n-gram language models

2025-26

Ion Androutsopoulos

http://www.aueb.gr/users/ion/

http://www.aueb.gr/users/ion/

Contents

n-gram language models.
Estimating probabilities from corpora.
Entropy, cross-entropy, perplexity.
Edit distance.

Context-aware spelling correction.

Beam-search decoding.

Language models

* How probable is it to encounter (e.g., in news
articles) the following sentences (word sequences)?

o The government announcement new austerity metrics
hopping to decrease the deficit.

o The government announced new austerity measures
hoping to reduce the deficit.

* In many cases, candidate alternative sentences are
produced. We wish to keep the most probable ones.

o Speech recognition, optical character recognition,
machine translation, smartphone keyboards, spelling
and syntax checking, text normalization of social
media posts...

n-gram language models

* Notation for sequences of words:
Lk
<W1,W2,. ° .,Wk> - Wl

* n-gram: sequence of n consecutive words.

o Trigrams: “the government announced”, “government

29 <6

announced new”’, “announced new austerity”, ...

29 €6

o Bigrams: “the government”, “government announced”,

29 <6

“announced new”, “new austerity”, ...

o In other cases, sequences of n consecutive characters.

e Chain rule:
P(wlk) =P(w,...,w,)=P(w)-P(w, |w)-

P(W3 |W19W2)'P(W4 |W13)"'P(Wk |W1k_1)

How do we estimate the probabilities?

* Simplest approach: maximum likelihood estimates
from a corpus of C tokens:

c(the)
C
P, .(government | the) =

P,z (the) =

c(the, government)
c(the)

c(the, gov, announced)

P . .(announced | the, gov) =
s the, gov) c(the, gov)

* Many n-grams (esp. 4-grams, 5-grams, ...) will be very
rare or may not occur even in a large corpus.
o Very poor or zero probability estimates.

o Leading to a zero chain product... 5

Markov assumption
* Bigram language model:
P(w;) = P(W,,...,w,) = P(w)- P(w, \ W)
P(w, [w,w,)- P(W4|W1) -P(w, |w) =

* Stationarity: We assumed probabilities do not depend on where the n-grams
are encountered. E.g., in P(announced | the, government), we do not examine if
“announced” occurs as the 3 or 41 or ... word in the sentences of the corpus.

» Strictly speaking, we also need an end pseudo—token. See study exercises. 6

Laplace smoothing

* Even with a Markov assumption, we will still have
many n-grams that do not occur in the corpus.

* Laplace smoothing for unigrams: if we have |V
vocabulary words (distinct words),

c(w)+ 1< | Adda pseudo-occurrence of ach
(W W) _ ()

vocabulary word. More generally, |
of each possible value of the i
random variable (here W).

o Similarly, e.g., for trigrams:
Wiz Wiep Wi) + 1P

c(w,_,,w,)+ ‘V‘

Laplace

P

Laplace

W, =w, W, W)=

\
~
~
~
~
S
~
~ \
~
SO
~d

———

. Add a pseudo-occurrence of each p0331ble
. trigram that starts with wy,_,, wy_4. There !
are |V| such trigrams in total.

* But we over-estimate rare bigrams, trigrams, ... ;

Add-a smoothing

* For unigrams: if we have |V| vocabulary words,

W =)= X Wi a (0L a S Tyon
C+a- ‘V‘ held-out data (see below).

Laplace

* Similarly, e.g., for trigrams:

p (Wi, Wi s W)+

Laplace

W, =w, [W, _,,w,) =
cw,_,,w,_)+a- ‘V‘

* Better, but still poor estimates for language models.

o In practice, Laplace and add-a smoothing are not used in
language models (but often work well 1n classification tasks).

o See optional reading slides for better estimates for n-gram
LMs (e.g., Knesser-Ney smoothing, backoff models).

Linear interpolation

e We use a linear combination of estimates from n-
gram language models with different n values.

