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5. Correlation and Regression models
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2

• Introduction
✓ Covariance between two variables

✓ Pearson’s correlation measure

✓ Non-parametric correlation measures

✓ The model of simple linear regression

• Multiple linear regression model
✓ The simple linear regression model

✓Model assumptions

✓ Parameter interpretation 

✓ Implementation in R (Example 5-3)

✓ Testing for the model assumptions

✓ Diagnostic residual plots

✓ Transforming variable 

• Comparison to the paired t-test



Pearson’s correlation coefficient

➢ It is the normalized version of covariance

➢ It measures the degree of linear dependence/relationship 

➢Bounded and defined in the interval from -1 to 1

✓ 1 = perfect (non-random) positive linear relationship

✓-1 = perfect (non-random) negative linear relationship

✓ 0 = two variables are not correlated

for normal data => variable are independent 

➢Free of units

➢Quantifies the degree of linear relation 

➢Does not separates the response from the explanatory
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Pearson’s correlation coefficient

➢Population correlation

➢Sample estimator
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Pearson’s correlation in R 

➢ If X & Y independent  Correlation = 0 

➢Correlation = 0   no linear dependence 

but not  necessarily independence

➢Correlation = 0  & X - Y normal  independence 

5. Correlation and Regression models
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Pearson’s correlation & independence

➢ If X & Y independent  Correlation = 0 

➢Correlation = 0   no linear dependence 

but not  necessarily independence

5. Correlation and Regression models
5.1. Introduction – correlation 
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Pearson’s correlation & linear functions

➢ If Y is a linear function of X  Correlation = 1 or -1 

5. Correlation and Regression models
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Correlation matrix [using the observed data]

R is a pxp matrix with elements 

• Rjk = Cor(Xj,Xk) – sample correlation between Xj and Xk

• Rjj = 1 

(the correlation of each variable with itself is one)

Each element of the diagonal is 1 
since each variable is fully 
correlated with itself (it is the 
identity function)

11

The table is symmetric
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Example 5-1 [salary]

• Assess the possible linear relationships between starting and 
current salary

H0: ρ=0 

i.e. there is no linear 
relationship between the 
current and the starting salary
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r=0.88

plot(x1,x2, xlab='Starting Salary', ylab='Current Salary', cex.axis=1.5)



plot(x1,x2, xlab='Starting Salary', ylab='Current Salary', cex.axis=1.5)
abline(lm(x2~x1))
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Ανάλυση Δεδομένων

Further comments (1)

• The coefficient assumes that both  Χ and Υ are random 
variables

• It can be used as a measure of linearity 

• The hypothesis test assumes normality or large sample

• Alternatively, non-parametric correlation measures can be 
used 

• If the relationship is strong but non-linear then the Pearson 
correlation coefficient will show how well this is 
approximated by a linear function 

5. Correlation and Regression models
5.1. Introduction – correlation  
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Ανάλυση Δεδομένων

Further comments (2)

According with Chatfield &  Collins (1980, p. 40-41)

• The test is conservatory i.e. small values of r will give 
significant relationship (of some kind) especially for large 
samples

• Empirical rule: 

– strong linear dependence for |r|>0.70

– Medium linear dependence for 0.4<|r|<0.70

– Weak linear dependence for |r|< 0.4

• The coefficient is not estimated reliably for small samples 
(n<12)

5. Correlation and Regression models
5.1. Introduction – correlation  
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Example 5-1 [salary]

• Assess the possible linear relationships between age and the 
id? It seams that there is significant 

negative linear dependence between 
the the age and the id!!!

Does this makes sense? 

Is the value of the coefficient large? 
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Pearson’s correlation between 
starting and current salary

* 0.01<p-value<0.05

** 0.001<p-value<0.01

*** p-value <0.001

5. Correlation and Regression models
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Example 5-1 [salary]

• To assess the possible linear relationships between starting 
and current salary

* 0.01<p-value<0.05

** 0.001<p-value<0.01

*** p-value <0.001

library(sjPlot)
sjt.corr(x, corMethod = "pearson", showPValues = TRUE, 

pvaluesAsNumbers = FALSE,  fadeNS = TRUE,  digits = 3)

19



Pearson’s correlation between 
starting and current salary

5. Correlation and Regression models
5.1. Introduction – correlation  

Example 5-1 [salary]

• To assess the possible linear relationships between starting 
and current salary

P-value is given in brackets. 

