
Εισαγωγή στον 
Προγ/μό 
Υπολογιστών

Διάλεξη 11

Εξαιρέσεις (exceptions)



Περιεχόμενα

1. Σφάλματα

2. Εξαιρέσεις (exceptions)

3. Χειρισμός εξαιρέσεων



Σφάλματα

• Τύποι σφαλμάτων:
1. Συντακτικά λάθη

>>> def function(,a)
File "<stdin>", line 1

def function(,a)
^

SyntaxError: invalid syntax

2. Σφάλματα εκτέλεσης
• Σε γλώσσες με διερμήνευση (πχ, Python) τα συντακτικά είναι σφάλματα εκτέλεσης
>>> 1/0
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ZeroDivisionError: division by zero

3. Σφάλματα λογικής
>>> i = 0
>>> while i < 10:

print(i)

Η ροή εκτέλεσης δεν μπορεί 
να συνεχιστεί χωρίς 
χειρισμό του σφάλματος



Εξαιρέσεις



Εξαιρέσεις

• Εξαίρεση (exception): η διακοπή της κανονικής ροής εκτέλεσης ενός 
προγράμματος

• Χειρισμός εξαίρεσης (exception handling): εκτέλεση ειδικού κώδικα που 
χειρίζεται την εξαίρεση (πχ, εμφάνιση μηνύματος λάθους και συνέχιση της 
εκτέλεσης)

• Σε περίπτωση που δεν υπάρχει χειρισμός οι εξαιρέσεις προκαλούν 
τερματισμό εκτέλεσης προγράμματος
– Έξω από το διαδραστικό περιβάλλον, ο διερμηνευτής τερματίζει
– Στο διαδραστικό περιβάλλον, σταματάει η αποτίμηση και εμφανίζεται η 

προτροπή >>>
– Εμφάνιση του σημείου εντοπισμού (σηματοδότησης) και του τύπου της 

εξαίρεσης



Εξαιρέσεις

• Το σημείο όπου συνέβη η εξαίρεση περιγράφεται με το stack trace
– stack trace: αλληλουχία κλήσεων όπου προκλήθηκε η εξαίρεση

>>> def f():

g()

>>> def g():

h()

>>> def h():

1/0

>>> f()
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "<stdin>", line 2, in f

File "<stdin>", line 2, in g

File "<stdin>", line 2, in h

ZeroDivisionError: division by zero 



Εξαιρέσεις

• Οι εξαιρέσεις μπορούν να προκληθούν κατά βούληση με την εντολή raise
>>> raise ZeroDivisionError()

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ZeroDivisionError

• Κάθε εξαίρεση δημιουργεί ένα αντικείμενο που περιγράφει το είδος της και 
άλλες πληροφορίες. Το είδος της εξαίρεσης αντιστοιχεί στην τάξη του 
αντικειμένου

• Γενική μορφή: raise <έκφραση>
– <έκφραση>: αντικείμενο τάξης που κληρονομεί την ενσωματωμένη 

τάξη BaseException



Εξαιρέσεις

• Συνήθως χρησιμοποιούνται αντικείμενα τάξης που κληρονομεί την 
Exception
>>> raise Exception('famous last words')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
Exception: famous last words

• Οι περισσότερες ενσωματωμένες εξαιρέσεις κληρονομούν την Exception
– Πχ, ZeroDivisionError, StopIteration, ValueError, 

SyntaxError

• Ο προγραμματιστής μπορεί να ορίσει και να χρησιμοποιήσει σε raise
δικές του εξαιρέσεις που κληρονομούν την Exception

BaseException

Exception KeyboardInterrupt

ZeroDivisionError StopIteration

...
...



Χειρισμός εξαιρέσεων



Χειρισμός εξαιρέσεων

• Χειρισμός σφαλμάτων με την εντολή try
>>> try:

print('Hello')
1/0
print('Never printed')

except ZeroDivisionError as e:
print(e, 'caught')

Hello
division by zero caught

• Ο χειρισμός μιας εξαίρεσης που σηματοδοτείται μέσα στο μπλοκ εντολών 
της σύνθετης εντολής try, γίνεται από το μπλοκ εντολών της 
επικεφαλίδας except που αφορά τον τύπο αυτής της εξαίρεσης



Χειρισμός εξαιρέσεων

• Γενική μορφή:
try:

<µπλόκ_εντολών_try>

except <τάξη_εξαίρεσης> as <όνοµα>:

<µπλόκ_εντολών>

...

– Πρέπει να υπάρχει τουλάχιστον μια επικεφαλίδα except

Εκτέλεση:
1. Εκτελούνται οι εντολές στο <µπλόκ_εντολών_try>
2. Αν δεν υπάρξει εξαίρεση, μετά το <µπλόκ_εντολών_try> τελειώνει η 

εκτέλεση της try. (Δεν εκτελούνται τα <µπλόκ_εντολών> των 
επικεφαλίδων except)

3. Αν προκληθεί εξαίρεση στις εντολές του <µπλόκ_εντολών_try> ή στις 
συναρτήσεις/μεθόδους που καλούν, σταματάει η ροή εκτέλεσης και ο έλεγχος 
μεταφέρεται στο <µπλόκ_εντολών> της πρώτης επικεφαλίδας except με 
<τάξη_εξαίρεσης> ίδια με (ή πιο γενική από) το αντικείμενο εξαίρεσης



Χειρισμός εξαιρέσεων

>>> for x in [1, 2, 'hello']:
print(x)

1
2
hello

• Ισοδύναμη υλοποίηση for με while:
>>> iterator = iter([1, 2, 'hello'])
>>> try:

while True:
x = next(iterator)
print(x)

except StopIteration:
pass

1
2
hello



Χειρισμός εξαιρέσεων

• Παράδειγμα:
>>> def inverse(x):

return 1/x
>>> inverse(0)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 2, in inverse

ZeroDivisionError: division by zero

>>> def safe_inverse(x):
try:

return 1/x
except ZeroDivisionError():

print("Can't invert 0.")
>>> safe_inverse(0)
Can't invert 0.



Χειρισμός εξαιρέσεων

• Ο χειρισμός μιας εξαίρεσης ίσως είναι πιο κατάλληλο να γίνει αλλού: η 
safe_inverse δεν γνωρίζει τι πρέπει να κάνει

• Πιο χρήσιμο παράδειγμα: χειρισμός απομακρυσμένων σφαλμάτων
>>> try:

print('Hello')

x = int(input('Integer to invert: '))

print(inverse(x))
except Exception:

print('Hey user, don\'t waste my time')

Hello

Integer to invert: 0
Hey user, don't waste my time



Χειρισμός εξαιρέσεων

• Οι εξαιρέσεις είναι ένας τρόπος χειρισμού σφαλμάτων εκτέλεσης

• Ένας άλλος τρόπος είναι ο έλεγχος εγκυρότητας (πχ, με if) και 
ειδοποίηση σφαλμάτων με ειδικές τιμές επιστροφής των συναρτήσεων
– Παράδειγμα: example_without_exceptions.py
– Ο χειρισμός σφαλμάτων (έστω για ειδοποίηση εντοπισμού) είναι 

διάσπαρτος σε όλο το πρόγραμμα

• Με τις εξαιρέσεις, ο χειρισμός σφαλμάτων και ο εντοπισμός  τους 
οργανώνονται σε χωριστά τμήματα του προγράμματος
– Παράδειγμα: example_with_exceptions.py
– Πιο ευανάγνωστα προγράμματα

https://eclass.aueb.gr/modules/document/file.php/INF259/%CE%94%CE%B9%CE%B1%CE%BB%CE%AD%CE%BE%CE%B5%CE%B9%CF%82/%CE%9A%CF%8E%CE%B4%CE%B9%CE%BA%CE%B1%CF%82/11/example_without_exceptions.py
https://eclass.aueb.gr/modules/document/file.php/INF259/%CE%94%CE%B9%CE%B1%CE%BB%CE%AD%CE%BE%CE%B5%CE%B9%CF%82/%CE%9A%CF%8E%CE%B4%CE%B9%CE%BA%CE%B1%CF%82/11/example_with_exceptions.py


Κώδικας χωρίς εντοπισμό/χειρισμό λαθών

from operator import add, sub, mul, truediv
def my_parse(s):

cmd_list = s.split()

operators = {'+':add, '-':sub, '*':mul, '/':truediv}

op = operators[cmd_list[1]]
x = float(cmd_list[0])

y = float(cmd_list[2])

return op, x, y

while True:
cmd = input('My >>> ')

func, x, y = my_parse(cmd)
print(func(x, y))

Λάθος IndexError αν η 
συμβολοσειρά s περιέχει 
λιγότερες από τρεις λέξεις 
(αριστερός τελεστέος, 
τελεστής, δεξιός τελεστέος)

Λάθος KeyError αν ο τελεστής 
cmd_list[1] δεν είναι '+', 
'-', '*', ή '/'

Λάθος ValueError αν ο τελεστέος
cmd_list[0] ή cmd_list[2]
δεν είναι αριθμός

Λάθος ZeroDivisionError εάν κληθεί η 
διαίρεση (func == truediv) και y == 0



Εντοπισμός & χειρισμός λαθών χωρίς εξαιρέσεις

from operator import add, sub, mul, truediv
def my_parse(s):

cmd_list = s.split()
if len(cmd_list) != 3:

print('Wrong expression')
return None

operators = {'+':add, '-':sub, '*':mul, '/':truediv}
if cmd_list[1] not in operators:

print('Unknown operator')
return None       

op = operators[cmd_list[1]]
if not cmd_list[0].isnumeric() or not cmd_list[2].isnumeric():

print('Illegal argument')
return None

x = float(cmd_list[0])
y = float(cmd_list[2])
if op == truediv and y == 0:

print('Can\'t divide by 0’)
return None

return op, x, y

while True:
cmd = input('My >>> ')
result = my_parse(cmd)
if result != None:

func, x, y = result
print(func(x, y))



Εντοπισμός & χειρισμός λαθών με εξαιρέσεις

from operator import add, sub, mul, truediv
def my_parse(s):

cmd_list = s.split()
if len(cmd_list) > 3:

raise IndexError

operators = {'+':add, '-':sub, '*':mul, '/':truediv}
op = operators[cmd_list[1]]
x = float(cmd_list[0])
y = float(cmd_list[2])

return op, x, y

while True:
try:

cmd = input('My >>> ‘)
func, x, y = my_parse(cmd)
print(func(x, y))

except IndexError:
print('Wrong expression')

except KeyError:
print('Illegal operator')

except ValueError:
print('Illegal argument')

except ZeroDivisionError:
print('Can\'t divide by 0')