B W AW W) =4 -Pw, [w,_,,w,_)+

/12 ‘P(Wk ‘Wk_1)+23 -P(wk) with iﬁi —1

LMs as next word predictors
* Sequence probability using a bigram LM:

PwW)=P(w,...,w,)=P(w)-P(w, |w)-
P(w; [w,w,)- P(W4|W1) -P(w, |w) =

* We can think of the LM as a system that provides the
probabilities P(w;|w;_;), which we then multiply.

o Or the probabilities P(w;|w;_o,w;_1) for a trigram LM.
o Or the probabilities P(w;|hy™1) for an LM that considers all
the “history” (previous words) h{™1, e.g.. in an RNN LM.

o An LM provides a distribution P(W|hi1_1) showing how
probable it 1s for every word w € I/ to be the next one.

Spelling correction/normalization

e The words we see:
He pls gd ftball.

 Possible candidate corrections:

He please god football. { The green words are |
. vocabulary words

with small distance

He plays god football.

| He plays good football. | | (Gg. Levenshtein)
He players good football. i__YP_C_a_b_‘fl_%r_X)’Z(_’fEi_s;__

I A language model
i estimates how well

He pleases god ball. | the words of each
i candidate sequence
] fit together.

[—
[—

Edit distance

Input: two strings (e.g., words from tweet and dictionary).

What 1s the total minimum cost to convert one input
string to the other, using particular operators?

Levenshtein distance (one possible edit distance):

o Operators: insert (I, cost 1), delete (D, cost 1), replace (R,
cost 2). Other work may set the cost of R to 1.

When converting from Greeklish to Greek, we may want
to set, for example, R(e,) < R(e, a).

We also get an alignment of

to words 1nstead of characters.

n X & o L 1T ol i characters. Similarly, we can
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ i compute the edit distance and
‘ i alignment of the words of two
I oo X &€ T X € i sentences, by applying I, D, R
IR DR DR ! Y PP

12

Actually two types of errors...

* The wrong words may actually be vocabulary words!

o 15t type: “he plays good football” = “he pls gd ftball”.
o 2" type: “he plays good football” = “he please god ftball”.

* Let’s continue to focus on the 1% type for the moment.

o The wrong words are all out of vocabulary words (e.g., words
that do not occur at least 10 times 1n a large corpus).

* For each wrong word, get candidate corrections:

o Simplest case: get vocabulary words at a small Levenshtein
distance from the wrong word.

o Alternatively use an edit distance that takes into account the
keyboard layout, the visual similarity of characters etc.,
possibly modifying the Replace operator accordingly.

13

Correcting errors of the 15 type

The words we see:
wi: He pls gd ftball.

Possible candidate corrections:

t¥: He please god football.

t¥: He plays god football.

P
L - & ¢ § § § N N § ¥ § N N § N ¥ § § § § N § § § N R _§ § § [} |

t¥: He players good football.

t¥: He pleases god ball.

| The green words are
vocabulary words
with small distance
(e.g., Levenshtein)
from the out-of-
vocabulary words.

i Alanguage model
| estimates how well
I the words of each
i candidate sequence
] fit together.

[E—
N

More to be discussed...

language model to correct errors of the 15t type?
i» How do we correct errors of the 2"d type?

 How do we evaluate a language model?

o Among different language models (e.g., using different n or
smoothing), which one 1s the best?

15

A noisy channel model

* We assume that all the words were initially correct,
but were transmitted through a noisy channel.

o Here the channel distorts the words by occasionally inserting,
deleting, or replacing letters.

* We try to guess the initial (correct) words from the
observed ones.

o Initial (correct) words: z‘lk — < tl , 1‘2 S tk> :channel

o Observed words: Wlk = <W1 N Wk>
* We seek the most probable initial words:
A

P(t))-P(w |t}
tl =aI'gInaXP(l‘1k |W1k):argmax (tl) (Wl |t1)

k k

16

The most probable 1nitial words

* For each observed sequence (e.g., sentence) Wf:

\
/’ N

In each candidate sequence th
every wrong word has been replaced
by a vocabulary word at a small
distance from the wrong one.

glest approach:
proba ilities inversely

(with normalization). See
J &M for better ideas.