The current salary is highly 
correlated to the starting 
salary

library(sjPlot)
sjt.corr(x, corMethod = "pearson", showPValues = TRUE, 

pvaluesAsNumbers = FALSE,  fadeNS = TRUE,  digits = 3)

20
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Example 5-1 [salary]

• To assess the possible linear relationships between starting 
and current salary

sjt.corr(sal.num, 
corMethod = "pearson", 
showPValues = TRUE, 
pvaluesAsNumbers = TRUE,
fadeNS = TRUE,  digits = 3, 
triangle = "both")

Non significant 
correlations are faded 
with grey color
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Example 5-1 [salary]

• To assess the possible linear relationships between starting 
and current salary

sjt.corr(sal.num, 
corMethod = "pearson", 
showPValues = TRUE, 
pvaluesAsNumbers = TRUE,
fadeNS = TRUE,  digits = 3, 
triangle = “lower")

Non significant 
correlations are faded 
with grey color



Back to correlation matrices
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How to tide up and make correlation matrices readable

• Keep only correlation measures (no p-values)

• Keep only one or two decimals 

• Eliminate irrelevant variables (e.g. id)

• Group correlated variables

• Uses symbols or colors for high or significant correlations

• If even these changes, it does not makes any sense

– Eliminate numbers and keep only colors or symbols

– Use path diagrams

5. Correlation and Regression models
5.1. Introduction – correlation  
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Correlation matrices

• Eliminate decimal numbers & other values 

5. Correlation and Regression models
5.1. Introduction – correlation  
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Correlation matrices

• Eliminate irrelevant values

5. Correlation and Regression models
5.1. Introduction – correlation  

26



Correlation matrices

• Add colors

5. Correlation and Regression models
5.1. Introduction – correlation  
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Correlation matrices

• Re-arrange the matrix according to the correlations

5. Correlation and Regression models
5.1. Introduction – correlation  
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Path diagram

Starting 
Salary

Current Salary

Educational 
level

Age

5. Correlation and Regression models
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Time
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Fancy plots using sjPlot

5. Correlation and Regression models
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x<-sal.num
libray(sjPlot); sjp.corr(x, corMethod = "pearson")
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library(corrplot)
corrplot(cor(sal.num))
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library(corrplot)
corrplot(cor(sal.num), 

method= "square")
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library(corrplot)
corrplot(cor(sal.num), 

method= " ellipse ")
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library(corrplot)
corrplot(cor(sal.num), 

method= " number")
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library(corrplot)
corrplot(cor(sal.num), 

method= " shade")
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library(corrplot)
corrplot(cor(sal.num), 

method= " color")
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library(corrplot)
corrplot(cor(sal.num), 

method= “pie")



Example 5-2 [world95]

We would like to assess the correlation between the population 
and the density 

5. Correlation and Regression models
5.1. Introduction – correlation  

Non-significant linear 
relationship between the 
population and the density. 

Also the coefficient is very 
small indicating minor or no 
linear relationship 38
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Example 5-2 [world95]

We would like to assess the correlation between the population 
and the density 

But by definition 

DENSITY = POPULATION/AREA (in sq meters) 

= a + b * POPULATION

with a=0 and b=1/AREA !!!! 

So why r0 instead of r=1???? 

5. Correlation and Regression models
5.1. Introduction – correlation  
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Let us assume that we have two quantitative variables

• Χ: explanatory or independent variable

• Υ: response or dependent variable

If we believe  that Χ influences (or affects) in a some way  the response 
Υ then it is sensible to assume that a function h(x) exists such that: 

[perfect/deterministic relationship]

Since we mainly study random phenomena/experiments then it is 
sensible to add a random (unpredicted)  component (i.e. error term) 

5. Correlation and Regression models
5.1. Introduction – the simple linear model  
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Two quantitative variables

• Χ: explanatory or independent variable

• Υ: response or dependent variable

Regression model assumes

• linear relationship (function) between X and Y

• Normal errors 

So  the regression model is now given by

5. Correlation and Regression models
5.1. Introduction – the simple linear model  
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Two quantitative variables

• Χ: explanatory or independent variable

• Υ: response or dependent variable

Regression model

• WHY LINEAR? 

