
Εισαγωγή στον Προγ/μό
Υπολογιστών

Διάλεξη 9

Αντικειμενοστραφής προγραμματισμός
(object-oriented programming)

Περιεχόμενα

1. Αντικείμενα και τάξεις

2. Ορισμός τάξεων

3. Εκφράσεις με τελεία (dot expressions)

4. Ιδιότητες τάξης

5. Κληρονομικότητα

6. Interfaces

7. Γενικές συναρτήσεις

8. Παράδειγμα: ρολόϊ

Αντικείμενα και τάξεις

Αντικειμενοστραφής προγραμματισμός

• Object-oriented programming: τρόπος προγραμματισμού όπου βασικό
δομικό στοιχείο είναι τα αντικείμενα

– Το πρόγραμμα δομείται από αντικείμενα όπου μέσω της ανταλλαγής
μηνυμάτων παράγονται χρήσιμοι υπολογισμοί

Laptop

Τάξεις

• Κάθε αντικείμενο έχει ένα ορισμένο τύπο (τάξη): αντικείμενα της ίδιας
τάξης ανταποκρίνονται στα ίδια μηνύματα

• Τα αντικείμενα που έχουμε χρησιμοποιήσει μέχρι τώρα ανήκουν σε
κάποια από τις ενσωματωμένες τάξεις της Python

>>> type(12)

<class 'int'>

>>> type('hello')

<class 'str'>

>>> type(pow)

<class 'builtin_function_or_method'>

Laptop

Τάξεις

• Ο προγραμματιστής μπορεί να ορίσει τις δικές του τάξεις

– Λειτουργούν ως «καλούπι» κατασκευής αντικειμένων της τάξης αυτής

• Ο ορισμός περιγράφει τα μηνύματα που μπορούν να λάβουν τα αντικείμενα
της τάξης και πως αυτά μεταβάλλουν την κατάστασή τους

• Παράδειγμα: αντικείμενα που αναπαριστούν τραπεζικό λογαριασμό, θα
πρέπει να:

– Έχουν τιμή του τρέχοντος υπολοίπου

– Έχουν όνομα κατόχου

– Υπάρχει δυνατότητα ανάληψης

– Υπάρχει δυνατότητα κατάθεσης

Τάξεις και αντικείμενα

• Παράδειγμα: τάξη Account για τραπεζικούς λογαριασμούς

– Κατασκευή αντικειμένου που αναπαριστά λογαριασμό που ανήκει
στον κάτοχο με όνομα 'Luke':

>>> a = Account('Luke')

– Η κλήση σε συνάρτηση με ακριβώς ίδιο όνομα με μια τάξη,
κατασκευάζει και επιστρέφει ένα αντικείμενο της τάξης αυτής

– Τέτοιες συναρτήσεις λέγονται κατασκευαστές (constructors)

– Το αντικείμενο που κατασκευάστηκε λέγεται στιγμιότυπο (instance)
της τάξης Account

Laptop

Τάξεις και αντικείμενα

• Κάθε αντικείμενο έχει ιδιότητες (attributes): ονόματα που συνδέονται σε
τιμές που αφορούν το αντικείμενο

• Οι τιμές των ιδιοτήτων μπορούν να επιστραφούν με εκφράσεις με τελεία
(dot expressions)

>>> a.holder

'Luke'

>>> a.balance

0

Laptop

Τάξεις και αντικείμενα

• Όλα τα αντικείμενα μιας τάξης έχουν τις ίδιες ιδιότητες

>>> b = Account('Yoda')

>>> b.holder

'Yoda'

>>> b.balance

0

– Ιδιότητες στιγμιοτύπου (instance attributes): ιδιότητες όπου μπορούν
να λάβουν διαφορετικές τιμές σε διαφορετικά αντικείμενα (της ίδιας
τάξης), πχ. holder, balance

– Ιδιότητες τάξης (class attributes): ιδιότητες που έχουν την ίδια τιμή
σε όλα τα αντικείμενα της ίδιας τάξης

