
Εισαγωγή στον Προγ/μό
Υπολογιστών

Διάλεξη 10

Παράγωγες ακολουθίες

Περιεχόμενα

1. Iterators
– Iterables
– Σχέση με την εντολή for

2. Generators (γεννήτριες)
– Generator functions
– Generator comprehensions

Iterators

Iterators

• Οι επαναληπτικοί υπολογισμοί σαρώνουν ένα-ένα τα στοιχεία ενός
δεδομένου που περιέχει πολλά στοιχεία, πχ, μιας ακολουθίας ή συνόλου

• Iterator: δεδομένο το οποίο δίνει τη δυνατότητα σάρωσης όλων των
στοιχείων με αφηρημένο τρόπο, δηλ., ανεξάρτητο από τον τύπο του
δεδομένου που τα περιέχει

– Κατασκευαστής: iter(iterable)
• Επιστρέφει iterator iterator για τη σάρωση στοιχείων του iterable
iterable
– Iterable: οποιοσδήποτε τύπος δεδομένου που μπορεί να δοθεί ως

όρισμα της iter, πχ., ακολουθίες, σύνολα, λεξικά

– Επιλογέας: next(iterator)
• Επιστρέφει το επόμενο στοιχείο του iterable με το οποίο έχει κληθεί ο

κατασκευαστής του iterator

[1, 2, 'Hello', None]

Iterators

• Οι επαναληπτικοί υπολογισμοί σαρώνουν ένα-ένα τα στοιχεία ενός
δεδομένου που περιέχει πολλά στοιχεία, πχ, μιας ακολουθίας ή συνόλου

• Iterator: δεδομένο το οποίο δίνει τη δυνατότητα σάρωσης όλων των
στοιχείων με αφηρημένο τρόπο, δηλ., ανεξάρτητο από τον τύπο του
δεδομένου που τα περιέχει

– Κατασκευαστής: iter(iterable)
• Επιστρέφει iterator iterator για τη σάρωση στοιχείων του iterable
iterable
– Iterable: οποιοσδήποτε τύπος δεδομένου που μπορεί να δοθεί ως

όρισμα της iter, πχ., ακολουθίες, σύνολα, λεξικά

– Επιλογέας: next(iterator)
• Επιστρέφει το επόμενο στοιχείο του iterable με το οποίο έχει κληθεί ο

κατασκευαστής του iterator1

[1, 2, 'Hello', None]

Iterators

• Οι επαναληπτικοί υπολογισμοί σαρώνουν ένα-ένα τα στοιχεία ενός
δεδομένου που περιέχει πολλά στοιχεία, πχ, μιας ακολουθίας ή συνόλου

• Iterator: δεδομένο το οποίο δίνει τη δυνατότητα σάρωσης όλων των
στοιχείων με αφηρημένο τρόπο, δηλ., ανεξάρτητο από τον τύπο του
δεδομένου που τα περιέχει

– Κατασκευαστής: iter(iterable)
• Επιστρέφει iterator iterator για τη σάρωση στοιχείων του iterable
iterable
– Iterable: οποιοσδήποτε τύπος δεδομένου που μπορεί να δοθεί ως

όρισμα της iter, πχ., ακολουθίες, σύνολα, λεξικά

– Επιλογέας: next(iterator)
• Επιστρέφει το επόμενο στοιχείο του iterable με το οποίο έχει κληθεί ο

κατασκευαστής του iterator2

[1, 2, 'Hello', None]

Iterators

• Οι επαναληπτικοί υπολογισμοί σαρώνουν ένα-ένα τα στοιχεία ενός
δεδομένου που περιέχει πολλά στοιχεία, πχ, μιας ακολουθίας ή συνόλου

• Iterator: δεδομένο το οποίο δίνει τη δυνατότητα σάρωσης όλων των
στοιχείων με αφηρημένο τρόπο, δηλ., ανεξάρτητο από τον τύπο του
δεδομένου που τα περιέχει