• WHY NORMAL? 

• WHY ZERO MEAN OF ERRORS? 

• WHAT σ2 means?

5. Correlation and Regression models
5.1. Introduction – the simple linear model  
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More general approach [GLM]

(and more appropriate in terms of modeling)

• Χ: explanatory or independent variable

• Υ: response or dependent variable

✓ Distribution(θ): stochastic (random) component

✓ h(x): deterministic (non random) component

✓ g(θ): link function between stochastic and deterministic 
component

✓ Usually h(x) linear function of X  also called linear predictor

5. Correlation and Regression models
5.1. Introduction – the simple linear model  
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More general approach [GLM]

(and more appropriate in terms of modeling)

• Χ: explanatory or independent variable

• Υ: response or dependent variable

• Υ ~ Normal( μ, σ2 ) [θ T =(μ,σ2)]

• μ = β0+β1 x [g(θ)=μ]

5. Correlation and Regression models
5.1. Introduction – the simple linear model  
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Two ways to write a regression model: 

• Using the error term representation 

or equivalently 

• Using the stochastic response (GLM type) representation

5. Correlation and Regression models
5.2. The simple linear regression model  
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The two ways to write a regression model when data are 
introduced. 

We need to introduce an indicator for the study unit/observation : 

Representing by Υi, Xi (for i=1,2, … , n) the pairs of the response 
& explanatory values for each study unit <i>

• Using the error term representation 

or equivalently 

• Using the stochastic response (GLM type) representation

5. Correlation and Regression models
5.2. The simple linear regression model  
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Terminology and estimators

• : Sample estimators/estimates of 
β0 and β1

• : Expected value according to the 
model or fitted value for <i> study unit/ 
observation/subject

• ei : Regression residual 

(estimate of εi)

• : Estimator/estimate of the error 
variance
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Terminology and estimators

• R2 : Coefficient of determination

✓ This is a goodness of fit measure 

✓ Takes values from 0 to 1

✓ Interpretation: % of variability 
explained by the model

✓ In simple regression R2=r2

• Radj
2 : Adjusted coefficient of 

determination 

✓ Takes values from 0 to 1

✓ Interpretation: % of variance 
explained by the model

✓More useful in multiple regression 
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Terminology and estimators

Sample estimators of model coefficients β0 & β1
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ASSUMPTIONS (to be checked):

• Independence of errors (and of Yi)

• Normality of errors (and of Yi)

• Homoscedasticity of errors (and Υi)

• Linearity between Χ & Υ

• We work with the residuals ei

We will discuss in more detail about regression diagnostics 
and residual analysis later on in this presentation

5. Correlation and Regression models
5.2.1. Model assumptions (summary) 
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We use a regression model to 

– Describe and understand the association between the two 
variables 

– To predict future values of Y 

– Both 

When we are interested in the relationship between  Χ & Υ:

• Primary test: Η0: β1=0 vs. Η1: β1  0

• Test of secondary importance: Η0: β0=0 vs. Η1: β0  0

In case that we are interested in prediction:  

• we need to know if we can use the fitted model for prediction

5. Correlation and Regression models
5.2.2. Model interpretation 
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Testing for the relationship between  Χ & Υ

Η0: β1=0 vs. Η1: β1  0

✓ Equivalent to testing for the correlation between  Χ & Υ

✓ It provides the slope of the fitted line

✓We are interested in the interpretation of CAUSAL relationships 
between variables (i.e. characteristics or phenomena). 

Interpretation: It tests how much we expect that Υ will increase 
if Χ increases by one unit

✓ The value of   β1 is affected by the scale and the units of 
measurement of both Χ & Υ. 