Laptop

Τάξεις και αντικείμενα

• Μέθοδοι: ιδιότητες που είναι συναρτήσεις που εκτελούν υπολογισμούς για
το αντικείμενο που αφορούν ή/και μεταλλάσσουν την κατάστασή του

>>> a.deposit(15)

15

>>> a.withdraw(10)

5

>>> a.withdraw(10)

'Insufficient funds'

• Τα αντικείμενα Account είναι μεταλλασσόμενα δεδομένα αφού η ίδια

κλήση επέφερε διαφορετικό αποτέλεσμα

Laptop

Ορισμός τάξεων

Ορισμός τάξεων

• Μη ενσωματωμένες τάξεις ορίζονται με την εντολή class

• Γενική μορφή: class <όνομα>:

<μπλόκ εντολών>

• Στο μπλοκ περιέχονται εντολές που ορίζουν τις ιδιότητες των αντικειμένων
της τάξης και πως αυτές αλλάζουν στη λήψη μηνυμάτων (κλήση μεθόδων)

– Εκτελούνται κατά την εκτέλεση της εντολής class

– Οι ιδιότητες ορίζονται με εντολές που συνδέουν ονόματα σε τιμές, όπως
def και ανάθεση (=)

Laptop

Ορισμός τάξεων

• Ο ορισμός των instance attributes γίνεται στον ορισμό συνάρτησης με το
ειδικό όνομα __init__ (στην Python) και ονομάζεται κατασκευαστής της
τάξης
>>> class Account:

def __init__(self, account_holder):

self.holde. . .= account_holder

self.balanc

Στην κλήση Account('Luke') γίνονται τα εξής:

1. Δημιουργείται νέο αντικείμενο της τάξης Account

2. Καλείται η συνάρτηση __init__, όπου
• Η πρώτη τυπική παράμετρος (self) συνδέεται στο νέο αντικείμενο που

μόλις δημιουργήθηκε

• Οι υπόλοιπες παράμετροι συνδέονται στα ορίσματα της κλήσης
Account('Luke')

Laptop

Ορισμός τάξεων

• Ο ορισμός των instance attributes γίνεται στον ορισμό συνάρτησης με το
ειδικό όνομα __init__ (στην Python) και ονομάζεται κατασκευαστής της
τάξης
>>> class Account:

def __init__(self, account_holder):

self.holder = account_holder

self.balance = 0

Στην κλήση Account('Luke') γίνονται τα εξής:

3. Ορισμός instance attributes: με εντολές = συνδέονται τα ονόματα
holder, balance σε τιμές

4. Επιστρέφεται το αντικείμενο που δημιουργήθηκε
• Η πρώτη τυπική παράμετρος (self) δένεται στο νέο δημιουργήθηκε

Ορισμός τάξεων

μετάβαση στοPythontutor

μετάβαση στο Pythontutor

http://pythontutor.com/composingprograms.html
http://www.pythontutor.com/visualize.html
http://www.pythontutor.com/visualize.html
http://www.pythontutor.com/visualize.html

Ορισμός τάξεων

• Διαφορετικές κλήσεις του κατασκευαστή φτιάχνουν διαφορετικά
αντικείμενα

– To κάθε ένα έχει το δικό του όνομα κατόχου και τιμή υπολοίπου

Laptopμετάβαση στοPythontutor

μετάβαση στο Pythontutor

http://www.pythontutor.com/visualize.html
http://pythontutor.com/composingprograms.html
http://www.pythontutor.com/visualize.html

Ορισμός τάξεων

• Η κατάσταση ενός αντικειμένου δεν εξαρτάται από το όνομα στο οποίο
έχει συνδεθεί

>>> a = Account('Luke')

>>> a.deposit(20)

20

>>> c = a

>>> c is a

True

>>> c.withdraw(15)

5

>>> a.withdraw(10)

'Insufficient funds'

Laptop

Ορισμός τάξεων

• Οι μέθοδοι ορίζονται με συναρτήσεις μέσα στον ορισμό τάξης

>>> class Account:

 def __init__(self, account_holder):

 self.holder = account_holder

 self.balance = 0

 def deposit(self, amount):

 self.bal. . .ance = self.balance + amount

 return self.balance

 def withdraw(self, amount):

 if amount. . .> self.balance:

 return 'Insufficient funds'

 self.balance = self.balance – amount

 return self.balance
Laptop

Ορισμός τάξεων

• Για τον ορισμό μιας μεθόδου ορίζεται μια συνάρτηση ως ιδιότητα τάξης
(class attribute)

...

 def deposit(self, amount):

 self.balance = self.balance + amount

 return self.balance

...