– Κατασκευαστής: iter(iterable)
• Επιστρέφει iterator iterator για τη σάρωση στοιχείων του iterable
iterable
– Iterable: οποιοσδήποτε τύπος δεδομένου που μπορεί να δοθεί ως

όρισμα της iter, πχ., ακολουθίες, σύνολα, λεξικά

– Επιλογέας: next(iterator)
• Επιστρέφει το επόμενο στοιχείο του iterable με το οποίο έχει κληθεί ο

κατασκευαστής του iterator'Hello'

[1, 2, 'Hello', None]

Iterators

• Οι επαναληπτικοί υπολογισμοί σαρώνουν ένα-ένα τα στοιχεία ενός
δεδομένου που περιέχει πολλά στοιχεία, πχ, μιας ακολουθίας ή συνόλου

• Iterator: δεδομένο το οποίο δίνει τη δυνατότητα σάρωσης όλων των
στοιχείων με αφηρημένο τρόπο, δηλ., ανεξάρτητο από τον τύπο του
δεδομένου που τα περιέχει

– Κατασκευαστής: iter(iterable)
• Επιστρέφει iterator iterator για τη σάρωση στοιχείων του iterable
iterable
– Iterable: οποιοσδήποτε τύπος δεδομένου που μπορεί να δοθεί ως

όρισμα της iter, πχ., ακολουθίες, σύνολα, λεξικά

– Επιλογέας: next(iterator)
• Επιστρέφει το επόμενο στοιχείο του iterable με το οποίο έχει κληθεί ο

κατασκευαστής του iterator

[1, 2, 'Hello', None]

None

Iterators

• Οι επαναληπτικοί υπολογισμοί σαρώνουν ένα-ένα τα στοιχεία ενός
δεδομένου που περιέχει πολλά στοιχεία, πχ, μιας ακολουθίας ή συνόλου

• Iterator: δεδομένο το οποίο δίνει τη δυνατότητα σάρωσης όλων των
στοιχείων με αφηρημένο τρόπο, δηλ., ανεξάρτητο από τον τύπο του
δεδομένου που τα περιέχει

– Κατασκευαστής: iter(iterable)
• Επιστρέφει iterator iterator για τη σάρωση στοιχείων του iterable
iterable
– Iterable: οποιοσδήποτε τύπος δεδομένου που μπορεί να δοθεί ως

όρισμα της iter, πχ., ακολουθίες, σύνολα, λεξικά

– Επιλογέας: next(iterator)
• Επιστρέφει το επόμενο στοιχείο του iterable με το οποίο έχει κληθεί ο

κατασκευαστής του iterator

{1, 2, 'Hello', None}

Iterators

• Οι επαναληπτικοί υπολογισμοί σαρώνουν ένα-ένα τα στοιχεία ενός
δεδομένου που περιέχει πολλά στοιχεία, πχ, μιας ακολουθίας ή συνόλου

• Iterator: δεδομένο το οποίο δίνει τη δυνατότητα σάρωσης όλων των
στοιχείων με αφηρημένο τρόπο, δηλ., ανεξάρτητο από τον τύπο του
δεδομένου που τα περιέχει

– Κατασκευαστής: iter(iterable)
• Επιστρέφει iterator iterator για τη σάρωση στοιχείων του iterable
iterable
– Iterable: οποιοσδήποτε τύπος δεδομένου που μπορεί να δοθεί ως

όρισμα της iter, πχ., ακολουθίες, σύνολα, λεξικά

– Επιλογέας: next(iterator)
• Επιστρέφει το επόμενο στοιχείο του iterable με το οποίο έχει κληθεί ο

κατασκευαστής του iterator1

{1, 2, 'Hello', None}

Iterators

• Οι επαναληπτικοί υπολογισμοί σαρώνουν ένα-ένα τα στοιχεία ενός
δεδομένου που περιέχει πολλά στοιχεία, πχ, μιας ακολουθίας ή συνόλου