✓ The correlation measures (ρ & r) and the corresponding tests 
(for ρ or β1) are not affected by linear changes. 

5. Correlation and Regression models
5.2.2. Parameter interpretation 
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Testing for the relationship between  Χ & Υ

Secondary hypothesis test: Η0: β0=0 vs. Η1: β0  0
✓ Intercept of the fitted line

✓ It provides the point where the fitted line intersects with the 
vertical axis ΥΥ’ i.e. the value of Υ when Χ=0

Interpretation: Is the expected value of Y when Χ=0. 
✓Many times this value does not have direct interpretation (since 

this value is not possible or outside the observed range 

✓ Sometimes we constraint  β0=0 due to logic or an assumed 
theory

✓ Other times it is convenient to consider instead of X, the 
centered version X’=X  –X. Then
✓ β1 remains the same

✓ β0 gives the expected value of Υ when Χ is equal to the sample mean

5. Correlation and Regression models
5.2.2. Parameter interpretation 
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Deciding whether we can use the fitted model for 
prediction 

➢We can predict the expected value of Υ for each Χ

➢ The error variance σ2 & R2 quantify the precision of the 
prediction

✓R2>0.7 good predictions

✓R2>0.9  very good predictions

5. Correlation and Regression models
5.2.2. Parameter interpretation 



Predicting outside the observed values 

[Extrapolation – a trip to the unknown?]
BECAREFUL: predictions are reliable and acceptable only for 

values of Χ that we have observed (and hence we have some 
information about it)

✓We cannot predict something that we have not any 
information about it and therefore we have not studied it 

✓ Sometimes we are forced to make predictions outside the 
observed range of Χ (extrapolation)

➢This predictions should be used only as a rough yardstick

➢We assume the same (linear) relationship is valid also for 
these unobserved values of X 

5. Correlation and Regression models
5.2.2. Parameter interpretation 
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Example 5-3 [data frame cargo]
• The head of the logistics department of a large company is 

interested to estimate the delivery time and therefore the 
corresponding cost of each cargo depending on the distance

• For this reason, we randomly selected 10 cargo deliveries and 
recorded the distance in miles and the days until the delivery 

• Construct a model that can assist the manager in his aim

Cargo delivery 1 2 3 4 5 6 7 8 9 10

Distance in Miles 825 215 1070 550 480 920 1350 325 670 1215

Delivery time in days 3.5 1.0 4.0 2.0 1.0 3.0 4.5 1.5 3.0 5.0

5. Correlation and Regression models
5.2.3. A simple example in R
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Example 5-3

• Study Unit: cargo

• Sample size: n=10 cargos

• Characteristics: p=3

✓Cargo id

✓Distance

✓Delivery time

• Which is Χ & which is Υ? 

59

5. Correlation and Regression models
5.2.3. A simple example in R



Example 5-3

Analysis in steps

• Analysis of each variable separately 

• Visualization using a scatter-plot

• Correlation measures

• Regression model

• Testing for the assumptions (residual analysis)

• Revise model if necessary

5. Correlation and Regression models
5.2.3. A simple example in R
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Example 5-3: Visualization 

SCATTERPLOT
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SCATTERPLOT
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5. Correlation and Regression models
5.2.3. A simple example in R

Example 5-3: Testing for normality of the original 
variables



5. Correlation and Regression models
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Example 5-3: Testing for normality of the original 
variables

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

QQ plot for Distance

Theoretical Quantiles

S
a
m

p
le

 Q
u
a
n
ti
le

s

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

1
2

3
4

5

QQ plot for Delivery time

Theoretical Quantiles

S
a
m

p
le

 Q
u
a
n
ti
le

s



5. Correlation and Regression models
5.2.3. A simple example in R

Example 5-3: Monitoring correlation 



Example 5-3: Fitting the regression model

Response Explanatory

5. Correlation and Regression models
5.2.3. A simple example in R

Linear model 

Y=0.12+0.0036 X + ε



5. Correlation and Regression models
5.2.3. A simple example in R

Example 5-3: Summarizing the regression model



Summary statistics 
for residuals

5. Correlation and Regression models
5.2.3. A simple example in R

Example 5-3: Summarizing the regression model



Summary table for 
regression 
coefficients

5. Correlation and Regression models
5.2.3. A simple example in R

Example 5-3: Summarizing the regression model

Model:

