
Διάλεξη 12

Ρεύματα (streams), αρχεία, επικοινωνία υπολογιστών

Εισαγωγή στον
Προγ/μό
Υπολογιστών

Περιεχόμενα

1. Ρεύματα (streams)

2. Υλοποίηση

3. Αρχεία

4. Συσκευές εισόδου/εξόδου

5. Επικοινωνία μεταξύ υπολογιστών

Ρεύματα (streams)

Streams

• Ρεύματα (streams): ακολουθίες όπου τα στοιχεία προσπελαύνονται στη
σειρά με lazy evaluation
– Πχ, generators

• Χρήσιμα στην
– ανάγνωση/αποθήκευση αρχείων δεδομένων
– ανάγνωση/εγγραφή σε συσκευές εισόδου/εξόδου
– αποστολή/λήψη δεδομένων από άλλους υπολογιστές
– αναπαράσταση ακολουθιών με άπειρα ή πάρα πολλά στοιχεία
– επεξεργασία δεδομένων μεγάλου όγκου/ρυθμού παραγωγής

• Επεξεργασία ρευμάτων (stream processing): τρόπος υπολογισμού που
βασίζεται σε ρεύματα

Streams

• Βασική λειτουργία: προσπέλαση επόμενου στοιχείου

• Παράδειγμα: generator ακέραιων που αρχίζουν από start:

>>> def integers(start):
x = start
while True:

yield x
x = x + 1

>>> integer_stream = integers(1)
>>> next(integer_stream)
1
>>> next(integer_stream)
2

Streams

• Επεξεργασία ρευμάτων: νέα ρεύματα μπορούν να παραχθούν από άλλα,
χωρίς να έχουν υπολογιστεί τα στοιχεία τους

– Πχ, αφαίρεση πολλαπλασίων του k από την ακολουθία stream
>>> def remove_multiples(k, stream):

return filter(lambda x: x % k != 0, stream)

>>> odd_stream = remove_multiples(2, integers(1))
>>> next(odd_stream)
1
>>> next(odd_stream)
3
>>> next(odd_stream)
5

Streams

• Παράδειγμα: ρεύμα πρώτων αριθμών

>>> def primes():

numbers = integers(2)

while True:

first = next(numbers)

yield first

numbers = remove_multiples(first, numbers)

>>> prime_stream = primes()

>>> next(prime_stream)
2

>>> next(prime_stream)

3

>>> next(prime_stream)

5

Υλοποίηση

Υλοποίηση ρευμάτων

• Generator: αντικείμενo που ανταποκρίνεται στα μήνυματα __next__
και __iter__

>>> class Stream:

def __next__(self):

pass

def __iter__(self):

return self

Υλοποίηση ρευμάτων

• Ρεύμα ακέραιων αριθμών:
>>> class integers(Stream):

def __init__(self, start = 0):
self.x = start

def __next__(self):
value, self.x = self.x, self.x + 1
return value

>>> integer_stream = integers(1)
>>> integer_stream.__next__()
1
>>> next(integer_stream)
2
>>> next(integer_stream)
3

Υλοποίηση ρευμάτων

• Επεξεργασία ρευμάτων (φιλτράρισμα):
>>> class filter(Stream):

def __init__(self, func, stream):

self.func = func

self.stream = stream

def __next__(self):

while True:

value = next(self.stream)

if self.func(value):

return value
>>> even_stream = filter(lambda x: x % 2 == 0, integers(1))

>>> next(even_stream)

2

>>> next(even_stream)

4

Υλοποίηση ρευμάτων

• Ρεύμα πρώτων αριθμών:
>>> class primes(Stream):

def __init__(self):
self.numbers = integers(2)

def __next__(self):
value = next(self.numbers)
self.numbers = filter(lambda x:x%value!=0, \

self.numbers)
return value

>>> prime_stream = primes()
>>> next(prime_stream)
2
>>> next(prime_stream)
3
>>> next(prime_stream)
5

Υλοποίηση ρευμάτων

• Εμφάνιση πρώτων αριθμών εως 50:

>>> for prime in primes():
if prime > 50:

break
print(prime)

2
3
5
7
11
13
17
19
23
29
31
37
41
43
47

Αρχεία

Αρχεία
• Αρχείο (file): ακολουθία που έχει αποθηκευτεί στο σύστημα αρχείων ενός

λειτουργικού συστήματος
– Mutable δεδομένο
– Έχει όνομα
– Συνήθως έχει πεπερασμένο μέγεθος
– Μπορεί να αναπαριστά συσκευή εισόδου/εξόδου ή μνήμη
– Persistent (επίμονο) δεδομένο: διατηρείται μετά τον τερματισμό του

προγράμματος ή προϋπάρχει της έναρξης

• Σύστημα αρχείων (file system): σύνολο αρχείων και τρόπος διαχείρισης
και οργάνωσης τους σε καταλόγους και αποθηκευτικά μέσα

• Η διαχείριση, δημιουργία, αποθήκευση και ανάγνωση αρχείων γίνεται
μέσω ρευμάτων:
– Προσπέλαση επόμενων δεδομένων: read(n) (αντί με
__next__()όπως στους generators)