Στην κλήση a.deposit(10) γίνονται τα εξής:

1. Καλείται η συνάρτηση deposit της τάξης του a (Account)

• Η πρώτη τυπική παράμετρος (self) συνδέεται στην τιμή του a

• Οι υπόλοιπες παράμετροι συνδέονται στα ορίσματα της κλήσης της
μεθόδου

Ορισμός τάξεων

μετάβαση στοPythontutor

μετάβαση στο Pythontutor

http://www.pythontutor.com/visualize.html
http://pythontutor.com/composingprograms.html
http://www.pythontutor.com/visualize.html

Εκφράσεις με τελεία (dot expressions)

Εκφράσεις με τελεία

• Εκφράσεις με τελεία (dot expressions):

– Γενική μορφή: <έκφραση>.<όνομα>

– Τιμή = η τιμή της ιδιότητας <όνομα> του αντικειμένου στο οποίο
αποτιμάται η <έκφραση>

• Οι τιμές των dot expressions μπορούν ισοδύναμα να υπολογιστούν με τη
συνάρτηση getattr:

>>> a = Account('Luke')

>>> getattr(a, 'holder')

'Luke'

>>> getattr(a, 'deposit')(25)

25

>>> hasattr(a, 'withdraw')

True
Laptop

Συναρτήσεις και μέθοδοι

• Οι μέθοδοι μπορούν να κληθούν με δύο ταυτόσημους τρόπους:

>>> a = Account('Luke')

>>> a.deposit(15)

15

>>> type(a.deposit)

<class 'method'>

>>> a = Account('Luke')

>>> Account.deposit(a, 15)

15

>>> type(Account.deposit)

<class 'function'>

Laptop

Συναρτήσεις και μέθοδοι

• Η έκφραση Account.deposit έχει ως τιμή την ιδιότητα (τάξης)
deposit της τάξης Account, η οποία είναι συνάρτηση με δύο ορίσματα

• Η έκφραση a.deposit εχει ως τιμή τη συνάρτηση deposit της τάξης
Account, όπου το πρώτο της όρισμα έχει εκ των προτέρων ανατεθεί στο
αντικείμενο a

– H a.deposit είναι ισοδύναμη της a_deposit:

>>> a = Account('Luke')

>>> a_deposit = lambda x: Account.deposit(a, x)

>>> a_deposit(15)

15

>>> a.deposit(15)

30

Laptop

Συμβάσεις ονομάτων στην Python

• Στα ονόματα τάξεων χρησιμοποιείται κεφαλαίο πρώτο γράμμα σε κάθε
λέξη που απαρτίζει το όνομα. Ανάμεσα σε δύο λέξεις δεν τοποθετείται _

– Πχ, Account, CheckingAccount

• Με _ αρχίζουν ιδιότητες που δεν θα πρέπει να χρησιμοποιούνται από
τμήματα κώδικα εκτός τάξης. (Ιδιωτικές ιδιότητες)

Ιδιότητες τάξης

Ιδιότητες τάξης

• Οι τιμές των ιδιοτήτων τάξης είναι κοινές για όλα τα αντικείμενα της τάξης

– Ορίζονται με εντολή ανάθεσης, def ή import που δεν βρίσκεται μέσα
σε μέθοδο – και συνεπώς εκτελείται όταν ορίζεται η τάξη

• Παράδειγμα: τραπεζικός λογαριασμός με επιτόκιο καταθέσεων (interest)
κοινό για όλους τους λογαριασμούς