Y=0.12+0.0036 X + ε

P-value for testing whether 
parameters are zero

Intercept = Not significant

Slope = Significant effect of 
distance on delivery



Parameter estimates of the model

Days of Delivery = 0.118 + 0.00359 Miles+ ε, 

ε~NORMAL(0, 0.482)

5. Correlation and Regression models
5.2.3. A simple example in R

Example 5-3: Summarizing the regression model



Standard errors of the estimates
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5. Correlation and Regression models
5.2.3. A simple example in R

Example 5-3: Summarizing the regression model
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5. Correlation and Regression models
5.2.3. A simple example in R

Example 5-3: Summarizing the regression model



P-values for testing the hypothesis that each coefficient is zero

5. Correlation and Regression models
5.2.3. A simple example in R

Example 5-3: Summarizing the regression model



Ανάλυση Δεδομένων

Standardized coefficients (or beta coefficients)

✓The are the regression coefficients when we standardize all variables

✓We can use the command scale within the formula in lm in R

✓The beta coefficient of β0 is always zero (0)

✓Interpretation of b1: How many standard deviations of Y we expect Y to 
change when Χ increases by one standard deviation (of X)

5. Correlation and Regression models
5.2.3. A simple example in R

Example 5-3: Summarizing the regression model



Standardized coefficients (or beta 
coefficients)

✓In simple linear regression the beta 
coefficient is equal to the Pearson’s correlation 
coefficient

5. Correlation and Regression models
5.2.3. A simple example in R

Example 5-3: Summarizing the regression model
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5. Correlation and Regression models
5.2.3. A simple example in R

Why the standardized coefficient is equal to the 
correlation



Residual standard 
deviation 

σ=0.48

✓It measures the 
precision of the 
model predictions

5. Correlation and Regression models
5.2.3. A simple example in R

Example 5-3: Summarizing the regression model

Full Model:

Y=0.12+0.0036 X + ε

ε~Ν( 0, 0,482)

It means that the accuracy of the prediction is 0,5 day

Fitted value ± 0,5 day will include 66% of the cases

Fitted value ± 1 day will include 95% of the cases



Coefficients of 
determination
90% of the variability is 
explained only using the 
distance as covariate

5. Correlation and Regression models
5.2.3. A simple example in R

Example 5-3: Summarizing the regression model

R2= % of variability explained by the model

✓It uses the biased estimates of variance

✓It is used as a measure of goodness of fit 

✓Increases with every covariate we add (even if it is rubbish)

✓Therefore it should not be used as a variable or model selection criterion

✓We can only compare models with the same number of covariate and same 
response

✓In simple linear regression R2=r2



5. Correlation and Regression models
5.2.3. A simple example in R

Radj
2= % of variance explained by the model adjusted for the number of covariates

✓It considers the number of covariates

✓It uses the unbiased variance estimators

✓It is used as a measure of goodness of fit 

✓It does not increases always (adding very bad covariates will decrease Radj
2 )

✓It can be used as a variable or model selection criterion

✓In simple linear regression it does not differ a lot from R2.

Example 5-3: Summarizing the regression model

Coefficients of 
determination
88% of the variability is 
explained only using the 
distance as covariate



Anova table details
We reject the null 
hypothesis, so the model is 
different from the constant 
the delivery is significant 
for the model

5. Correlation and Regression models
5.2.3. A simple example in R

Example 5-3: Summarizing the regression model

ANOVA table details for regression models

✓In simple regression it tests for: Η0: β1=0 vs. Η1: β1  0

✓Be careful: in multiple regression the assumption involves all covariate 
effects! 

✓Generally tests how much the current model differs from the constant 
(or null) model  (that is, y=β0+ε)



5. Correlation and Regression models
5.2.3. A simple example in R

Example 5-3: ANOVA table for the regression model

ANOVA table details for regression models

✓In simple regression it tests for: Η0: β1=0 vs. Η1: β1  0

✓Be careful: in multiple regression the assumption involves all covariate 
effects! 

