Exercises on text classification with Multi-Layer Perceptrons (MLPs)

Ion Androutsopoulos, 2025-26

Submit as a group of 2-3 members (unless specified otherwise in the lectures) a report
(max. 10 pages, PDF format) for exercises 4 and S. Include in your report all the
required information, especially experimental results. Do not include code in the report,
but include a link to a Colab notebook containing your code. Make sure to divide fairly
the work of your group to its members and describe in your report the contribution of
each member. The contribution of each member will also be checked during the oral
examination of your submission. For delayed submissions, one point will be subtracted

per day of delay.

1. Show that without activation functions, a multi-layer neural network is equivalent to
applying a linear transformation to the input, i.e., the output can be written as 6 = WX + b,

where W is a weights matrix, b € R is a bias term, and XeR™ is the input feature vector.

2. Confirm the computation of % in the computation graph of slide 19.

0E
0E do, 0y =1t

do oE

Il
Ql
|
~+

0 — !'}{

: 001

S0

3 9F _
dE

1

Answer: The gradient that we need to compute is:

- OF -
do,

9E | E

9 |do;
)

1do,]

. . . . OE . .
Let us consider separately a single derivative 3o (a single element of the gradient):
i

aE_ai1(t NI S SO
do; 00; 12 j T "~ 00;2 L= 0 T2 LT o do; " o
]:

=(t;—0) (=1 =(0; — t;)

Hence:

aE

601 01— t4
JE OE .
e o el Rl
dE O — tk
aok

0E - ..
Note: We do not need to compute 5 because we do not update t (the correct prediction).

3. (i) Compute the gradient —== in the network with the following computation graph.

*(2)

Answer: The gradient — is computed as in Exercise 2.

*(2)

0E
p (2)
OE aoY) 0, — 4
I— — —32)_¢
= = =0\ —t
262 JE 0@ _ ¢
k.
60(2) k 2
ka

"
aw®

“ 0E OE _ i
W@ gz@

(ii) Show that for a sigmoid node o(5) = 0 98

» 53 can be computed as follows, where] is the

Jacobian matrix.!

S€ ch 0 € R¥
‘ %, oF € R¥
--0"“ ()0'
r0E1 " [d0(s;) da(s,) do(si)][9E
ds, ds4 d5s, T 0sy [[do,
oE O N aaésl) 60&52) ‘ adtsk) OE _r9E
s |as;| | as; ds; 0s; |[do; -/ 90
OE 60(51) 60('52) . 50(&) OE
ask (')sk aSk aSk | kaok‘
o(s))(1—=0(sy)) 0 0
_ 0 o(s;)(1—0(sy)) 0 0 9k
: : : z 00
0 0 a(sk)(1 - U(Sk))

I See https://en.wikipedia.org/wiki/Jacobian matrix and determinant.

https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant

Answer: The gradient that we need to compute is:

Let us consider separately a single derivative a—f_ (a single element of the gradient). By the

r0E
ds;
OE
E)si

5}

chain rule of derivatives, we obtain:

However, each s; affects only o; = a(s;). It does not affect any other o; = O'(Sj), forj #1i.

d0;

Hence,
as

JdE OE do; OE do(sy)
aSi B 60i E)si B aOi (')sl-

J0E

O
aSk

S OF do;

a_Sl' - 4 00] Bsi

Jj=1

— = 0for j # i, and we obtain:
13

oE
90, a(s)(1—0a(s))

where we have use the property of the sigmoid that % = O'(x)(l - O'(x)).

Therefore:

— aE -
ds;
)
E)si

oF

aSk

(OF 00(sy)]
do, 0s;

9E 9o (s,)
(')ol- aSi

OE 90 (sy)

- OE .
0_010'(51)(1 - 0'(51))

0E :
90; o(s)(1—a(s))

_aOk ask i

The latter can also be written as:

o(s1)(1 = o(s))

0

00 (s1)

ds,
do(sy)
ds,

0
0

0

a(sz)(l - a(sz)) .

OE '
_E)_ok G(Sk)(l - O'(Sk))_

0 1r OF 1
doy
0 JE
do, | =
60(.5,{) O_E
0s, 1L00g]
0 o
: 20

o(s)(1 - o(s0)

More generally, it can be written as:

do(sy) 0da(sy) do(s)1r 0 1
0s, ds;, 0s; [|dog
oE da(sy) 0a(s;) da(sy) O_E TaE
57| 0 m 0k 1002 =/ 55
do(s) da(s) do(s)|| 9E
B ask ask aSk _-aok_

where | is the Jacobian matrix:

[do(sy) 0o(sy) 00(s1)
0s, ds, 0sy
do(sy) do(sy) 9o (s;)
J=| os; ds, T Osg
do(sy) 0o (sk) 90 (i)

| ds; ds, 0s; |

The latter applies more generally. For a node that computes (S, ...) = 0, we can compute
% as follows (provided that s is fed only to the f node):

ie ME RK:

— € [sz
do
[JE 1 [do, 0o, doi, [9E 1
ds, ds; ds; 0sy || do,
0E OF 051 0;)2 | aéh’z OF 7 OE
95 |os; | |as; as; 7 as; || o =J a3
0E | |do, a0, aoy|| 9E
_asl\’l | —65"'1 askl aS,\,l] _60,‘,2_

.. O0E . .
(Check that this is also true for 57 in exercise 2.)