>>> class Account:

 interest = 0.02

 def __init__(self, account_holder):

 self.balance = 0

 self.holder = account_holder

 def withdraw(self, amount):

 ...

 def deposit(self, amount):

 ...
Laptop

Ιδιότητες τάξης

>>> a = Account('Luke')

>>> b = Account('Yoda')

>>> a.interest

0.02

>>> b.interest

0.02

• Η τιμή μιας ιδιότητας τάξης αλλάζει ταυτόχρονα σε όλα τα αντικείμενα
της ίδιας τάξης
>>> Account.interest = 0.04

>>> a.interest

0.04

>>> b.interest

0.04

Laptop

Ιδιότητες τάξης

μετάβαση στοPythontutor

μετάβαση στο Pythontutor

http://www.pythontutor.com/visualize.html
http://www.pythontutor.com/visualize.html
http://www.pythontutor.com/visualize.html

Ιδιότητες τάξης

μετάβαση στοPythontutor

μετάβαση στο Pythontutor

http://www.pythontutor.com/visualize.html
http://www.pythontutor.com/visualize.html
http://www.pythontutor.com/visualize.html

Ιδιότητες τάξης

μετάβαση στοPythontutor

μετάβαση στο Pythontutor

http://www.pythontutor.com/visualize.html
http://www.pythontutor.com/visualize.html
http://www.pythontutor.com/visualize.html

Ιδιότητες τάξης

ιδιότητα στιγμιότυπου

μετάβαση στοPythontutor

μετάβαση στο Pythontutor

http://www.pythontutor.com/visualize.html
http://www.pythontutor.com/visualize.html
http://www.pythontutor.com/visualize.html

Ιδιότητες τάξης

ιδιότητα τάξης

μετάβαση στοPythontutor

μετάβαση στο Pythontutor

http://www.pythontutor.com/visualize.html
http://www.pythontutor.com/visualize.html
http://www.pythontutor.com/visualize.html

Ιδιότητες τάξης

δεν υπάρχει τέτοια
ιδιότητα στιγμιότυπου

μετάβαση στοPythontutor

μετάβαση στο Pythontutor

http://www.pythontutor.com/visualize.html
http://www.pythontutor.com/visualize.html
http://www.pythontutor.com/visualize.html

Ιδιότητες τάξης

ιδιότητα τάξης

μετάβαση στοPythontutor

μετάβαση στο Pythontutor

http://www.pythontutor.com/visualize.html
http://www.pythontutor.com/visualize.html
http://www.pythontutor.com/visualize.html

Ιδιότητες τάξης

ιδιότητα τάξης

μετάβαση στοPythontutor

μετάβαση στο Pythontutor

http://www.pythontutor.com/visualize.html
http://www.pythontutor.com/visualize.html
http://www.pythontutor.com/visualize.html

Ιδιότητες τάξης

δεν υπάρχει τέτοια
ιδιότητα στιγμιότυπου

μετάβαση στοPythontutor

μετάβαση στο Pythontutor

http://www.pythontutor.com/visualize.html
http://www.pythontutor.com/visualize.html
http://www.pythontutor.com/visualize.html

Ιδιότητες τάξης

Υπάρχει ιδιότητα τάξης
με το ίδιο όνομα:
η τιμή του a.deposit είναι
lambda amount: Account.deposit(a, amount)

μετάβαση στοPythontutor

μετάβαση στο Pythontutor

http://www.pythontutor.com/visualize.html
http://www.pythontutor.com/visualize.html
http://www.pythontutor.com/visualize.html

Ιδιότητες τάξης

• Αποτίμηση ιδιοτήτων:

 <έκφραση>.<όνομα>

1. Η αποτίμηση της έκφρασης αριστερά της . δίνει το αντικείμενο
που αφορά η ιδιότητα

2. Επιστρέφεται η τιμή της ιδιότητας στιγμιοτύπου <όνομα> εάν

υπάρχει για το αντικείμενο

3. Εάν δεν υπάρχει τέτοια ιδιότητα στιγμιοτύπου, επιστρέφεται η τιμή
της ιδιότητας τάξης <όνομα> εάν υπάρχει