✓Generally tests how much the current model differs from the constant 
(or null) model  (that is, y=β0+ε)

We reject the null hypothesis, so the 
model is different from the constant the 
delivery is significant for the model



Ανάλυση Δεδομένων Διαφάνεια 7-82

Example 5-3: Interpretation of the results

Parameter β1=0.00359 (the slope)

✓ Is there a linear effect? YES

P=0.000<0.05 i.e. we reject the null (Η0)=> Therefore the 
distance influences the delivery time  

✓ Of what direction is the relationship? POSITIVE

β1>0 which implies positive relationship => the longer the 
distance, the more delayed is the delivery

✓ How much the distance influences the delivery? 

➢ Each extra mile of distance increases the expected 
time by 0.00359 days (approximately 5 minutes)

➢ With every extra 100 miles, the expected delivery increases 
by 0.359 days (approximately 8.6 hours)

5. Correlation and Regression models
5.2.3. A simple example in R



Ανάλυση Δεδομένων Διαφάνεια 7-83

Example 5-3: Interpretation of the results

Why this interpretation? 

Parameter β1

◼ Let us assume two different explanatory 
values Χ1=Χ & Χ2=Χ+1 then

◼ μ1= β0+β1 Χ1= β0+β1 Χ

◼ μ2= β0+β1 Χ2 = β0+β1 (Χ+1)

◼ Δμ=μ2-μ1=β0+β1 (Χ+1)-β0-β1 Χ=β1

5. Correlation and Regression models
5.2.3. A simple example in R



Ανάλυση Δεδομένων Διαφάνεια 7-84

Example 5-3: Interpretation of the results

Parameter β0=0.118 (the intercept)

✓ Can be removed from the equation without changing 
much the fit/predictions? YES

P=0.748>0.05 i.e. we do not reject the null (Η0)=> 
Therefore the constant/intercept can be assumed to be 
equal to zero and be removed from the model

5. Correlation and Regression models
5.2.3. A simple example in R



Example 5-3: Interpretation of the results

Parameter β0=0.118 (the intercept)

✓ INTERPRETATION: 

➢When the distance is zero then the delivery time is  0.118 
days (2.8 ώρες)

➢ It shows the delivery time when the cargo destination is very 
close 

➢ BE CAREFUL this value is outside the range of Χ since the 
smallest destination is 215 miles away

✓ Shall we remove it? Possibly YES.

The logic here says that we should remove this term from 
the model

5. Correlation and Regression models
5.2.3. A simple example in R



Example 5-3: Interpretation of the results

Predictive performance and goodness of fit
✓ R=r=0.95 & R2=0.89; 

➢ High correlation between the two variables

➢Well fitted model and accurate predictions

➢ 89% of the variance is explained by the model

which means that if we know the distance we can accurately 
predict the delivery time  

5. Correlation and Regression models
5.2.3. A simple example in R



Example 5-3: Interpretation of the results

Standardized coefficient b1=0.949

✓ If the distance increases by a standard deviation 
(i.e. 380 miles)  then the delivery time is 
expected to increase by 0.95 standard deviations 
of Y (that is, by 0.949*1.435=1.36 days).

5. Correlation and Regression models
5.2.3. A simple example in R



ASSUMPTIONS (to be checked):

• Normality of errors (and of Yi)

• Homoscedasticity of errors (and Υi)

• Independence of errors (and of Yi)

• Linearity between Χ & Υ

• We work with the residuals ei

88

5. Correlation and Regression models
5.2.4. Checking for model assumptions



Types of residuals:

• (Unstandardised) Residuals 

• Standardized residuals

• Studentized residuals

89

5. Correlation and Regression models
5.2.4. Checking for model assumptions

hii is the diagonal elements of the 
hat matrix H

SPSS

R – Wikipedia

SPSS 
Wikipedia

(internally studentized)



Types of residuals:

• Standardized residuals

• Studentized residuals

• (Deleted) Studentized residuals 

( or jack-knife residuals)