5 . . J0E
If' S is fed to two (or more) nodes f1, f2, we have to add the gradients for PY; that we get from

fl!fz:

do,

ces - - aE
(ii) Show that for a matrix-vector multiplication node Wo =s, —

]
follows:
W e kam
- -1 k
Ge MS €R
' \/ . OF k
ds
O _ rOE _ ,nOF
do 2 as as
Answer:
S1 Wip Wi o Wpi1qr04q W1101 + Wy 10, + -
S, W1’2 W2’2 Wm’z 0, W1,201 + W2‘2 0y + .-
s = S3| = Wo = Wi3 Wz3 ... Wps||o03|= w1301 + W 30, + ..
Sk Wik Wak o Whpilloy Wi 01 + Wy 0, + o

The gradient that we need to compute is:

can be computed as

+ Wp10m
+ Wy 20m
+ Wy 301,

+ Wy, kOm

— aE -
do,
9E | 9E
6 | do;
)
[Joyy,
Let us consider separately a single derivative % (a single element of the gradient). By the
chain rule of derivatives, we obtain:
K
O0E OE 0s;

E)oi = 651 6oi

According to the equations for s = Wa above:

Sj = Wq,j01 + Wy Oy + o+ W; j0; + 0+ Wiy jOn

Hence:

aSj
aOi_Wi'}
Therefore:
0E ~C OF as]_ OF
601 4 E)s] do; E)s] s, Vb
which can also be written as:
_aE-
Jds,
O0E
OE _[951 05 Osi||5— = [Wi1 Wiz
aOi aOi aOi aOi 652 ' '
O0E
aSk
Hence, for the overall gradient:
r0E 1 [0s; 0s, 0Sk T
(')_o1 do; Jdoq doq - OF -
JE ds; 0s, dsy 35, Wi1 Wi
90,| |30, 30, 7 30, ai} Wa1 W
OF | + |_| : S T T | s I '
9 |oE |T|as, s, s |[952] T [wir wiz
aOi aOi aOi aOi aE : :
: : : : N | Wi Wm2
0E | |as, as, ds 105K
0o,] ldo,, do, =~ 0do,l
0E 0E
r%8 _ o128
loz="" 5

Note: We prefer to use matrix operators, which can be efficiently computed using highly
optimized algorithms and GPUs, rather than relying on our own for-loops (e.g., in our own
Python scripts) to compute individual elements of matrices, which is much slower.

-

(iv) Show that for a matrix-vector multiplication node Wa = §
denotes the outer product.?

2 See https://en.wikipedia.org/wiki/Matrix multiplication#Outer product.

Wik]

28 _
> aw

dsq
0E

das,

oF

Wik
Wa k

® 0, where @

_aE-

aSk

_aE-

dsq
O0E

as,

oF

ask

https://en.wikipedia.org/wiki/Matrix_multiplication#Outer_product

JdE OE

ow 9320
'::WE[R"X"‘
3 €R™ 5 €R"

*
\—/ . dE .
)_ € IR\)"

C

Answer: Recall that we use the following notation for the elements of W :

W1’1 W2,1 Wm,l
W1'2 W2’2 Wm,z
W =|Wi3 W23 ... Wngs
Wik Wor o Wnp

The gradient that we need to compute is:

r OE 0E JE 1
0wy Owyy 0wy,
JE 0E JE
0E 0wy, OWyy O,
ow | 9E 0E JE
0wy Owyz O
0E OE OE
(0w, Owyg — OWpygl

Let us consider separately a single derivative oF (a single element of the gradient). By the

aW,:‘j
chain rule of derivatives, we obtain:

k
O oE 0s,

aWi'j = 8sl an"j

According to the equations for S = W0 in part (iii) of the exercise:

S; =Wq01 +Wy10, + -+ W0 + 0+ Wiy 10

Hence:
5. _ 0 forl % j
aWi,j =ulor J
and:
k
oE JE 0s; OE 0s;
aWi'j = 8sl an"j (')s] an"j
Given that:

Sj = Wq,j01 + Wy joy + o+ W; j0; + 0+ Wiy jOn

we obtain:

(')sj

aWi’j

0;
Hence:

