
1. Identify the locations of saddle points and extrema of the following function:

f(x, y) = 4xy − x4 − y4.

2. Find the location on the curve xy2 = 54 that is closest to the origin.

3. Compute the double integral of the function f(x, y) = cos(x + y) on the region R specified by the
lines x = 0, y = 0, and x+ y = 1.

4. Use the Gram-Schmidt process to calculate a set of orthonormal vectors using the following vectors
in the given order:

v1 =

11
0

 , v2 =

01
0

 , v3 =

01
1

 .

5. Find the eigenvalues and eigenvectors of the matrix

A =

0 0 2
0 2 0
2 0 0

 .

Then, find matrices S, Λ such that A = SΛS−1, and compute S−1.

1



1. Identify the locations of saddle points and extrema of the following function:

f(x, y) = 4xy − x4 − y4.

Solution: Observe that
∇f(x, y) = (4y − 4x3, 4x− 4y3).

Therefore,
∇f(x, y) = (0, 0) ⇔ y = x3, x = y3.

The above equations give

x9 = x ⇒ x(x8−1) = 0 ⇒ (x4−1)(x4+1)x = 0 ⇒ (x2−1)(x2+1)x = 0 ⇒ (x−1)(x+1)x = 0.

It follows that there are three locations where we may have saddle points and extrema, i.e.,

(0, 0), (1, 1), (−1,−1).

Next, observe that

fxx(x, y) = −12x2, fyy(x, y) = −12y2, fxy(x, y) = 4.

Regarding the point (0, 0), we have

D(0, 0) = 0− 42 < 0,

so this point is a saddle point. Regarding the point (1, 1), we have

D(1, 1) = 144− 42 > 0, fxx < 0,

so we have a maximum at (1, 1). Likewise, at point (−1,−1), again we have

D(1, 1) = 144− 42 > 0, fxx < 0,

so this point is a maximum as well.

2. Find the location on the curve xy2 = 54 that is closest to the origin.
Solution: The problem is equivalent to minimizing the function x2 + y2 subject to the constraint

g(x, y) , xy2 − 54 = 0.

Note that
∇f = (2x, 2y), ∇g = (y2, 2xy).

Observe that∇g = (0, 0) at the origin, that is not a solution. Therefore, if there is a minimum, it will
have to be at a location where, for some λ, we have

∇f = λ∇g ⇔ (2x, 2y) = (λy2, 2λxy) ⇔ 2x = λy2, 2y = 2λxy ⇔ 2x = λy2, λ =
1

x
.

From the last two equations, together with equation xy2 = 54, it follows that

2x2 = y2, xy2 = 54 ⇒ 2x3 = 54 ⇒ x = 3 ⇒ y = ±3
√
2,

therefore there are two locations, (3, 3
√
2) and (3,−3

√
2), where the curve is closest to the origin.
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3. Compute the double integral of the function f(x, y) = cos(x + y) on the region R specified by the
lines x = 0, y = 0, and x+ y = 1.
Solution: Using Fubini’s theorem, we have∫∫

R

f(x, y) dA =

∫ 1

0

(∫ 1−x

0

cos(x+ y) dy

)
dx

=

∫ 1

0

(∫ 1−x

0

(sin(x+ y))′ dy

)
dx =

∫ 1

0

(sin(x+ 1− x)− sinx) dx

=

∫ 1

0

(cosx+ x sin 1)′ dx = cos 1 + sin 1− 1.

4. Use the Gram-Schmidt process to calculate a set of orthonormal vectors using the following vectors
in the given order:

v1 =

11
0

 , v2 =

01
0

 , v3 =

01
1

 .

Solution: The first vector is found by normalization:

e1 =
v1

∥v1∥
=

 1√
2
1√
2

0

 .

For the second vector, we have

q2 =

01
0

− 1√
2

 1√
2
1√
2

0

 =

−1
2

1
2

0

 ⇒ e2 =

− 1√
2

1√
2

0

 .

Observe that

e1 · v3 =

 1√
2
1√
2

0

 ·

01
1

 =
1√
2
, e2 · v3 =

−
√
2
2√
2
2

0

01
1

 =
1√
2
,

therefore,

q3 =

01
1

− 1√
2

 1√
2
1√
2

0

− 1√
2

− 1√
2

1√
2

0

 =

00
1

 .

5. Find the eigenvalues and eigenvectors of the matrix

A =

0 0 2
0 2 0
2 0 0

 .

Then, find matrices S, Λ such that A = SΛS−1, and compute S−1.
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Solution: The characteristic polynomial is∣∣∣∣∣∣
−λ 0 2
0 2− λ 0
2 0 −λ

∣∣∣∣∣∣ = 0 ⇔ −λ(2− λ)(−λ)− 2(2− λ)2 = 0

⇔ λ2(2− λ) + 4(λ− 2) = (λ− 2)(2− λ)(2 + λ) = −(λ− 2)2(λ+ 2) = 0,

therefore the eigenvalues are λ1 = 2, λ2 = 2, and λ3 = −2, and

Λ =

2 0 0
0 2 0
0 0 −2

 .