__

- S~
N

:P(w1|t)-P(w2|t) P(Wk|t) HPw 2,)3

S
~o P

o We assume that the probability to encounter an observed
word depends only on the corresponding initial word.

 proportional to edit distance

17

Correcting errors of both types

The words we see:
wi: He pls god ftball.
Possible candidate corrections:
t¥: He please god football.
t¥: He plays god football.

We now replace every
word (even vocabulary
words) by other close
vocabulary words (or
the same word).

o Agam a language model
I estimates how well the
i words of each candidate
1 sequence fit together.

18

Generalization for 2" type of errors

* Now every observed word may be wrong.

7 S

S ’
~~~~~

<<
-~
il

e e g

In cach candidate sequence 5, every | | (o Eiagt MOCE

observed word may have been replaced e e e
. by avocabulary word at a small
. distance. Many more candidates!

. ' Again, simplest approach: |

ks T H D |2 N : probabilities inversely |

P (Wl | tl ) — HP (Wi | tg)/' < proportional to edit distance !
=1 T . (with normalization). See !

i J&M for better ideas. |

* Finding the best candidate sequence 7,, ..., 7, 1s a “decoding”
problem, which can be solved with heuristic search (e.g., beam

search) or dynamic programming (e.g., Viterbi). o



Hill climbing search (HC)

. Make the initial state the current state.

. Generate and assess the children-states of the
current state.

. If no child-state is better than the current state,
return the current state.

. Make the best child-state the current state.
. Go to step 2.

Spoiler alert: Most neural networks are also trained
using a kind of HC (SGD, stochastic gradient descent),
where the state contains the weights of the network.

20



Hill climbing

objectivg function global maximum

shoulder

\ local maximum

/

"flat" local maximum

state space
current

state

21



(Local) Beam search

~.
S~

e ——

e

~
D

22



(Local) Beam search

-
-

~ 7
P

7~

\
A
\

SN m———-

23



(Local) Beam search

Like HC, but we keep k states in the search frontier.
— Inmitially £ random states.

At each step, produce and assess the children-states of
the k states 1n the frontier.

— If a final state criterion exists and we reach a final state, stop.
Keep the & best of the children-states and repeat.

— Until we exceed a maximum number of iterations.
We often repeat the search several times, starting from
different initial k states.

— Random restarts are also useful in HC.

— In neural nets, restarts with different random initial weights.
— In spelling correction decoding, there 1s only one initial state.

24



Beam search decoder

t; = god t, = footbal
t; = good

t; = gone

t; = goat

\ \
\ Y
\ > = pleases
\

k=20 k=1 k =2 k =3 k =4
wy; = he w, = pls wy = gd w, = ftball

7 e
U d
,/
/, *
]
/, /4 ‘\
/ \
/ \
l ‘

QIBlOLHIE
DUOWE

We search for a path from start to a state of column k = 4 that maximizes
P(tf)P(Wﬂt{‘) or that minimizes L, = —A4 log P(tf) — A logP(Wﬂtf).

] With our previous simplifications: i-‘=1 P(w;lt;)

For a bigram language model: Hﬁ‘=1 P(t;|t;—1) 55