0E _OE ds; _OE

aWi,]' aS] aWi,]' aS] !
Going back to the overall gradient:
[OE oE 0E 1 [0E oE oE
0wy Owyy 0wy ds; b ds, 2 6_510m
J0E J0E 0E J0E JE 0E
or 0wz dwaz T w,| 05,0 05,727 3s, 0™
= =| 0E JE 0E |=|0E 0E J0E =
ow —0;, =0, .. =—0p
0W1,3 0W2,1 an,3 653 653 653
9E 9E 9E | |9E 9E 9E
201 37702 o 5—Opy
(0w, Owyy Wyl LOsk 0k owg,
_aE-
ds,
J0E
652 OF R
=\|0F [01 0, Om]=—§®0
Js;
OF
ask

> 4. Repeat exercise 11 of Part 2 (text classification with mostly linear classifiers), now
using an MLP classifier implemented (by you) in PyTorch.’ You may use different features in
the MLP classifier than the ones you used in exercise 11 of Part 2. Tune the hyper-parameters
(e.g., number of hidden layers, dropout probability) on the development subset of your
dataset. Monitor the performance of the MLP on the development subset during training to
decide how many epochs to use. Include experimental results of a baseline majority classifier,
as well as experimental results of your best classifier from exercise 11 of Part 2, now treated
as a second baseline. Include in your report:

e Curves showing the loss on training and development data as a function of epochs
(slide 42).

e Precision, recall, F1, precision-recall AUC scores, for each class and classifier,
separately for the training, development, and test subsets, as in exercise 11 of Part 2.

e Macro-averaged precision, recall, F1, precision-recall AUC scores (averaging the
corresponding scores of the previous bullet over the classes), for each classifier,
separately for the training, development, and test subsets, as in exercise 11 of Part 2.

e A short description of the methods and datasets you used, including statistics about
the datasets (e.g., average document length, number of training/dev/test documents,
vocabulary size) and a description of the preprocessing steps that you performed.

3 See http://pytorch.org/.

http://pytorch.org/

You may optionally wish to try ensembles. One possibility is to use k separate MLP
classifiers, corresponding to your & best checkpoints (k best epochs in terms of development
loss), and aggregate their decisions by majority voting. Another possibility is to use temporal
averaging, i.e., use a single MLP classifier, whose weights are the average of the weights of
the & best checkpoints.

> 5. Develop a part-of-speech (POS) tagger for one of the languages of the Universal
Dependencies treebanks (http://universaldependencies.org/), using an MLP (implemented by
you) operating on windows of words (slides 27-28). Consider only the words, sentences, and
POS tags of the treebanks (not the dependencies or other annotations). Use PyTorch to
implement the MLP. You may use any types of word features you prefer, but it is
recommended to use pre-trained word embeddings. Make sure that you use separate training,
development, and test subsets. Tune the hyper-parameters (e.g., number of hidden layers,
dropout probability) on the development subset. Monitor the performance of the MLP on the
development subset during training to decide how many epochs to use. Include experimental
results of a baseline that tags each word with the most frequent tag it had in the training data;
for words that were not encountered in the training data, the baseline should return the most
frequent tag (over all words) of the training data. Include in your report:

e Curves showing the loss on training and development data as a function of epochs
(slide 42).

e Precision, recall, F1, precision-recall AUC scores, for each class (tag) and classifier,
separately for the training, development, and test subsets, as in exercise 11 of Part 2.

e Macro-averaged precision, recall, F1, precision-recall AUC scores (averaging the
corresponding scores of the previous bullet over the classes), for each classifier,
separately for the training, development, and test subsets, as in exercise 11 of Part 2.

e A short description of the methods and datasets you used, including statistics about
the datasets (e.g., average sentence length, number of training/dev/test sentences and
words, vocabulary size) and a description of the preprocessing steps.

You may optionally wish to try ensembles, as in exercise 4 above.

6. (a) We use the window-based .
neu(ra)l network named entity Window-based NER exalnple
recognizer (NER) of the slide on the { ihotvectorsof the | | Embeddings of the
right, with 300-dimensional word &ierteiiemindon jrenboliemndor
embeddings, to recognize three
types of named entities (persons,
organizations, locations). We use B-
I-O tags (BPerson, IPerson, ‘
BOrganization etc., with a single O ¥is1— € 60 =tanh(WWé) 6 = softmax(w@51))
tag). The size of the vocabulary is

|[V| = 100,000. The “+” node concatenates the embeddings of the three words in the window.
The hidden layer contains 500 neurons (with tanh activation functions). What are the

dimensions of matrices E, W, W ®? Fully justify your answers.

Sum or concatenation :
of the embeddings

i Correct output (e.g.. correct
B-I-O tag, 1-hotvector)

H
>
o~

7. [optional] Repeat exercise 3 of Part 1 (n-gram language models) now using an MLP
language model, instead of an n-gram language model. The MLP takes as input the
concatenation of the word embeddings of the n previous words, and outputs a probability
distribution over the vocabulary as a prediction for the next word. Compare the results you
obtained using the MLP language model to those you had obtained with the bigram and
trigram language models of Part 1.

http://universaldependencies.org/