4. Εάν η ιδιότητα είναι συνάρτηση, επιστρέφεται η συνάρτηση αυτή
αφού συνδεθεί στο αντικείμενο της έκφρασης (δηλ., ως μέθοδος)

• Εάν η ιδιότητα βρίσκεται στο αριστερό μέλος μιας ανάθεσης, ορίζεται η
ιδιότητα στιγμιοτύπου <όνομα> μόνο στο αντικείμενο της έκφρασης

Κληρονομικότητα

Κληρονομικότητα

• Διαφορετικές τάξεις μπορεί να σχετίζονται

• Μια συνήθης σχέση είναι η μια τάξη να είναι εξειδίκευση μιας άλλης:

Η πιο εξειδικευμένη τάξη:

1. έχει τις ίδιες ιδιότητες με τη γενικότερη τάξη,

2. αλλάζει (εξειδικεύει) τη συμπεριφορά ορισμένων μεθόδων

3. διαθέτει επιπλέον ιδιότητες

Παράδειγμα:

– Account: γενικός λογαριασμός

– CheckingAccount: λογαριασμός όψεως όπου χρεώνεται €1 σε
κάθε ανάληψη και έχει χαμηλότερο επιτόκιο

Laptop

Κληρονομικότητα

• Η τάξη CheckingAccount εξειδικεύει την Account

– Η Account ονομάζεται βασική τάξη (base class)

– Η CheckingAccount ονομάζεται παραγόμενη τάξη (derived class)

>>> class CheckingAccount(Account):

 withdraw_charge = 1

 interest = 0.01

 def withdraw(self, amount):

 return Account.withdraw(self, amount + \

 self.withdraw_charge)

Laptop

Κληρονομικότητα

• Παράδειγμα: λογαριασμός όψεως CheckingAccount όπου χρεώνεται
€1 σε κάθε ανάληψη και έχει χαμηλότερο επιτόκιο:

>>> ch = CheckingAccount('Han')

>>> ch.interest

0.01

>>> ch.deposit(20)

20

>>> ch.withdraw(10)

9

Laptop

Κληρονομικότητα

Laptop

Αποτίμηση ιδιοτήτων:
1. Μια ιδιότητα ενός αντικειμένου αναζητείται ανάμεσα στις

ιδιότητες στιγμιότυπου
2. Αν δεν βρεθεί, η αναζήτηση συνεχίζεται ανάμεσα στις ιδιότητες

τάξης
3. Αν δεν βρεθεί, η αναζήτηση συνεχίζεται ανάμεσα στις ιδιότητες

τάξης της βασικής τάξης
4. Αν δεν βρεθεί, η αναζήτηση συνεχίζεται ανάμεσα στις ιδιότητες

τάξης της βασικής της βασικής τάξης
…

Κληρονομικότητα

μετάβαση στοPythontutor

μετάβαση στο Pythontutor

https://goo.gl/68PbGJ
https://goo.gl/68PbGJ
https://goo.gl/68PbGJ

Interfaces

Interfaces

• Δύο τάξεις μπορεί να σχετίζονται γιατί υποστηρίζουν το ίδιο interface

• interface: σύνολο από ιδιότητες

– Παράδειγμα: τάξη PiggyBank

>>> class PiggyBank:

 def __init__(self):

 self.amount = 0

 def deposit(self, x):

 self.amount = self.amount + x

>>> winners = [Account('Luke'), PiggyBank(),\

 CheckingAccount('Leia')]

>>> for winner in winners:

 winner.deposit(5)
Laptop

Interfaces

• Τα αντικείμενα των τάξεων PiggyBank και Account έχουν μέθοδο
deposit και όλα ανταποκρίνονται στην κλήση winner.deposit(5)

• Ο κώδικας for winner in winners:

winner.deposit(5)

λειτουργεί για οποιοδήποτε αντικείμενο έχει μέθοδο deposit με
αριθμητικό όρισμα

– Δεν είναι γνωστό από πριν ποια μέθοδος deposit θα κληθεί.
Εξαρτάται από τον τύπο του αντικειμένου winner