• Iterator: δεδομένο το οποίο δίνει τη δυνατότητα σάρωσης όλων των
στοιχείων με αφηρημένο τρόπο, δηλ., ανεξάρτητο από τον τύπο του
δεδομένου που τα περιέχει

– Κατασκευαστής: iter(iterable)
• Επιστρέφει iterator iterator για τη σάρωση στοιχείων του iterable
iterable
– Iterable: οποιοσδήποτε τύπος δεδομένου που μπορεί να δοθεί ως

όρισμα της iter, πχ., ακολουθίες, σύνολα, λεξικά

– Επιλογέας: next(iterator)
• Επιστρέφει το επόμενο στοιχείο του iterable με το οποίο έχει κληθεί ο

κατασκευαστής του iterator2

{1, 2, 'Hello', None}

Iterators

• Οι επαναληπτικοί υπολογισμοί σαρώνουν ένα-ένα τα στοιχεία ενός
δεδομένου που περιέχει πολλά στοιχεία, πχ, μιας ακολουθίας ή συνόλου

• Iterator: δεδομένο το οποίο δίνει τη δυνατότητα σάρωσης όλων των
στοιχείων με αφηρημένο τρόπο, δηλ., ανεξάρτητο από τον τύπο του
δεδομένου που τα περιέχει

– Κατασκευαστής: iter(iterable)
• Επιστρέφει iterator iterator για τη σάρωση στοιχείων του iterable
iterable
– Iterable: οποιοσδήποτε τύπος δεδομένου που μπορεί να δοθεί ως

όρισμα της iter, πχ., ακολουθίες, σύνολα, λεξικά

– Επιλογέας: next(iterator)
• Επιστρέφει το επόμενο στοιχείο του iterable με το οποίο έχει κληθεί ο

κατασκευαστής του iteratorNone

{1, 2, 'Hello', None}

Iterators

• Οι επαναληπτικοί υπολογισμοί σαρώνουν ένα-ένα τα στοιχεία ενός
δεδομένου που περιέχει πολλά στοιχεία, πχ, μιας ακολουθίας ή συνόλου

• Iterator: δεδομένο το οποίο δίνει τη δυνατότητα σάρωσης όλων των
στοιχείων με αφηρημένο τρόπο, δηλ., ανεξάρτητο από τον τύπο του
δεδομένου που τα περιέχει

– Κατασκευαστής: iter(iterable)
• Επιστρέφει iterator iterator για τη σάρωση στοιχείων του iterable
iterable
– Iterable: οποιοσδήποτε τύπος δεδομένου που μπορεί να δοθεί ως

όρισμα της iter, πχ., ακολουθίες, σύνολα, λεξικά

– Επιλογέας: next(iterator)
• Επιστρέφει το επόμενο στοιχείο του iterable με το οποίο έχει κληθεί ο

κατασκευαστής του iterator'Hello'

{1, 2, 'Hello', None}

Iterators

• Οι επαναληπτικοί υπολογισμοί σαρώνουν ένα-ένα τα στοιχεία ενός
δεδομένου που περιέχει πολλά στοιχεία, πχ, μιας ακολουθίας ή συνόλου

• Iterator: δεδομένο το οποίο δίνει τη δυνατότητα σάρωσης όλων των
στοιχείων με αφηρημένο τρόπο, δηλ., ανεξάρτητο από τον τύπο του
δεδομένου που τα περιέχει

– Κατασκευαστής: iter(iterable)
• Επιστρέφει iterator iterator για τη σάρωση στοιχείων του iterable
iterable
– Iterable, πχ., ακολουθίες, σύνολα, λεξικά

– Συνάρτηση επιλογής: next(iterator)
• Επιστρέφει το επόμενο στοιχείο του iterable με το οποίο έχει κληθεί ο

κατασκευαστής του iterator

Iterators

• Το τέλος της σάρωσης σηματοδοτεί το σφάλμα StopIteration

>>> t = iter([1, 2, 'Hello', None])

>>> next(t)

1

>>> next(t)

2

>>> next(t)

'Hello'