Beam search decoder

______ t, = p]ease t3 = gOd t, = footbal
R
e W e
,/’ W :V, AN
e AN t; = good
Ve ® ‘;‘\ -\\ 3
,,,, \?\“.‘\ \\
\
.

t; = gone

\
72
\‘\\ > = pleases t; = goat
v\
v

k=20 k = k = k =3 k =4
wy; = he w, = pls wy = gd w, = ftball

-
a”;",
Py
/— ,f;"
I
" .
g |

We search for a path from start to a state of column k = 4 that maximizes
P(t{‘)P(Wﬂt{‘) or that minimizes L, = —A4 log P(tf) — A logP(Wﬂtf).

] \'h , - ifeations: TTK For each k, we keep
With our previous simplifications: [];=; P(w;|t;) the b (here b = 2)

For a bigram language model: [T%_; P(¢;|t;—1) best paths only. .y



t, = footbal

-

I \
\\
\ \
\
\ \\
\ \
a"”
-
4
4
Ig ,
H
w
oQ
o
o
o

k=20 k = k = k =3 k =4
wy; = he w, = pls wy = gd w, = ftball

We search for a path from start to a state of column k = 4 that maximizes
P(t{‘)P(Wﬂt{‘) or that minimizes L, = —A4 log P(tf) — A logP(Wﬂtf).

] \'h , - ifeations: TTK For each k, we keep
With our previous simplifications: [];=; P(w;|t;) the b (here b = 2)

For a bigram language model: [T%_; P(¢;|t;—1) best paths only. .



\ t, = please p , t, = footbal
\\\\ 7 ',1

-

% \
I AN
\‘ “
\ \
\ N
-
f"”
v
/
AN 2%
~ AN
\ ST BN
~ V2 BN
4 1
i
~
S
1 ~
\\
~
w
oQ
@)
(@]
(@]

k=20 k=1 k = k = k =4
wy; = he w, = pls wy = gd w, = ftball

We search for a path from start to a state of column k = 4 that maximizes
P(t{‘)P(Wﬂt{‘) or that minimizes L, = —A4 log P(tf) — A logP(Wﬂtf).

] \'h , - ifeations: TTK For each k, we keep
With our previous simplifications: [];=; P(w;|t;) the b (here b = 2)

For a bigram language model: [T%_; P(¢;|t;—1) best paths only. 28



Beam search decoder

\\\\\ ',1
,,/ \‘ \\\ II
DI Sy g =
/
\ 7

k=20 k=1 k =2 k =3 k =4
wy; = he w, = pls wy = gd w, = ftball

We search for a path from start to a state of column k = 4 that maximizes
P(t{‘)P(Wﬂt{‘) or that minimizes L, = —A4 log P(tf) — A logP(Wﬂtf).

] \'h , - ifeations: TTK For each k, we keep
With our previous simplifications: [];=; P(w;|t;) the b (here b = 2)

For a bigram language model: [T%_; P(¢;|t;—1) best paths only. 2



Beam search decoder

t, = footbal

—"’
-\~
oQ
o
@]
o
-z N
1
laeﬂ‘
L-
]
g i
(>4

wy; = he w, = pls wy = gd w, = ftball
We search for a path from start to a state of column k = 4 that maximizes

P(tf)P(Wﬂt{‘) or that minimizes L, = —A4 log P(tf) — A logP(wﬂtf).
] \

, , , , , " For each k, we keep
With our previous simplifications: [];=; P(w;|t;) the b (here b = 2)
For a bigram language model: [T%_; P(¢;|t;—1)

best paths only.

30



Beam search decoder

‘\\\ 'l‘ \\ /,
e \ M / /(\
\
G\ iy
\ / \
/ \

wy; = he w, = pls wy = gd w, = ftball

We search for a path from start to a state of column k = 4 that maximizes
P(t{‘)P(Wﬂt{‘) or that minimizes L, = —A4 log P(tf) — A logP(Wﬂtf).

] \'h , - ifeations: TTK For each k, we keep
With our previous simplifications: [];=; P(w;|t;) the b (here b = 2)

For a bigram language model: [T%_; P(¢;|t;—1) best paths only. .



Smart keyboards

4 64%m 13:28 64%m 13:29
< . N€o prvupa < . NEo prvupa (B New message

KaAnpepa. O€A KaAnpepa. O€AeLg

hype message

L3 L3

CIN OeNeTE gva

, /'€ p|/T/L B L O MW, C €& p|T/L B L 0 m
a oo |®|yinlg K A a oo ®|yinlg K A

X Y wp vy I X 9w B v p

> , 2 © > , LY EEC)
)2 EAANVIKQ )2 EAANVIKQ

Images from: http://www.swiftkey.net/


http://www.swiftkey.net/

More to be discussed...

« Exactly how do we combine the edit distances with a
language model to correct errors of the 15 type?

 How do we correct errors of the 219 type?

i o Among different language models (e.g., using different n or
i different smoothing), which one is the best?

33



Encoding example and entropy

* Let the possible values of a random variable C be:
— ¢; with P(c;) = 1/4, ¢, with P(c,) = 1/4, c; with P(c;) = 1/2.
* A good encoding:
— Use fewer bits for more probable values.
— ¢; 2 10,¢, 2> 11. We use —log,(1/4) = 2 bits.
— ¢; 2 0. We use —log,(1/2) = 1 bits.
— Exp. number of transmitted bits: 1/4 - 2 + 1/4 - 2 + 1/2 -1 = 1.5

« Information theory says the ideal encoding (lowest expected
number of transmitted bits) uses —log,P(c;) bits for value c;.

— We may need to use a slightly different number of bits in practice, if the
P(c;) probabilities are not powers of 2.

* With an ideal encoding (as above), the expected number of
transmitted bits is the Entropy H(C) of C.

— It shows how uncertain we are about the value of C, 1.c., how much

information (in bits) we need to transmit to let somebody know its value.
34



Entropy

* Entropy of a random variable C:

— How uncertain we are about the value of C.

— How much information (in bits, with an ideal encoding) we
need to receive to be certain about the value of C.

— What 1s the expected number of bits (with an 1deal encoding)
that we need to receive to be certain about the value of C.

Expected value Bits used by the

~ ideal encoding
H(C) = —Z P(C — Cz’) 10g2 P(C — Ci) for each value.

o If C has only two possible values:
H(C)=—-P(C=1)-log, P(C=1)-P(C=0)-log,P(C=0)

Probabilities estimated from training data.

35



Example

* Collection of 800 training e-mail messages.
— Messages received 1n the past, manually classified.
— 200 spam. 600 ham (non-spam).

« Estimate the entropy of C using the training messages.
— C=1 (spam) 1 C =0 (ham).
— log,3 = 1.585

* Repeat when all the training messages are 1n one
category (all spam, or all ham).

* Repeat when we have an equal number of training
messages per category (400 spam, 400 ham).

H(C)=-P(C=1)-log, P(C=1)-P(C=0)-log,P(C=0)

36



Cross-entropy

* The entropy of a random variable C shows how
uncertain we are about its value.

H(C)=-3 P(C=c,)-log, P(C =c)

o How many bits (expected value) we need to transmit (or
receive) with an ideal encoding to transmit (receive) its value.

* If we use an encoding based on inaccurate probability
estimates P, instead of the correct probabilities P:

HPm(C) = _ZP(C =¢,;)-log, P (C=¢)2H(C)

o We need to transmit more bits, because we don’t use an 1deal
encoding (which uses —log,P(c;) bits per value).

37



Cross-entropy — continued

e If we have two models P,,;(C), P,,,(C) both trying to
estimate the correct probabilities P(C), which one 1s the
best?

H,, (€)== (C=¢) log, B, (C =) H(O)

H, (C)——ZP(C c;)-log, P,,(C=c¢) > H(C)

o The one with the smallest cross-entropy.
o It allows transmitting the values of C using fewer bits.

o Its encoding is based on more accurate probability estimates.

* Kullback—Leibler divergence (relative entropy):

P(C = i
D (PlIBn) = Hp, (€)= H(C) = ) P(C = c)logs 1 -~ o1

38




Cross-entropy with 1-hot P(C = ¢;)

* If the correct probability distribution 1s 1-hot:
o 1.e., for some i*, P(c;») = 1; for all otheri # i*, P(c;) = 0.
o E.g., 1in classification with a single correct label per instance.

Hp, (€) = = ) P(C = ;) -10gs Py(C = ) =

May not be 1-hot, e.g., if
multiple human
annotators do not agree. - = lng Pm(C — Ci*)

o The same as the negative log-likelihood of the “correct” ¢;=.
o The probability assigned by the model to the “correct” ¢;-.

* For two models:
Hp,, (C) = —logy b, (€ = c¢;*)
Hp,, (€)= —1083 P, (C = c;v)
o The best model has the lowest cross-entropy, or highest log-
likelihood of the correct answer. 39



Evaluating LMs with cross-entropy

The correct probability distribution for the next word W; (given

the history h{_l) in a test corpus is 1-hot:
o Forsomew™ €V, P(W] = W*|h{_1) = 1; and for every other
w#w* eV, P(W; =w|h] ") =0.
—1 —1
He, (W) = = ) P(W; = wlhi™) - log P (W; = wlh]™") =

wev

= —log, Pm(Wj = W*lh{_l)
For all the N word occurrences (positions) of a test corpus:

1 N . j —
Hp, (W) =~3 ) > P(W; = wih]™) - log, P(W; = wih]™")
I=2 wev
Per-word / 1 -

N

* —1

CrOSS-enropy Y E _ 110g2 Pm(VVj = W |h{ )
]:

o The negative log-likelihood the model gives to the test corpus.
40



Evaluating LMs with cross-entropy

* For two models evaluated on the same test corpus:

1 N * —1
Hp,,, W) = =5 ) 1082 P, (Wi = wilh; ™)
]:
N :
Hp (W _ L log P, (W; = wi|hi™)
Mo 1 N =1 2im, l l 1

o The best model is the one with the lowest cross-entropy.
o It gives a higher log-likelihood to the test corpus.

41



Cross-Entropy and Perplexity

* For example, if a bigram language model is used:

1
- [log, P,,(wy|start) + log, B, (w5 |w;) + ...]

* Usually perplexity scores are published:

Perplexity = yHp,, (Wi)= 2—%1082 Pm(W*1)

* The lower the perplexity, the better the model.

o Alternative interpretation: a language model with perplexity r 1s
as uncertain (same entropy) about the next word as a model
that selects uniformly and independently words from a
vocabulary of  words.

42



—log P(w; |w}_,)

Comparison 1-4-Gram \\ —log P(w; [w/_p, W;_1)
b ) \\
word unigram | bigram | trigram | 4-gram
1 6.684 3.197 3.197 3.197
would 8.342 2.884 2.791 2191
like 9.129 2.026 1.031 1.290
to 5.081 0.402 0.144 0.113
commend 15.487 | 12.335 8.794 8.633
the 3.885 1.402 1.084 0.880
rapporteur 10.840 7319 2.163 2.350
—%Z{Lllog P(w/|w;_,,w;_{) on 6.765 | 4.140 | 4.150 | 1.862
~~~~~~~~ his 10.678 | 7.316 2.367 1.978
il P) e e o
B 4 8783--0,005 | 0.000 | 0.000
average 8.051 |~ 4.072 T 2.634 | 2.251
perplexity | 265.136 | 16.817 6.206 4.758

From P. Blunsom’s presentation “From Language Modelling to Machine Translation”

http://videolectures.net/deeplearning2015 blunsom machine translation/ 43

Traimning, development, test data

* Training data:
o Used to estimate (learn) the probabilities of n-grams.
o More generally, we train our model on these data.

* Development data:

o Used to select models (e.g., 2-gram or 3-gram LM), tune
hyper-parameters (¢.g., 4 of interpolated LMs), select best
training epochs (in neural networks) etc.

o If we make these choices by evaluating on test data, we
indirectly train our model on the test dataset!

e Test data:

o Used for the final evaluation of our model, to see how

well it performs on unseen data.
44

Tramning, development, test data

n-gram probability perplexity (or final perplexity
estimates (more generally, other score, (or other score, to
learning algorithm applied for hyper- check the
to this subset) parameter performance on
tuning etc.) unseen data)
training data development data test data

* In competitions, the test data may not be publicly available.
* We may have to use the development data as test data.

* A small subset of the training data may have to be “held
out” as development data (e.g., for hyper-parameter tuning).

o This reduces the size of the training set.
o And a small development sct, may not be representative.

45

Cross-validation

* Instead of holding out development data from the training
data:

o Divide the training data into n parts (e.g., 5), often preserving
class ratios (e.g., positives/negatives) in all parts (“stratified”).

o Perform n iterations (folds) to obtain a score (¢.g., accuracy)
for a particular combination of hyper-parameter values.

o In each 1iteration, use a different part as development data and
the other n — 1 parts as training data.

o Average (e.g., accuracy) over the iterations to obtain a score
for the particular combination of hyper-parameter values.

46

Further issues with n-gram LMs

" cannot share strength |
among similar words

» What about similar words?

> she bought a bicycle

> she purchased a bicycle

> Long-distance dependencies?

> for programming she yesterday purchased her own

brand new laptop dependencies

S TER T - TR

{cannot handle Iong-distance]

> for running she yesterday purchased her brand new
sportswatch

Adapted from Graham Neubig

Slide from the talk of Barbara Plank on Encoder-Decoder Models at AthNLP 2024
(https://athnlp.github.i0/2024/presentations.html).

https://athnlp.github.io/2024/presentations.html

Additional optional study slides

48

Kneser-Ney smoothing

* E.g., for bigrams wj,_{, wg:

———

v’ green, apple <. |

Encountered in the corpus, 1.¢.,

'————)‘ og o
v’ green, paper <71 c(wg_1,wg) > 0. Steal probability
’ g : cWi—1Wk) . |
v’ green, book - mass from each estimate D) Le., |
| _1,Wi)=D :
v i uSe CWie—1.Wic) , where D 1s constant.
’ c(Wg—-1)
v T
X green, mouse <. . Not encountered in the corpus, i.c.,
7 ¢(Wg—1,wg) = 0. Distribute to them the :

X green, cyclotron £

x green, York

probability mass stolen from all the
encountered wy,_q, Wy, that had the
same Wj_q (“green”). Distribute

proportionally to P(wy,) (e.g., “mouse”

1s more frequent than “cyclotron”).

Kneser-Ney smoothing

* Formula for 1deas of previous slide (D is constant):
c(w,_,,w,)—D
Py (W [W) =+ c(W,,)

| a(w,_,) - P(w,), else
o a values needed to ensure that probabilities sum up to 1.

, it e(w,_,,w,)>0

50

Improved K-N smoothing

* Instead of P(w),), distribute the stolen probability mass
proportionally to:

brev(ns prev(w)
rev\w =
" . Lyev: c(Wg_1,v)=0 prev(v)

-
-
-
-
-
-
-
-
-
-
-
-
-

. The denominator ensures that the Prev(wy) scores of all the
. words wy, that need to receive stolen probability mass sum to 1.

-
-
-
-
-
-
-
-

' How many vocabulary (distinct) words occur immediately before
w, in the corpus. E.g., “York” may occur almost always after “New”; |
' hence “green York™ should not be given much of the probability mass
| stolen from the encountered bigrams that start with “green”.

Improved K-N smoothing

rC(Wk—lﬂwk) -D

By (W, |w,_)) =1 c(w,_,)

a(w,_)-Prev(w,), else

, i e(w,_,w,)>0

--

. Total probability mass stolen from bigrams that start with wj,_; |
(Wp_1 ="“green” 1n our example).

52

Katz backoft

* Consult an n-gram model with a smaller n, whenever
necessary. For example, when using a trigram model:

P(w, |w,_,,w,), 1f C(Wlf—z) >0

Katz(wk |Wk 25 Wi 1) = 9
a(Wk 2o Wit) P (W W), else

(P(w, | w,_)), if c(w,_,w,) >0
Prore Wi [W) =+

a(w,_,) - P(w,), else

\

* The o values are needed to ensure that:
Z Pro: Wi | W5 W) =1 Z ko Wy [W) =1
weelV w,eV

o Consult the book of Jurafsky & Martin for formulae to
compute the o values and (many) other smoothing methods. 53

Computing Levenshtein distance

e How can we convert;:
eCol to mailw

based on shorter (by one final letter) forms of
reCor and/or woilw?

* ISt way: Delete the last letter of m£Cor and convert
eCo to mailw.

wéCo \ = mailw
Del(z) + cost(meCo, mailw)
« 20d way: Convert 7éCor to wail and add o to the end

of maic.
néCor =2 moll(w)
cost(melot, mail) + Ins(w)

54

Computing Levenshtein distance (11)

34 way: Convert 7£(o to mail and replace : by w.
neCo(D) 2 moil (@)
cost(relo, mail) + Rep(z, w)
* Which way is the best?

— The one with the smallest cost.

— At each step, we consider all three ways and we
select the cheapest one (Ins, Del, or Rep).

55

Computing Levenshtein distance

| m | o | L | C| €| T]| €
#0717 273 4567 [Del (+1)
n| TWhatis the (minjeosiio 1 | < s (D)
- i convert “# to‘#nai”?___:'— __________________________
€| 2 T T | [7"7 Costto convert “#”to |
N . | T 1 “#ma” and insert “i’. |
G 3 s-..1 Whatis the (min) costto |]~ [T
L convert “H#m&l” to “H”? T 1
0 4 B R I R ""E Cost to delete «C» and |
5 1 convert “H#mg” to “#”. |
T 6
a | 7
8

56

Computing Levenshtein distance

H T i Q & T <
o1 l2]3[als|e| 7] | petceny
m | 10" ooy
£ | 27 Whatts the (i) Cosi 1o O or
| convert H to Fnt | i
C | 35777 oo e RSSOl VRO PR
0

i (vertical) string and convert the
! remaining string “#’ to “#m’.

| the first string to “#” and add |

< |

ntetsistyin
31d way: Convert the “#” of the first |

4

S

6 i “m” to the resulting string.
- .

8

» string to “#” and replace the “a” of |

the first string by “a” (same letter). |
I /=" " i I [rrTTTTTmmmm T T 57

Computing Levenshtein distance

| m | o | L | C| €| T]| €
Del (+1
o1]203[4|5]6|7]| [DelD)
1+2=3
| 1|01 < Ins (+1)
0t+1=1 -
& | 2 | T Whatis the (min) Cost (o Rep (+2, or
: convert cc#n” tO CC#R(I,,; i \ O fgr Same
« 3 Lo it 2= letter)
| 5" way: Delete the “n” of the first |
o | 4 i (vertical) string and convert the
' remaining string “#” to “#ma”. |
| S royays Convert the “# of the
6 | first string to “#a” (no change) and |
T i add “a” to the resulting string. |
a | 7 "3 way: Convert the “#” of the first
. string to “#x” and replace the “n” of !
1 Q l the first string by “a”. !

S 1" [" 1

58

Computing Levenshtein distance

| m | o | L | C| €| T]| €
#0123 457677
| 1001]2]3|4]5]6
el2 1213 4[3]4]5
c 13 (2131431456
o | 4|3 4|5 |4]s5]6]7
v |5 4]s a5 6] 78
T | 6'| 5| 6 | 5 6\ 71 6 | 7
o |7 |65 6[7]8| 78,
v 81765678 |®

[Del (+1)

<— Ins (+1)

-S|

Rep (+2, or
\ 0 fgr(same
letter)

Shaded cells show
one of the possible
alignments.

For each cell, the
outgoing arrows
point to the
neighbor(s) the
cell’s (best) value is
based on.

Recommended reading

 Jurafsky & Martin (2" ed.): chapter 4 (not sections
4.5.2,4.5.3,4.7.1,4.9.2), sections 3.10, 3.11, 5.9.

o Available at AUEB’s library.

o See also the free draft of the 3 edition:
http://web.stanford.edu/~juraftsky/slp3/

* For more information, consult chapters 2 and 6 of
Manning & Schiitze’s book Foundations of Statistical
Natural Language Processing, MIT Press, 1999.

o Available at AUEB’s library.

o Chapter 2 introduces basic concepts of probability
theory, entropy, the noisy channel etc.

o Chapter 6 covers n-gram language models.

60

http://web.stanford.edu/~jurafsky/slp3/