• Πολυμορφισμός: η δυνατότητα ο κώδικας να έχει διαφορετική
συμπεριφορά (αποτέλεσμα) χρησιμοποιώντας αντικείμενα διαφορετικών
τύπων

Interfaces

• Υλοποίηση που δεν χρησιμοποιεί πολυμορφισμό:

>>> winners = [Account('Luke'), PiggyBank()]

>>> for winner in winners:

 Account.deposit(winner, 5)

5

Traceback (most recent call last):

 File "<stdin>", line 2, in <module>

 File "lec_defs.py", line 16, in deposit

 self.balance = self.balance + amount

AttributeError: 'PiggyBank' object has no attribute 'balance'

– Για να λειτουργήσει σωστά ο πολυμορφισμός θα πρέπει να
αναφερόμαστε σε ιδιότητες μέσω στιγμιοτύπων – όχι μέσω τάξεων

Laptop

Γενικές (generic) συναρτήσεις

Γενικές συναρτήσεις

• Γενικές (generic) : μπορούν να δεχθούν ορίσματα πολλών διαφορετικών
τύπων

• Παράδειγμα ενσωματωμένης συνάρτησης str:

>>> str(5)

'5'

>>> from datetime import date

>>> today = date(2023, 12, 12)

>>> str(today)

'2023-12-12'

>>> str(max)

'<built-in function max>'

Laptop

Γενικές συναρτήσεις

• Πως γνωρίζει τι θα επιστρέψει η str για κάθε τύπο δεδομένου; για τύπους
που θα δημιουργηθούν στο μέλλον;

• Λύση: interfaces και message passing

– Όλα τα αντικείμενα διαθέτουν τη μέθοδο __str__
• Όλες οι τάξεις κληρονομούν την τάξη object η οποία διαθέτει τη μέθοδο
__str__

>>> (5).__str__()

'5'

>>> today.__str__()

 '2022-1-28'

>>> max.__str__()

'<built-in function max>'

– H συνάρτηση str καλεί τη μέθοδο (στέλνει μήνυμα) __str__ στο
αντικείμενο του ορίσματός της
• Η τιμή επιστροφής της str υπολογίζεται από το αντικείμενο του ορίσματος Laptop

Γενικές συναρτήσεις

• Ενδεικτική υλοποίηση str

>>> def mystr(a):

 return a.__str__()

• Χρησιμοποιεί πολυμορφισμό

Laptop

Γενικές συναρτήσεις

>>> a = Account('Luke')

>>> str(a)

'<__main__.Account object at 0x10cab85c0>'

• Πως μπορούμε να εξειδικεύσουμε τον τρόπο εμφάνισης ενός λογαριασμού;
>>> class Account2(Account):

 def __str__(self):

 return 'Holder: {0}, balance: {1}'.format(self.holder,\

 self.balance)

>>> a = Account2('Luke')

>>> a.__str__()

'Holder: Luke, balance: 0'

>>> str(a)

'Holder: Luke, balance: 0'

>>> print(a)

Holder: Luke, balance: 0
Laptop

Γενικές συναρτήσεις

• Οι γενικές συναρτήσεις ενσωματώνουν νέους τύπους δεδομένων σε ήδη
υπάρχουσες λειτουργίες (πχ, print)

• Άλλες γενικές συναρτήσεις: len, repr, …

• Ο νέος τύπος δεδομένων αρκεί να υλοποιήσει την ειδική μέθοδο της
Python που αντιστοιχεί στη γενική συνάρτηση

Laptop

Γενικές συναρτήσεις

• Ειδικές μέθοδοι της Python: συναρτήσεις __<όνομα>__ οι οποίες
καλούνται από τον διερμηνευτή της Python σε ειδικές περιπτώσεις

– Μέθοδοι __init__, __str__, __len__, ...