To find the eigenvectors corresponding to the double eigenvalue λ1 = λ2 = 2, we write−2 0 2
0 0 0
2 0 −2

x1

x2

x3

 = 0 ⇔ −x1 + x3 = 0, x1 − x3 = 0 ⇔ x1 = x3,

whereas x2 can take any value. We select the vectors
[
0 1 0

]
and

[
1 1 1

]
.

To find the eigenvector corresponding to the single eigenvalue λ3 = −2, likewise, we write2 0 2
0 4 0
2 0 2

x1

x2

x3

 =

00
0

 ⇔ x1 + x3 = 0, x2 = 0.

We select the vector
[
1 0 −1

]
.

Therefore,

S =

1 0 1
1 1 0
1 0 −1

 .

It remains to find S−1. To this effect, we can perform Gauss-Jordan elimination 1 0 1 1 0 0
1 1 0 0 1 0
1 0 −1 0 0 1


 1 0 1 1 0 0

0 1 −1 −1 1 0
0 0 −2 −1 0 1

 (R2 = R2−R1, R3 = R3−R1)

 1 0 1 1 0 0
0 1 −1 −1 1 0
0 0 1 1

2
0 −1

2

 (R3 = −1

2
R3)

 1 0 0 1
2

0 1
2

0 1 0 −1
2

1 −1
2

0 0 1 1
2

0 −1
2

 (R2 = R2 +R3, R1 = R1−R3)

Therefore,

S−1 =

 1
2

0 1
2

−1
2

1 −1
2

1
2

0 −1
2

 .
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1. Identify the locations of saddle points and extrema of the following function:

f(x, y) = x4 + y4 + 4xy.

2. Find the location on the curve x2 + xy + y2 = 1 that is closest to the origin.

3. Compute the double integral of the function f(x, y) = (x+ y)2 on the region R specified by the lines
x = 0, y = 1, and y = x.

4. Use the Gram-Schmidt process to calculate a set of orthonormal vectors using the following vectors
in the given order:

v1 =

 0
1
−1

 , v2 =

01
0

 , v3 =

11
0

 .

5. Find the eigenvalues and eigenvectors of the matrix

A =

3 4 2
0 1 2
0 0 0

 .
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1. Identify the locations of saddle points and extrema of the following function:

f(x, y) = x4 + y4 + 4xy.

Solution: Observe that
∇f(x, y) = (4x3 + 4y, 4y3 + 4x).

Therefore,
∇f(x, y) = (0, 0) ⇔ x3 + y = 0, y3 + x = 0.

The above equations give
x9 = x ⇒ x = −1, 0, 1.

It follows that there are three locations where we may have saddle points and extrema, i.e.,

(0, 0), (1,−1), (−1, 1).

Next, observe that

fxx(x, y) = 12x2, fyy(x, y) = 12y2, fxy(x, y) = 4.

Regarding the point (0, 0), we have

D(0, 0) = 0− 42 < 0,

so this point is a saddle point. Regarding the point (1,−1), we have

D(1,−1) = 144− 42 > 0, fxx > 0,

so we have a minimum at (1, 1). Likewise, at point (−1, 1), again we have

D(−1, 1) = 144− 42 > 0, fxx > 0,

so this point is a minimum as well.

2. Find the location on the curve x2 + xy + y2 = 1 that is closest to the origin.
Solution: The problem is equivalent to minimizing the function f(x, y) = x2 + y2 subject to the
constraint

g(x, y) , x2 + xy + y2 − 1 = 0.

Note that
∇f = (2x, 2y), ∇g = (2x+ y, 2y + x).

Observe that ∇g = (0, 0) at the location where

2x+ y = 0, 2y + x = 0,

i.e., the location (0, 0), which does not belong to the curve, therefore that location is excluded, and
the extrema must all belong to locations where, for some λ, we have

∇f = λ∇g ⇔ 2x = λ(2x+ y), 2y = λ(2y + x) ⇔ 2x(1− λ) = λy, 2y(1− λ) = λx.

Multiplying the two equations we arrive at 4xy(1 − λ)2 = λ2xy. Now observe that if x = 0, when
we must either have y = 0, which is impossible because x = y = 0 does not satisfy the constraint, or
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λ = 1, which then leads to y = 0 and again the constraint is not satisfied. So we must have x ̸= 0.
By a similar argument, y ̸= 0. It then follows, dividing by xy, that

4(1− λ)2 = λ2 ⇔ 4 + 4λ2 − 8λ = λ2 ⇔ 3λ2 − 8λ+ 4 = 0 ⇔ λ1 = 2, λ2 =
2

3
.

Regarding the case λ = 2, it leads to

−2x = 2y, −2y = 2x ⇔ x = −y,

and plugging this to the constraint we arrive at

x2 = 1 ⇒ x = ±1 ⇒ y = ∓1,

therefore we find the locations (1,−1) and (−1, 1), which are both at a distance
√
2 from the origin.