90

5. Correlation and Regression models
5.2.4. Checking for model assumptions

hii is the diagonal elements of the 
hat matrix H

R – Wikipedia

SPSS 
Wikipedia

(internally studentized)

(externally studentized)
When using estimating the standard error from the regression model 

without using the i-th observation



Types of residuals in R:

• (Unstandardized) Residuals 

• Standardized residuals

• Studentized residuals (Jack-knife residuals)

• NOTE: That all  “standardized” 

residuals will be similar for reasonably  large n

5. Correlation and Regression models
5.2.4. Checking for model assumptions

res_ex53$residuals
residuals(res_ex53)
resid(res_ex53)

rstandard(res_ex53)
library(MASS)
round(stdres(res_ex53),3)

rstudent(res_ex53)
library(MASS)
studres(res_ex53)



ASSUMPTIONS (to be checked):

Theoretical errors Estimated sample residuals

92

5. Correlation and Regression models
5.2.4. Checking for model assumptions



ASSUMPTIONS (to be checked):

• Normality of errors (and of Yi) 

Use studentized residuals

• Homoscedasticity of errors (and Υi)

Use standardized or studentized residuals (with expected 
variance eq. to 1)

• Independence of errors (and of Yi)

Use studentized/Jack-knife residuals 

(expected correlation eq. to 0)

• Linearity between Χ & Υ

(for reasonably large n you can use any of them since they will be 
similar)

93

5. Correlation and Regression models
5.2.4. Checking for model assumptions



ASSUMPTIONS: The Normality assumption 

Consequences of departures from Normality: 

• The performance of hypothesis tests and confidence intervals can 
be compromised. 

• Though, these procedures are generally robust to small departures 
from Normality.

How to cure the problem: 

– Use transformations (log or Box-Cox)

– Use non-normal errors

– Use GLM models for non-normal responses

– Use non-parametric regression models
94

5. Correlation and Regression models
5.2.4. Checking for model assumptions



ASSUMPTIONS: The normality assumption

Use un-standardized  residuals

– Normality QQ-plots for unstandardized residuals

– Student QQ-plots for studentized residuals

– Lilliefors KS & Shapiro test

– Other normality tests

95

5. Correlation and Regression models
5.2.4. Checking for model assumptions



ASSUMPTIONS : Checking for independence
Error independence cannot be checked easily. 

Some diagnostics are the following: 

◼ If the data have meaning in terms of time sequence then this analysis 
should be skipped since it is not possible to check for indepdendence

◼ Time sequence plot (against id or any variable with chronological 
meaning) 

◼ Test for non randomness using the runs test

◼ Tests for auto-correlations  

✓ Durbin – Watson test (testing for serial correlation of order one)

✓ACF Plots & Tests for autocorrelations

✓ AR models

For details see Ryan 1997 p. 46-47

5. Correlation and Regression models
5.2.4. Checking for model assumptions

96



ASSUMPTIONS : Checking for independence

Simple time-sequence plot - Example of independence

5. Correlation and Regression models
5.2.4. Checking for model assumptions
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ASSUMPTIONS : Checking for independence

Simple time-sequence plot - Examples of dependence

5. Correlation and Regression models
5.2.4. Checking for model assumptions
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ASSUMPTIONS : Checking for independence

Simple time-sequence plot
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5. Correlation and Regression models
5.2.4. Checking for model assumptions
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par( mfrow=c(1,2) )
plot(res_ex53$res, type='l')
plot(rstandard(res_ex53), type='l')



ASSUMPTIONS : Checking for independence

The Durbin-Watson test for serial correlation 
✓ 0<D<4

✓ 0<D<2  positive autocorrelation 

✓ 2<D<4 negative autocorrelation 

✓ D=2  no autocorrelation

5. Correlation and Regression models
5.2.4. Checking for model assumptions

100

library(lmtest)
dwtest(res_ex53)