Αρχεία

• Κατασκευή ρεύματος για την ανάγνωση χαρακτήρων από αρχείο

>>> stream = open('shakespeare.txt')
>>> stream

<_io.TextIOWrapper name='shakespeare.txt' mode='r' encoding='UTF-8'>
>>> stream.read(1)
'A'

>>> stream.read(10)
' MIDSUMMER'

>>> rest_of_text = stream.read()
>>> len(rest_of_text)

4538512
>>> stream.close()

Αρχεία

• Κατασκευή ρεύματος για εγγραφή χαρακτήρων σε αρχείο:

>>> stream = open('famous_lines.txt', 'w')
>>> stream
<_io.TextIOWrapper name='famous_lines.txt' mode='w' encoding='UTF-8'>
>>> stream.write('To be')
5
>>> stream.write(' or not to be.')
>>> stream.close()

• Mode ανοίγματος αρχείου (2η παράμετρος της open)
• 'w': εγγραφή. (Δημιουργία αρχείου αν δεν υπάρχει, αν υπάρχει διαγράφονται τα

παλιά δεδομένα και η εγγραφή αρχίζει από την αρχή.)
• 'a': προσθήκη (append). (Δημιουργία αρχείου αν δεν υπάρχει – αν υπάρχει η

εγγραφή αρχίζει από το τέλος των παλιών δεδομένων.)
• 'w+': εγγραφή και ανάγνωση
• 'r+': προσθήκη και ανάγνωση

Αρχεία

• Η εγγραφή στο μέσο αποθήκευσης γίνεται ετεροχρονισμένα (άλλη μια
μορφή lazy evaluation)

>>> f = open('test.out', 'w')

>>> f.write('hello')

>>> g = open('test.out')

>>> g.read()

''

>>> f.close()

>>> g.read()

'hello'

• Η κλήση της μεθόδου close ολοκληρώνει τυχόν εκκρεμείς εγγραφές

Αρχεία

• Η κλήση της μεθόδου close μπορεί να αποτραπεί από κάποια εξαίρεση

>>> try:

f = open('test.out', 'w')

f.write('hello')

1 / 0

f.close()

except Exception:

print('Something bad happened...')

5
Something bad happened!

>>> g = open('test.out')

>>> g.read()

''

Αρχεία

• Επικεφαλίδα finally: εκτελούνται οι εντολές στο μπλόκ της όταν
τελειώσει το μπλοκ try ή κάποιο except (αν υπάρξει χειρισμός εξαίρεσης)
– Ακόμα και αν περιλαμβάνουν εντολή return, break ή continue

>>> try:

f = open('test.out', 'w')

f.write('hello')

1 / 0

except Exception:

print('Something bad happened...')
finally:

f.close()

Αρχεία

• Εντολή with:

>>> with open('test.txt', 'w') as f:
... f.write('hello')
... 1 / 0.
5
Traceback (most recent call last):

File "<stdin>", line 3, in <module>
ZeroDivisionError: division by zero
>>> g = open('test.txt')
>>> g.read()
'hello'

• Εκτελείται f.close() αυτόματα μετά το τέλος του μπλοκ είτε συμβεί
εξαίρεση είτε όχι, όπως με τα μπλοκ try...finally
– Ο χειρισμός τυχούσας εξαίρεσης γίνεται μετά το f.close()

Αρχεία

• Δημιουργία ρεύματος για εγγραφή δεδομένων bytes σε αρχείο:

>>> with open('data', 'wb') as stream

stream.write(b'hello')

stream.write((2019).to_bytes(2, 'big'))

• Ανάγνωση:
>>> with open('data', 'rb') as stream

s = stream.read(5).decode()

x = int.from_bytes(stream.read(2), 'big')

>>> s

'hello'

>>> x

2019

Συσκευές εισόδου/εξόδου

Συσκευές εισόδου/εξόδου

• Συσκευές εισόδου: πληκτρολόγιο, ποντίκι, μικρόφωνο, αισθητήρες κλπ.
• Συσκευές εξόδου: οθόνη, τερματικό, ηχεία, κλπ.

• Οι συσκευές εισόδου/εξόδου αναπαρίστανται από το λειτουργικό
σύστημα ως αρχεία
– Τα προγράμματα επικοινωνούν με τις συσκευές χρησιμοποιώντας

ρεύματα

Συσκευές εισόδου/εξόδου

• Standard συσκευές εισόδου/εξόδου: αρχικοποιημένα ρεύματα (χαρακτήρων)
για βασική επικοινωνία προγραμμάτων με προκαθορισμένες συσκευές
εισόδου εξόδου
– standard είσοδος (stdin): ρεύμα εισόδου δεδομένων από χρήστη
– standard έξοδος (stdout): ρεύμα εξόδου προγράμματος
– standard έξοδος λαθών (stderr): ρεύμα εξόδου για εμφάνιση