>>> str(5)

'5'

>>> (5).__str__()

'5'

>>> len('hello world')

11

>>> 'hello world'.__len__()

11

Laptop

Γενικές συναρτήσεις

• Ειδικές μέθοδοι που αντιστοιχούν σε τελεστές
>>> 'hello world'[6]

'w'

>>> 'hello world'.__getitem__(6)

'w'

>>> 5 + 2

7

>>> (5).__add__(2)

7

>>> 5 * 2

10

>>> (5).__mul__(2)

10

• Υπάρχουν αντίστοιχες ειδικές μέθοδοι για όλους τους τελεστές της Python

Laptop

Γενικές συναρτήσεις

• Ορισμός τύπου δεδομένου Ritos που αναπαριστά ρητούς

>>> print(Ritos(1, 2) + Ritos(3, 4))

5/4

>>> Ritos(1, 2) * Ritos(3, 4)

Ritos(3, 8)

Laptop

Γενικές συναρτήσεις

>>> class Ritos:

 def __init__(self, a, p):

 from math import gcd

 g = gcd(a, p)

 self.a = a // g

 self.p = p // g

 def __add__(self, r):

 a = self.a * r.p + self.p * r.a

 p = self.p * r.d

 return Ritos(a, p)

 def __mul__(self, r):

 return Ritos(self.a * r.a, self.p * r.p)

 def __str__(self):

 return f'{self.a}/{self.p}'

 def __repr__(self):

 return f'Ritos({self.a}, {self.p})'

Laptop

Παράδειγμα: ρολόϊ

Παράδειγμα: ρολόϊ

• Όπως με κάθε προγραμματιστική τεχνική, αναζητούμε υπολογισμούς και
δεδομένα που επαναλαμβάνονται ώστε να ορίσουμε τις κατάλληλες
προγραμματιστικές αφαιρέσεις (αντικείμενα)

• Ένα ρολόϊ αποτελείται από μετρητές ωρών (hr), λεπτών (min) και
δευτερολέπτων (sec)

– Κάθε μετρητής έχει μια αριθμητική τιμή (κατάσταση)

– Η τιμή αυξάνεται κατά μια μονάδα

– Ο μετρητής μηδενίζεται όταν φτάσει μια ανώτατη τιμή

– Ο μηδενισμός επιφέρει αύξηση του αριστερού μετρητή
Laptop

Παράδειγμα: ρολόϊ

• Τάξη Counter: στιγμιότυπα αναπαριστούν μετρητές

class Counter:

 def __init__(self, value, res, next = None):

 self.value = value

 self.res = res

 self.next = next

 def advance(self):

 self.value = (self.value + 1) % self.res

 if self.value == 0 and self.next != None:

 self.next.advance()

 def __str__(self):

 return str(self.value)

Laptop

Παράδειγμα: ρολόϊ

• Τάξη Clock: στιγμιότυπα αναπαριστούν ρολόϊ

class Clock:

 def __init__(self, h, m, s):

 self.hr = Counter(h, 24)

 self.min = Counter(m, 60, self.hr)

 self.sec = Counter(s, 60, self.min)

 def tick(self):

 self.sec.advance()

 def __str__(self):

 return f'{self.hr}:{self.min}:{self.sec}'

Laptop

Παράδειγμα: ρολόϊ

• Εφαρμογή που χρησιμοποιεί ρολόϊ

def run(clock):

 from time import sleep

 while True:

 print(clock, end = '\r')

 sleep(1)

 clock.tick()

run(Clock(23, 59, 50))

Laptop

Παράδειγμα: ρολόϊ

• Βελτίωση 1: ρολόϊ με διψήφιους μετρητές

class TwoDigitCounter(Counter):

 def __str__(self):

 return str(self.value // 10) + str(self.value % 10)

class Clock2(Clock):

 def __init__(self, h, m, s):

 self.hr = TwoDigitCounter(h, 24)

 self.min = TwoDigitCounter(m, 60, self.hr)

 self.sec = TwoDigitCounter(s, 60, self.min)

run(Clock2(23, 59, 50))

Laptop

Παράδειγμα: ρολόϊ

• Βελτίωση 2: ρολόϊ όπου ο τύπος των μετρητών είναι παράμετρος του
κατασκευαστή

class ClockΧ(Clock):

 def __init__(self, h, m, s, Χ = Counter):

 self.hr = X(h, 24)

 self.min = X(m, 60, self.hr)

 self.sec = X(s, 60, self.min)

run(ClockX(23, 59, 50, TwoDigitCounter))