Uses asymptotic test



ASSUMPTIONS : Checking for independence

The Durbin-Watson test for serial correlation 

5. Correlation and Regression models
5.2.4. Checking for model assumptions

101

Uses bootstrap

library(car)
durbinWatsonTest(res_ex53)
dwt(res_ex53)
dwt(res_ex53$resid)



ASSUMPTIONS: Homoscedasticity of errors (and Υi)

– Plot of covariates vs. residuals

– Plot fitted values vs. residuals 

– Plot fitted values  vs. squared residuals

– Plot of fitted values vs. squared root residuals

– Checking for equality of variance in quartiles of fitted values

– Score tests for nonconstant error variance (Breusch & 
Pagan, 1979 – Cook & Weisberg, 1983)

For more details see
◼ Fox (2002. 1st edition p. 206-209)
◼ Draper & Smith (1998, 3rd edition, p. 56-59, 62-67)
◼ Gunst & Mason (1980, p 237) 102

5. Correlation and Regression models
5.2.4. Checking for model assumptions



ASSUMPTIONS: Homoscedasticity of errors

– Fitted values vs. standardized or studentized residuals using 
95% quantiles from the correct distributions

103

5. Correlation and Regression models
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ASSUMPTIONS: Homoscedasticity of errors

– Fitted values vs. standardized or studentized residuals using 
2 (i.e. 95% quantiles assuming approximate normality)

104

5. Correlation and Regression models
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ASSUMPTIONS: Homoscedasticity of errors

– Fitted values vs. standardized or studentized residuals using 
95% quantiles from the correct distributions

105

5. Correlation and Regression models
5.2.4. Checking for model assumptions

par( mfrow=c(1,2), cex=1.3, cex.lab=1.3)
n<-nrow(cargo)
p<-2 
plot( fitted(res_ex53), rstandard(res_ex53), ylim= range( c(-3,3, 
rstandard(res_ex53)) ) )
ub <- sqrt(qbeta( 0.95, 0.5, 0.5*(n-p-1) )*(n-p-1))
abline( h=c(-ub,0,ub), col=2,lty=2 )

plot( fitted(res_ex53), rstudent(res_ex53), ylim= range( c(-3,3, 
rstandard(res_ex53)) ) )
ub <- qt( 0.975, (n-p-1) ) 
abline( h=c(-ub,0,ub), col=2,lty=2 )



ASSUMPTIONS: Non-linearity

Consequences of departures from linearity: if linearity fails

• The error variance will appear as non-constant even if it is constant 
due to the model misspecification 

• the model is inadequate, especially for prediction.

How to cure the problem: 

• Transform the response

• Transform the covariates

• Use polynomial regression or non-parametric regression models

• Use non-linear models

106

5. Correlation and Regression models
5.2.4. Checking for model assumptions



ASSUMPTIONS: Non-linearity

• Plot of X vs. Y

• Plot of residuals vs. covariates

• Tukey’s test and residualPlot 

• Fit polynomial models

• Partial residual plots (cr.plot)

107

5. Correlation and Regression models
5.2.4. Checking for model assumptions



ASSUMPTIONS: Non-linearity

• Plot of X vs. Y

108

5. Correlation and Regression models
5.2.4. Checking for model assumptions

200 400 600 800 1000 1200
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x<-cargo$distance
y<-cargo$delivery
plot(x,y)
abline(res_ex53)
lines(lowess(x,y), col=2)
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5. Correlation and Regression models
5.2.4. Checking for model assumptions
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plot(res_ex53$fit, res_ex53$res)
abline(h=0, lty=3)
lines(lowess(res_ex53$fit,res_ex53$res), col=2)

ASSUMPTIONS: Non-linearity

• Plot of residuals vs. covariates
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5. Correlation and Regression models
5.2.4. Checking for model assumptions
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plot(res_ex53, which=1)

ASSUMPTIONS: Non-linearity

• Plot of residuals vs. covariates
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5. Correlation and Regression models
5.2.4. Checking for model assumptions
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5. Correlation and Regression models
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ASSUMPTIONS: Non-linearity

• Tukey’s test and residualPlot 
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ASSUMPTIONS: Non-linearity

• Tukey’s test and residualPlot 
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5. Correlation and Regression models
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