μηνυμάτων λάθους

>>> import sys
>>> sys.stdin
<_io.TextIOWrapper name='<stdin>' mode='r' encoding='UTF-8'>
>>> sys.stdout
<_io.TextIOWrapper name='<stdout>' mode='w' encoding='UTF-8'>
>>> sys.stderr
<_io.TextIOWrapper name='<stderr>' mode='w' encoding='UTF-8'>

• Η χρήση των ρευμάτων αυτών ή των προκαθορισμένων συσκευών είναι
προαιρετική. Μπορεί να υπάρξει επικοινωνία και με άλλες συσκευές

Συσκευές εισόδου/εξόδου

• Standard έξοδος
>>> from sys import stdout
>>> stdout.write('hello\n')
hello
6

• Standard είσοδος
>>> from sys import stdin
>>> user_data = stdin.read(5)
hello world
>>> user_data
'hello'
>>> user_data = stdin.readline()
To be or not to be
>>> user_data
'To be or not to be\n'

Συσκευές εισόδου/εξόδου

• Standard έξοδος λαθών
>>> import sys

>>> sys.stderr = open('errors.log','a')

>>> print('This goes here')

This goes here

>>> 1/0

>>> print('Error!!!', file = sys.stderr)

>>> sys.stderr.flush()

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ZeroDivisionError: division by zero
Error!!!

Αρχείο errors.log

Επικοινωνία μεταξύ υπολογιστών

• Οι περισσότεροι υπολογιστές διασυνδέονται στο διαδίκτυο (internet)
• Κάθε υπολογιστής ή δρομολογητής (router) έχει μια διεύθυνση IP
• Η πληροφορία αποστέλλεται σε «πακέτα» δεδομένων
• Η ταχύτητα και το δρομολόγιο αποστολής καθορίζεται από τα

πρωτόκολλα TCP/IP

• Για την αποστολή/λήψη δεδομένων από τα προγράμματα στους
υπολογιστές στις άκρες του δικτύου χρησιμοποιούνται ρεύματα

Επικοινωνία μεταξύ υπολογιστών

87.92.129.32

125.92.75.02

87.92.120.1 120.98.123.9

120.98.254.77

125.100.5.10

Επικοινωνία μεταξύ υπολογιστών

• socket: σύνθετο δεδομένο για την αποστολή και λήψη δεδομένων

– Είναι ρεύμα εισόδου και εξόδου
• Είσοδος = λήψη δεδομένων (recv(n) αντί read(n))
• Έξοδος = αποστολή (send(x) αντί write(x))

– Διαθέτει επιπλέον λειτουργίες εγκατάστασης επικοινωνίας:
• Αντιστοίχιση σε τοπική διεύθυνση IP (bind)
• Σύνδεση στην απομακρυσμένη διεύθυνση IP (connect)
• Αναμονή για αιτήσεις σύνδεσης (listen, accept)
• Τερματισμός σύνδεσης (close)

Επικοινωνία μεταξύ υπολογιστών

>>> from socket import *

>>> r = socket()

>>> r.connect(('125.92.75.32', 992))

>>> r.send(b'hello')
5

>>> r.recv(5).decode()

'how a'

>>> r.recv(10).decode()

're you?'

>>> r.send(b'bye')

3
>>> r.close()

>>> from socket import *

>>> s = socket()

>>> s.bind(('125.92.75.32', 992))

>>> s.listen()
>>> res = s.accept()

>>> res[0].recv(5).decode()

'hello'

>>> res[0].send(b'how are you?')

12

>>> res[0].recv(5).decode()

'bye'
>>> res[0].close()

87.92.129.32

125.92.75.32
'hello'

'bye'

'how are you'

:992

:62874

Επικοινωνία μεταξύ υπολογιστών

>>> from urllib.request import urlopen

>>> response = urlopen('https://www.aueb.gr/')

>>> response.readline()

b'<!DOCTYPE html>\n'
>>> response.readline().decode()

'<html lang="el" dir="ltr">\n'

>>> response.readline().decode()

'<head>\n'

>>> response.readline().decode()

'<meta name="description" content="Οικονοµικό
Πανεπιστήµιο Αθηνών | Athens University of
Economics and Business">\n'

πρόγραµµα webserver

87.92.129.32 'GET'

'<!DOCTYPE html>…'

195.251.255.156
(www.aueb.gr)

:62874

:80

Επικοινωνία μεταξύ υπολογιστών

>>> response = urlopen('https://www.aueb.gr/')

>>> f = open('result.html','w')

>>> f.write(response.read().decode())

508354
>>> f.close()

πρόγραµµα webserver

87.92.129.32 'GET'

'<!DOCTYPE html>…'

195.251.255.156
(www.aueb.gr)

:80

:62874

Επικοινωνία μεταξύ υπολογιστών

>>> response = urlopen('https://www.aueb.gr/')

>>> f = open('result.html','w')

>>> f.write(response.read().decode())

508354
>>> f.close()

>>> from os import system

>>> system('/Applications/Google\
Chrome.app/Contents/MacOS/Google\ Chrome
result.html')
Opening in existing browser session.

0

πρόγραµµα webserver

87.92.129.32 'GET'

'<!DOCTYPE html>…'

195.251.255.156
(www.aueb.gr)

:80