Laptop

Παράδειγμα: ρολόϊ

• Επέκταση: ρολόϊ με δυαδικά ψηφία

class BinaryCounter(Counter):

 def __str__(self):

 return '0' * (6-self.value.bit_length()-(self.value == 0)) \

 + bin(self.value)[2:]

run(ClockX(23, 59, 50, BinaryCounter))

	Slide 1: Εισαγωγή στον Προγ/μό Υπολογιστών
	Slide 2: Περιεχόμενα
	Slide 8: Αντικείμενα και τάξεις
	Slide 11: Αντικειμενοστραφής προγραμματισμός
	Slide 12: Τάξεις
	Slide 14: Τάξεις
	Slide 15: Τάξεις και αντικείμενα
	Slide 16: Τάξεις και αντικείμενα
	Slide 17: Τάξεις και αντικείμενα
	Slide 18: Τάξεις και αντικείμενα
	Slide 19: Ορισμός τάξεων
	Slide 20: Ορισμός τάξεων
	Slide 22: Ορισμός τάξεων
	Slide 23: Ορισμός τάξεων
	Slide 24: Ορισμός τάξεων
	Slide 26: Ορισμός τάξεων
	Slide 28: Ορισμός τάξεων
	Slide 30: Ορισμός τάξεων
	Slide 31: Ορισμός τάξεων
	Slide 32: Ορισμός τάξεων
	Slide 34: Εκφράσεις με τελεία (dot expressions)
	Slide 35: Εκφράσεις με τελεία
	Slide 37: Συναρτήσεις και μέθοδοι
	Slide 38: Συναρτήσεις και μέθοδοι
	Slide 39: Συμβάσεις ονομάτων στην Python
	Slide 41: Ιδιότητες τάξης
	Slide 42: Ιδιότητες τάξης
	Slide 43: Ιδιότητες τάξης
	Slide 44: Ιδιότητες τάξης
	Slide 46: Ιδιότητες τάξης
	Slide 47: Ιδιότητες τάξης
	Slide 48: Ιδιότητες τάξης
	Slide 49: Ιδιότητες τάξης
	Slide 50: Ιδιότητες τάξης
	Slide 51: Ιδιότητες τάξης
	Slide 52: Ιδιότητες τάξης
	Slide 53: Ιδιότητες τάξης
	Slide 54: Ιδιότητες τάξης
	Slide 55: Ιδιότητες τάξης
	Slide 56: Κληρονομικότητα
	Slide 59: Κληρονομικότητα
	Slide 60: Κληρονομικότητα
	Slide 61: Κληρονομικότητα
	Slide 63: Κληρονομικότητα
	Slide 65: Κληρονομικότητα
	Slide 66: Interfaces
	Slide 67: Interfaces
	Slide 68: Interfaces
	Slide 69: Interfaces
	Slide 74: Γενικές (generic) συναρτήσεις
	Slide 75: Γενικές συναρτήσεις
	Slide 76: Γενικές συναρτήσεις
	Slide 77: Γενικές συναρτήσεις
	Slide 78: Γενικές συναρτήσεις
	Slide 80: Γενικές συναρτήσεις
	Slide 81: Γενικές συναρτήσεις
	Slide 83: Γενικές συναρτήσεις
	Slide 84: Γενικές συναρτήσεις
	Slide 85: Γενικές συναρτήσεις
	Slide 86: Παράδειγμα: ρολόϊ
	Slide 89: Παράδειγμα: ρολόϊ
	Slide 90: Παράδειγμα: ρολόϊ
	Slide 91: Παράδειγμα: ρολόϊ
	Slide 92: Παράδειγμα: ρολόϊ
	Slide 93: Παράδειγμα: ρολόϊ
	Slide 94: Παράδειγμα: ρολόϊ
	Slide 95: Παράδειγμα: ρολόϊ

