

# **Association Rule Mining**

### Yannis Kotidis

kotidis@aueb.gr

Professor, Department of Informatics Athens University of Economics and Business

# Suggested Reading

- 2
- Data Mining: Concepts and Techniques, 3<sup>rd</sup> Edition (The Morgan Kaufmann Series in Data Management Systems) 3rd Edition, by Jiawei Han, Micheline Kamber, Jian Pei (Chapter 6)
- Mining of Massive Datasets, 2<sup>nd</sup> Edition, by Jure Leskovec, Anand Rajaraman, Jeffrey David Ullman, Stanford University (Chapter 6)

# Data Mining

- The process of analyzing data to identify patterns or relationships
- Has become a well-established discipline related to Artificial Intelligence and Statistical Analysis
  - Led by advances in computer hardware and our ability to analyze big datasets
    - Data warehousing, BI, Cloud Computing

# Association Rule Mining

- Finding frequent patterns (associations) among sets of items in transactional databases
  - Basket data analysis, catalog design, direct mailing,...
- Basic question: "Which groups or <u>sets of items</u> are customers likely to purchase on a given trip to the store?"
- □ Learned patterns or itemsets, sush as {diapers, beers}, are used to construct if-then scenario (probabilistic) rules
  □ buys(x, "diapers") → buys(x, "beers") [5%, 60%]

# What to do with rule Diapers $\rightarrow$ Beers ?

- Enhance observed behavior
  - Place products in proximity to further encourage the combined sale
  - Increase the price of diapers but put beer in discount for a combined sale
- Put products at opposite ends of the store to make customers spend more time (and buy more products) at the store

## More ideas

- Assume laptops and printers are frequently sold together
  - Place a higher-margin printer near the laptop section
  - Take a soon to be updated software suite and bundle it in an offer with laptops and printers
- □ See <u>https://www.kdnuggets.com/news/98/n01.html</u>
  □ What Wal-Mart might do with Barbie doll → Candy bars association rule

# **Basic Concepts**

- Example: Basket Data analysis
  - Each transaction (basket) is a set of items (e.g. purchased by a customer in a visit)
  - T1: Milk, Diaper, Chocolate
  - T2: Diaper, Beer, Meat
  - T3: Sugar, Beer, