

Text Analytics

Introduction

2024-25

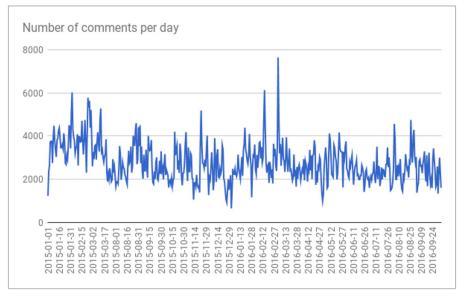
Ion Androutsopoulos

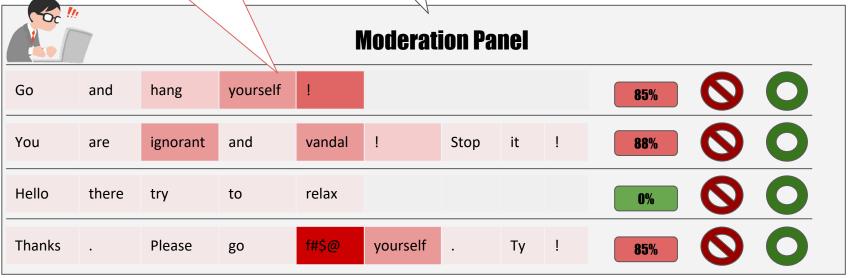
http://www.aueb.gr/users/ion/

Contents

- What this course is about.
- Examples of applications.
- **Topics** to be covered.
- Organization of the course:
 - Lectures, demos.
 - o Assignments, exams, grading policy.

Opinion mining




- From customer reviews (http://alt.qcri.org/semeval2016/task5/).
- From tweets (http://alt.qcri.org/semeval2016/task4/), FB updates, blogs, newspapers, radio/TV broadcasts, ...

User comment moderation

A moderation panel assists the moderators to detect abusive comments, and leads to quicker publication of nonabusive comments.

Highlighting suspicious words using an **RNN** with **self-attention**.

J. Pavlopoulos, P. Malakasiotis and I. Androutsopoulos, "Deeper Attention to Abusive User Content Moderation", EMNLP 2017, http://nlp.cs.aueb.gr/pubs/emnlp2017.pdf.

Extracting Contract Elements

THIS AGREEMENT is made the 15th day of October 2009 (The "Effective Date") BETWEEN:

- (1) Sugar 13 Inc., a corporation whose office is at James House, 42-50 Bond Street, London, EW2H TL ("Sugar");
- (2) **E2 UK Limited**, a limited company whose registered office is at 260 Bathurst Road, Yorkshire, SL3 4SA ("**Provider**").

RECITALS:

A. The Parties wish to enter into a framework agreement which will enable Sugar, from time to time, to [...]

B. [...]

NO THEREFORE IT IS AGREED AS FOLLOWS:

ARTICLE I - DEFINITIONS

"Sugar" shall mean: Sugar 13 Inc.

"Provider" shall mean: E2 UK Limited

"1933 Act" shall mean: Securities Act of 1933

ARTICLE II - TERMINATION

The Service Period will be for five (5) years from the Effective Date (The "Initial Term"). The agreement is considered to be terminated in October 16, 2014.

ARTICLE III - PAYMENT - FEES

During the service period monthly payments should occur. The estimated fees for the Initial Term are £154,800.

ARTICLE IV - GOVERNING LAW

This agreement shall be governed and construed in accordance with the Laws of England & Wales. Each party hereby irrevocably submits to the exclusive jurisdiction of the courts sitting in Northern London.

IN WITNESS WHEREOF, the parties have caused their respective duly authorized officers to execute this Agreement.

BY: George Fake Authorized Officer Sugar 13 Inc.

BY: Olivier Giroux CEO E2 UK LIMITED

Extract start/end dates, durations, contractors, amount, legal references, jurisdiction etc.

- I. Chalkidis, I. Androutsopoulos and A. Michos, "Extracting Contract Elements", ICAIL 2017, http://nlp.cs.aueb.gr/pubs/icail2017.pdf.
 - I. Chalkidis and I. Androutsopoulos, "A Deep Learning Approach to Contract Element Extraction", JURIX 2017, http://nlp.cs.aueb.gr/pubs/jurix2017.pdf.

IR/QA for Document Collections

Results for the question: How is Covid-19 transmitted?

Title: Coronavirus (COVID-19) Outbreak: What the Department of Radiology Should Know

Date: 2020-02-19 || Section: PRECAUTIONS FOR RADIOLOGY DEPARTMENT PERSONNEL

Available on: <u>PMID: 32092296</u>

Available on: Doi: 10.1016/j.jacr.2020.02.008

Coronavirus (COVID-19) Outbreak: What the Department of Radiology Should Know

Radiographers are among the first-line health care workers who might be exposed to 2019 novel COVID-19.

Diagnostic imaging facilities should have guidelines in place to manage individuals with known or suspected COVID-19 infection.

The novel COVID-19 is highly contagious and is believed to transmit mostly through respiratory droplets, but there is uncertainty as to whether the virus can be transmitted by touching a surface or an item that is contaminated (ie, a fomite).

A thorough understanding of the routes of virus transmission will be essential for patients' and health care professionals' safety.

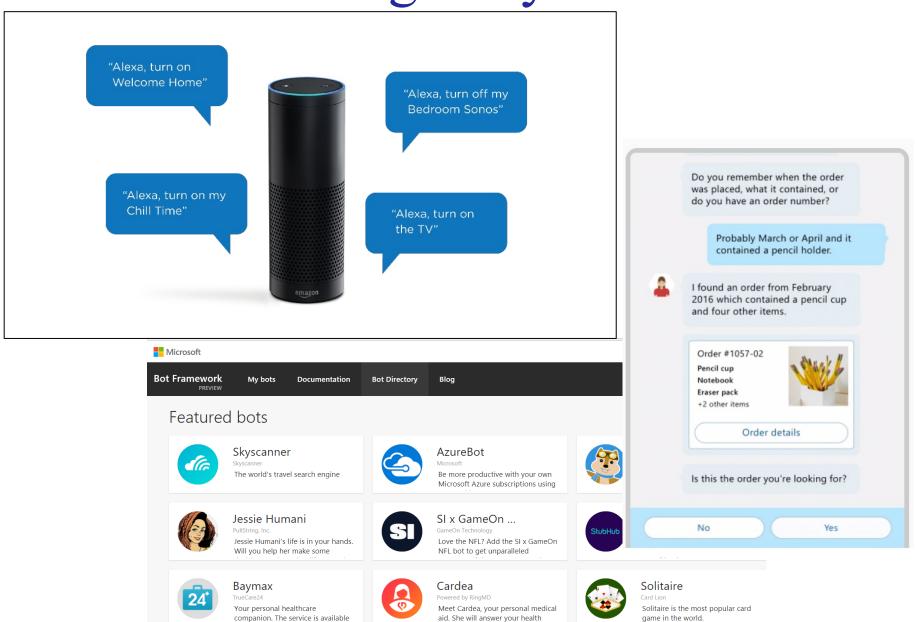
Droplets have the greatest risk of transmission within 3 ft (91.44 cm), but they may travel up to 6 ft (183 cm) from their source [19].

For the purpose of diagnostic imaging in individuals with NCIP, whenever possible, portable radiographic equipment should be used to limit transportation of patients.

On the basis of experience with SARS, the use of a satellite radiography center and dedicated radiographic equipment can decrease the risk for transmission from known infected individuals.

If a patient needs to be transported to the radiology department, he or she should wear a surgical mask during transport to and from the department.

Title: Facemask shortage and the coronavirus disease (COVID-19) outbreak: Reflection on public health measures


Title: (Not Available)

Title: Epidemiological and clinical features of COVID-19 patients with and without pneumonia in Beijing, China

Title: Journal Pre-proof COVID-19 Spike-host cell receptor GRP78 binding site prediction COVID-19 Spike-host cell receptor GRP78 binding site prediction COVID-19 Spike -GRP78 binding site prediction

D. Pappas, P. Stavropoulos and I. Androutsopoulos, "AUEB-NLP at BioASQ 8: Biomedical Document and Snippet Retrieval". Proceedings of the 8th BioASQ workshop at CLEF 2020. http://nlp.cs.aueb.gr/publications.html

Dialogue Systems

I teach a 12 week long Al course. Can you suggest what I should cover per week?

Designing a 12-week AI course is a great endeavor. Below is a week-by-week breakdown of topics and concepts you could cover. Keep in mind that the course can be adjusted based on the prior knowledge of your students and the depth you want to go into each topic. Here's a general outline:

Week 1: Introduction to Al

- What is AI? History and milestones.
- * Types of Al: Narrow (Weak) vs. General (Strong) Al.
- · Al in popular culture and misconceptions.

Week 2: Machine Learning Fundamentals

- Introduction to Machine Learning (ML).
- · Supervised, Unsupervised, and Reinforcement Learning.
- · Data preprocessing and feature engineering.

Week 3: Supervised Learning

- · Linear Regression.
- · Logistic Regression.
- Evaluation metrics (MSE, MAE, accuracy, precision, recall, F1-score).

Regenerate

>

Send a message

Machine translation

https://www.microsoft.com/enus/research/video/speech-recognitionbreakthrough-for-the-spokentranslated-word-short/ https://www.youtube.com/watch?v=Ru Ap92wW9bg https://www.youtube.com/watch?v=h2 OfQdYrHRs

Many related terms

• Natural Language Processing (NLP):

- Usually considered a sub-field of Artificial Intelligence.
- Algorithms, models, systems to "understand" or generate mostly written natural language.

• Computational Linguistics:

- O Also mostly about **written** NL, originally more emphasis on computational *linguistic* theories, but now in effect a **synonym** of NLP, and (like NLP) probably closer to CS than linguistics.
- The *Association for Computational Linguistics* (ACL) organizes the top NLP conferences and publishes the top journals.

• (Human) Language Technology/Engineering:

 Less established term, often includes speech processing, more emphasis on systems/engineering.

Text (and Speech) Analytics:

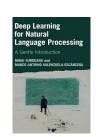
O Business term, usually meaning information extraction, sentiment analysis, opinion mining.

Course units (~1 unit/week)

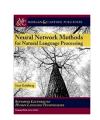
- **U1:** Introduction, n-gram language models, estimating probabilities from corpora, text generation with beam search.
- U2: Text classification/regression with (mostly) linear models.
- U3&4: Text classification/regression with MLPs.
- U5&6: NLP with RNNs (incl. machine translation).
- U7: NLP with CNNs, image-to-text with CNNs-RNNs.
- U8&9: NLP with Transformers, Large Language Models.
- **U10:** Speech recognition and dialogue systems (?).

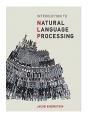

Lectures, demos, assignments

- 10 lectures/demos (3 hours/week):
 - o Lectures (key ideas, theory). Slides, study exercises (most solved), references provided.
 - O **Demos**: in ~5 weeks, the **last hour** will be a minilab of related tools (e.g., NLTK, spaCy, scikitlearn, PyTorch). Code examples.
- Assignments (50% if exam \geq 5, else 0%):
 - Some of the unsolved exercises (probably 5, most requiring programming) to be handed in.
- Final exam (50% if exam \geq 5, else 100%).


Recommended books

• NLP textbooks (optional):


Speech & Language Processing by D. Jurafsky and J.H.
 Martin, 2^η edition, Pearson, 2009. (Available at AUEB's library. Free draft 3rd edition: http://web.stanford.edu/~jurafsky/slp3.)


Deep Learning for Natural Language Processing: A
 Gentle Introduction, by M. Surdeanu and M.A.
 Valenzuela-Escarcega, Cambridge Univ. Press, 2024.
 (Free draft: https://clulab.org/gentlenlp/text.html.)

Neural Network Models for Natural Language
 Processing, by Y. Goldberg, Morgan & Claypool, 2017.
 (Available at AUEB's library.)

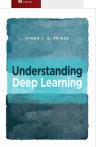
Introduction to Natural Language Processing by J.
 Eisenstein, MIT Press, 2019. (Free draft:
 https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes.pdf)

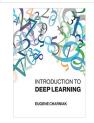
Recommended books

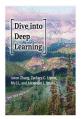
Older but still useful NLP/IR textbooks (optional):

 Foundations of Statistical Natural Language Processing by C.D. Manning and H. Schutze, MIT Press, 1999.
 (Available at AUEB's library.)

An Introduction to Information Retrieval by C.D. Manning,
 P. Raghavan and H. Schütze, Cambridge University Press,
 2008. (Freely available from: http://nlp.stanford.edu/IR-book/information-retrieval-book.html.)




Recommended books


• **DL textbooks** (optional):

- Deep Learning in Python, by F. Chollet, Manning Publications, 2nd edition, 2021. (Free 1st edition: https://www.manning.com/books/deep-learning-with-python. But 2nd edition highly recommended.)
- Understanding Deep Learning, by S.J.D. Prince, MIT
 Press (in press). (Free pre-print: https://udlbook.github.io/udlbook/)
- *Introduction to Deep Learning*, by E. Charniak, MIT Press, 2019. (Available at AUEB's library.)
- *Dive into Deep Learning*, by Zhang et al. (Freely available: https://d21.ai/)