Regarding the case λ = 2
3
, it leads to x = y, and plugging this to the constraint we arrive at

3x2 = 1 ⇒ x = y = ± 1√
3
,

therefore we find the locations
(

1√
3
, 1√

3

)
and

(
− 1√

3
,− 1√

3

)
which are both at a distance

√
2
3
from the

origin.
Therefore, the first two locations we found are maxima, and the last two locations we found are
minima.

3. Compute the double integral of the function f(x, y) = (x+ y)2 on the region R specified by the lines
x = 0, y = 1, and y = x.
Solution: Using Fubini’s theorem, we have∫∫

R

f(x, y) dA =

∫ 1

0

(∫ 1

x

(x+ y)2 dy

)
dx =

∫ 1

0

(∫ 1

x

(
(x+ y)3

3

)′

dy

)
dx

=

∫ 1

0

(
(x+ 1)3

3
− 8x3

3

)
dx =

∫ 1

0

(
(x+ 1)4

12
− 8x4

12

)′

dx

=
16

12
− 8

12
− 1

12
+ 0 =

7

12
.

4. Use the Gram-Schmidt process to calculate a set of orthonormal vectors using the following vectors
in the given order:

v1 =

 0
1
−1

 , v2 =

01
0

 , v3 =

11
0

 .

Solution: The first vector is found by normalization:

e1 =
v1

∥v1∥
=

 0
1√
2

− 1√
2

 .
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For the second vector, we have, since v2 · e1 = 1√
2
, that

q2 =

01
0

− 1√
2

 0
1√
2

− 1√
2

 =

01
2
1
2

 .

Normalizing,

e2 =
q2

∥q2∥
=

 0
1√
2
1√
2

 .

Finally, noting that v3 · e1 = 1√
2
and v3 · e2 = 1√

2
, we have

q3 =

11
0

− 1√
2

 0
1√
2

− 1√
2

− 1√
2

 0
1√
2
1√
2

 =

10
0

 ,

from which it follows that

e3 =

10
0

 .

5. Find the eigenvalues and eigenvectors of the matrix

A =

3 4 2
0 1 2
0 0 0

 .

Then, find matrices S, Λ such that A = SΛS−1, and compute S−1.
Solution: The characteristic polynomial is

|A− λI| = 0 ⇔

∣∣∣∣∣∣
3− λ 4 2
0 1− λ 2
0 0 −λ

∣∣∣∣∣∣ = 0 ⇔ −(3− λ)(1− λ)λ = 0 ⇔ (λ− 3)(λ− 1)λ = 0,

therefore the three eigenvalues are the

λ1 = 0, λ2 = 3, λ3 = 1.

Regarding the first eigenvector, we have3 4 2
0 1 2
0 0 0

x1

x2

x3

 =

00
0

 ⇔ 3x1 + 4x2 + 2x3 = 0, x2 + 2x3 = 0

⇔ x2 = −2x3, 3x1 = −2x3 + 8x3 ⇔ x2 = −2x3, x1 = 2x3 ⇔ x1 = 2x3, x2 = −2x3.

So, for example, one candidate eigenvector is
[
2 −2 1

]T .
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Regarding the second eigenvector, we have0 4 2
0 −2 2
0 0 −3

x1

x2

x3

 =

00
0

 ⇔ 4x2 + 2x3 = 0, −2x2 + 2x3 = 0, x3 = 0 ⇔ x2 = x3 = 0.

So, for example, one candidate eigenvector is
[
1 0 0

]T .
Regarding the third eigenvector, we have2 4 2

0 0 2
0 0 −1

x1

x2

x3

 =

00
0

 ⇔ 2x1 + 4x2 + 2x3 = 0, x3 = 0, x3 = 0

⇔ x1 = −2x2, x3 = 0.

So, for example, one candidate eigenvector is
[
−2 1 0

]T .
Therefore,

Λ =

0 0 0
0 3 0
0 0 1

 , S =

 2 1 −2
−2 0 1
1 0 0

 .

It remains to find S−1. To this effect, we can perform Gauss-Jordan elimination 2 1 −2 1 0 0
−2 0 1 0 1 0
1 0 0 0 0 1


 1 1

2
−1 1

2
0 0

0 1 −1 1 1 0
0 −1

2
1 −1

2
0 1

 (R1 =
1

2
R1, R2 = R2 +R1, R3 = R3− 1

2
R1)

 1 1
2

−1 1
2

0 0
0 1 −1 1 1 0
0 0 1

2
0 1

2
1

 (R3 = R3 +
1

2
R2)

 1 1
2

0 1
2

1 2
0 1 0 1 2 2
0 0 1

2
0 1

2
1

 (R2 = R2 + 2R3, R1 = R1 + 2R3)

 1 0 0 0 0 1
0 1 0 1 2 2
0 0 1 0 1 2

 (R1 = R1− 1

2
R2)

Therefore,

S−1 =

0 0 1
1 2 2
0 1 2

 .
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