>>> print(next(t))
None

>>> next(t)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

StopIteration

Iterators

• Κάθε iterator διατηρεί τη δική του κατάσταση ανεξάρτητα από το όνομα
που χρησιμοποιείται

>>> r = range(10, 20)
>>> t = iter(r)
>>> next(t)
10
>>> next(t)
11
>>> s = iter(r)
>>> next(s)
10
>>> next(t)
12
>>> u = t
>>> next(u)
13

Iterables

• Η iter είναι γενική συνάρτηση: η κλήση iter(iterable)
επιστρέφει το αποτέλεσμα της κλήσης

iterable.__iter__()

• Iterable: οποιοδήποτε αντικείμενο διαθέτει τη μέθοδο __iter__

>>> iterator = iter([1, 2, 'Hello', None])

ισοδύναμο με
>>> iterator = [1, 2, 'Hello', None].__iter__()

Iterators

• Ορισμένες ενσωματωμένες συναρτήσεις, πχ, map, filter επιστρέφουν
iterator:

>>> result = map(lambda x: x*x, [1, -2, 3])

>>> next(result)
1
>>> next(result)

4
>>> next(result)

9

Iterators

• Η απεικόνιση των στοιχείων του iterable (2ο όρισμα της map)
υπολογίζεται στην κλήση της next (lazy evaluation), όχι της map

>>> def square_n_print(x):
print('--->', x, 'squared is', x*x)

>>> result = map(square_n_print, [1, -2, 3])
>>> next(result)
---> 1 squared is 1

>>> next(result)
---> 2 squared is 4

>>> next(result)
---> 3 squared is 9

Iterators

• Η ενσωματωμένη συνάρτηση reversed επιστρέφει iterator που
διατρέχει στοιχεία ακολουθιών με ανάποδη σειρά

>>> t = reversed([1, 2, 3, 4])
>>> type(t)

<class 'list_reverseiterator'>
>>> next(t)
4

>>> next(t)
3

>>> next(t)
2

>>> next(t)
1

Iterators

• Η next είναι γενική συνάρτηση: η κλήση next(iterator) επιστρέφει
την τιμή της κλήσης

iterator.__next__()

• Iterator: οποιοδήποτε αντικείμενο διαθέτει τη μέθοδο __next__

>>> t = iter([1, 2, 3, 4])
>>> next(t)

1
>>> t.__next__()

2
>>> t.__next__()

3
>>> next(t)
4

Σχέση με εντολή for

• Η εντολή for εσωτερικά κατασκευάζει και χρησιμοποιεί iterator
>>> for item in ls:

print(item)

• Ισοδύναμο (εκτός ότι παράγεται σφάλμα StopIteration στο τέλος) με:
>>> iterator = ls.__iter__()

>>> while True:

item = iterator.__next__()

print(item)

Σχέση με εντολή for

• Η εντολή for λειτουργεί και για iterators – όχι μόνο για iterables, πχ.
>>> for item in reversed(ls):

print(item)

• Ισοδύναμο (εκτός ότι παράγεται σφάλμα StopIteration στο τέλος) με:
>>> iterator = reversed(ls).__iter__()
>>> while True:

item = iterator.__next__()

print(item)

• Για να λειτουργήσουν οι iterators σε for loop, θα πρέπει να διαθέτουν
μέθοδο __iter__ η οποία επιστρέφει τον εαυτό τους

Iterators

• Οι iterators επιτρέπουν τη σάρωση iterables με τρόπο ανεξάρτητο από
τον τύπο τους
– Άθροιση στοιχείων λίστας με χρήση δεικτών (χωρίς iterator)

>>> def sum(ls):

i, total = 0, 0

while i < len(ls):

total += ls[i]

i += 1

return total

>>> sum([1, 2, -5])
-1

– Δεν λειτουργεί για δεδομένα που δεν είναι ακολουθίες:
>>> sum({1, 2, -5})

TypeError: 'set' object is not subscriptable

Iterators

• Οι iterators επιτρέπουν τη σάρωση iterables με τρόπο ανεξάρτητο από
τον τύπο τους
– Άθροιση στοιχείων με iterator

>>> def sum(a):

total = 0

for x in a:

total += x

return total

>>> sum([1, 2, 3, 4])

10
>>> sum({1, 2, 3, 4})

10

• Οι iterators βοηθούν στη συγγραφή γενικών επαναληπτικών
υπολογισμών

Generators (γεννήτριες)

Generators

• Πολλές φορές θέλουμε να καθορίσουμε τον τρόπο που πραγματοποιείται
η σάρωση στοιχείων, πχ. γιατί
– Θέλουμε διαφορετική σειρά
– Τα στοιχεία δεν βρίσκονται μέσα σε iterable
– Τα στοιχεία δεν έχουν υπολογιστεί ακόμη (lazy evaluation)

Ø Ορισμός iterator από τον προγραμματιστή
hbhbhbhbhbhbhbhbhbhbhbhbhbhbhbhbhbhhbhbhbhbhhbhbhbhhbhbhb
hbhbhbb

– Κατασκευάζονται με δύο τρόπους
1. Με συνάρτηση
2. Με έκφραση (generator comprehension)

Generators

• Πολλές φορές θέλουμε να καθορίσουμε τον τρόπο που πραγματοποιείται
η σάρωση στοιχείων, πχ. γιατί
– Θέλουμε διαφορετική σειρά
– Τα στοιχεία δεν βρίσκονται μέσα σε iterable
– Τα στοιχεία δεν έχουν υπολογιστεί ακόμη (lazy evaluation)

Ø Generators (γεννήτριες): iterators που όταν κληθεί η next, επιστρέφουν
το επόμενο στοιχείο σύμφωνα με υπολογισμό που δίνεται από τον
προγραμματιστή

– Κατασκευάζονται με δύο τρόπους
1. Με συνάρτηση
2. Με έκφραση (generator comprehension)

x = x + 1

1

Generators

• Πολλές φορές θέλουμε να καθορίσουμε τον τρόπο που πραγματοποιείται
η σάρωση στοιχείων, πχ. γιατί
– Θέλουμε διαφορετική σειρά
– Τα στοιχεία δεν βρίσκονται μέσα σε iterable
– Τα στοιχεία δεν έχουν υπολογιστεί ακόμη (lazy evaluation)

Ø Generators (γεννήτριες): iterators που όταν κληθεί η next, επιστρέφουν
το επόμενο στοιχείο σύμφωνα με υπολογισμό που δίνεται από τον
προγραμματιστή

– Κατασκευάζονται με δύο τρόπους
1. Με συνάρτηση
2. Με έκφραση (generator comprehension)

x = x + 1

2

Generators

• Πολλές φορές θέλουμε να καθορίσουμε τον τρόπο που πραγματοποιείται
η σάρωση στοιχείων, πχ. γιατί
– Θέλουμε διαφορετική σειρά
– Τα στοιχεία δεν βρίσκονται μέσα σε iterable
– Τα στοιχεία δεν έχουν υπολογιστεί ακόμη (lazy evaluation)

Ø Generators (γεννήτριες): iterators που όταν κληθεί η next, επιστρέφουν
το επόμενο στοιχείο σύμφωνα με υπολογισμό που δίνεται από τον
προγραμματιστή

– Κατασκευάζονται με δύο τρόπους
1. Με συνάρτηση
2. Με έκφραση (generator comprehension)

x = x + 1

3

Generators

• Πολλές φορές θέλουμε να καθορίσουμε τον τρόπο που πραγματοποιείται
η σάρωση στοιχείων, πχ. γιατί
– Θέλουμε διαφορετική σειρά
– Τα στοιχεία δεν βρίσκονται μέσα σε iterable
– Τα στοιχεία δεν έχουν υπολογιστεί ακόμη (lazy evaluation)

Ø Generators (γεννήτριες): iterators που όταν κληθεί η next, επιστρέφουν
το επόμενο στοιχείο σύμφωνα με υπολογισμό που δίνεται από τον
προγραμματιστή

– Κατασκευάζονται με τρεις τρόπους
1. Με απευθείας υλοποίηση μεθόδου __next__
2. Με συνάρτηση (generator function)
3. Με έκφραση (generator comprehension)

Generators

• Γεννήτρια που διατρέχει τα πεζά λατινικά γράμματα 'a' εως 'z'
>>> class letters:

def __init__(self):
self.x = 'a'

def __next__(self):
val = self.x
self.x = chr(ord(self.x) + 1)
return val

def __iter__(self):
return self

>>> letter_generator = letters()
>>> next(letter_generator)
'a'
>>> next(letter_generator)
'b'
>>> next(letter_generator)
'c'

Generators

• Generator functions: Συναρτήσεις που χρησιμοποιούν την εντολή yield. Δεν
ερμηνεύονται από την Python ως κανονικές συναρτήσεις, αλλά χρησιμοποιούνται
στην κατασκευή generator
>>> def letters():

x = 'a'
while x <= 'z':

yield x
x = chr(ord(x) + 1)

• Χαρακτηριστικά:
1. Η κλήση τους δεν εκτελεί τις εντολές του σώματος

>>> letter_generator = letters()
>>> letter_generator
<generator object letters at 0x107217a20>

2. Οι εντολές εκτελούνται όταν κληθεί η next και αυτή επιστρέφει την τιμή της
έκφρασης δίπλα στην εντολή yield
>>> next(letter_generator)
'a'

Generators

• Generator functions: Συναρτήσεις που χρησιμοποιούν την εντολή yield. Δεν
ερμηνεύονται από την Python ως κανονικές συναρτήσεις, αλλά χρησιμοποιούνται
στην κατασκευή generator
>>> def letters():

x = 'a'
while x <= 'z':

yield x
x = chr(ord(x) + 1)

• Χαρακτηριστικά:
3. Στην επόμενη κλήση της next, συνεχίζεται η εκτέλεση της εντολής μετά

την προηγούμενη εντολή yield που εκτελέστηκε
>>> next(letter_generator)
'b'

4. Το πλαίσιο της πρώτης κλήσης της next διατηρείται για τις επόμενες (άρα
διατηρούνται οι τιμές των ονομάτων) μεταξύ διαδοχικών κλήσεων (Στην
επόμενη κλήση της yield, συνεχίζεται η εκτέλεση της εντολής

Generators

• Γεννήτρια γραμμάτων
>>> def letters():

x = 'a'
while x <= 'z':

yield x
x = chr(ord(x) + 1)

>>> letter_generator = letters()
>>> next(letter_generator)
'a'
>>> next(letter_generator)
'b'
>>> next(letter_generator)
'c'
>>> next(letter_generator)
'd'

Generators

• Generator comprehension: έκφραση της οποίας η τιμή είναι generator με
συντακτικό παρόμοιο με αυτό των list comprehensions

• Παράδειγμα:
– Κατασκευή λίστας γραμμάτων:

>>> letter_list = [chr(i) for i in range(ord('a'), ord('z') + 1)]

>>> letter_list

['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm',
'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z']

– Κατασκευή generator:
>>> letter_generator = (chr(i) for i in range(ord('a'),ord('z')+1))
>>> letter_generator

<generator object <genexpr> at 0x1073cb6d8>

>>> next(letter_generator)

'a'

Generators

• Παράδειγμα: άθροιση όρων ακολουθίας 1!, 2!, 3!, … , 100!:
– Mε λίστα:

>>> sum([x*x for x in range(1, 101)])

338350

• Ολόκληρη η ακολουθία βρίσκεται στη μνήμη

– Με generator comprehension
>>> sum((x*x for x in range(1, 101)))

338350
>>> sum(x*x for x in range(1, 101)) # το ίδιο

338350

• Στη μνήμη βρίσκεται μόνο ένας όρος, ο οποίος αλλάζει σε κάθε κλήση
της next

