by ω .

$$\pi\acute{\epsilon}\zeta o \text{ } l \rightarrow \pi a\acute{i}\zeta \text{ } \omega$$
$$\text{cost}(\pi\acute{\epsilon}\zeta o, \pi a\acute{i}\zeta) + \text{Rep}(l, \omega)$$

- **Which way is the best?**
 - The one with the **smallest cost**.
 - At each step, we consider all three ways and we select **the cheapest one** (Ins, Del, or Rep).

Computing Levenshtein distance

	#	π	α	$\acute{\iota}$	ζ	ξ	τ	ϵ
#	0	1	2	3	4	5	6	7
π	1							
$\acute{\epsilon}$	2							
ζ	3							
0	4							
$\acute{\iota}$	5							
τ	6							
α	7							
$\acute{\iota}$	8							

Diagram illustrating the computation of Levenshtein distance between two strings. The table shows the cost of operations (Delete, Insert, Replace) to convert one string into another. The cost is represented by the number of operations required. The table is a grid where rows and columns represent characters, and the cell at row i and column j contains the cost of transforming the i -th character of the first string into the j -th character of the second string.

Annotations in the table:

- Red arrows and text:** Indicate the cost of Delete operations (+1). A red arrow points from cell (0,1) to cell (1,1). A red box highlights the text "Cost to delete « ζ » and convert «#πξ» to «#»".
- Green arrows and text:** Indicate the cost of Insert operations (+1). A green arrow points from cell (0,1) to cell (0,2). A green box highlights the text "Cost to convert «#» to «#πα» and insert « $\acute{\iota}$ »".
- Blue arrows and text:** Indicate the cost of Replace operations (+1). A blue arrow points from cell (0,1) to cell (1,2). A blue box highlights the text "What is the (min) cost to convert «#» to «#πα $\acute{\iota}$ »?".
- Yellow arrows and text:** Indicate the cost of Replace operations (+1). A yellow arrow points from cell (0,1) to cell (2,2). A yellow box highlights the text "What is the (min) cost to convert «#πξ» to «#»?".

Computing Levenshtein distance

	#	π	α	ι	ζ	ε	τ	ε
#	0	1	2	3	4	5	6	7
π	1	0						
ε	2	What is the (min) cost to convert “# π ” to “# π ”?						
ζ	3							
α	4							
ι	5	1 st way: Delete the “ π ” of the first (vertical) string and convert the remaining string “#” to “# π ”.						
τ	6	2 nd way: Convert the “# π ” of the first string to “#” and add “ π ” to the resulting string.						
α	7	3 rd way: Convert the “#” of the first string to “#” and replace the “ π ” of the first string by “ π ” (same letter).						
ι	8							

↑ Del (+1)

← Ins (+1)

→ Rep (+2, or 0 for same letter)

Computing Levenshtein distance

	#	π	α	ι	ζ	ε	τ	ε
#	0	1	2	3	4	5	6	7
π	1	0	1					
$\acute{\epsilon}$	2							
ζ	3							
\circ	4							
ι	5							
τ	6							
α	7							
ι	8							

What is the (min) cost to convert "# π " to "# $\pi\alpha$ ".

↑ Del (+1)

← Ins (+1)

→ Rep (+2, or 0 for same letter)

1st way: Delete the " π " of the first (vertical) string and convert the remaining string "#" to "# $\pi\alpha$ ".

2nd way: Convert the "# π " of the first string to "# π " (no change) and add " α " to the resulting string.

3rd way: Convert the "#" of the first string to "# π " and replace the " π " of the first string by " α ".

Computing Levenshtein distance

	#	π	α	$\acute{\iota}$	ζ	ε	τ	ϵ
#	0	1	2	3	4	5	6	7
π	1	0	1	2	3	4	5	6
$\acute{\iota}$	2	1	2	3	4	3	4	5
ζ	3	2	3	4	3	4	5	6
\circ	4	3	4	5	4	5	6	7
ι	5	4	5	4	5	6	7	8
τ	6	5	6	5	6	7	6	7
α	7	6	5	6	7	8	7	8
ι	8	7	6	5	6	7	8	9

 Del (+1)
 Ins (+1)
 Rep (+2, or 0 for same letter)

Shaded cells show one of the possible alignments.

For each cell, the outgoing arrows point to the neighbor(s) the cell's (best) value is based on.

Recommended reading

- Jurafsky & Martin (2nd ed.): chapter 4 (not sections 4.5.2, 4.5.3, 4.7.1, 4.9.2), sections 3.10, 3.11, 5.9.
 - Available at AUEB's library.
 - See also the free draft of the 3rd edition:
<http://web.stanford.edu/~jurafsky/slp3/>
- For more information, consult chapters 2 and 6 of Manning & Schütze's book *Foundations of Statistical Natural Language Processing*, MIT Press, 1999.
 - Available at AUEB's library.
 - Chapter 2 introduces basic concepts of probability theory, entropy, the noisy channel etc.
 - Chapter 6 covers n -gram language models.

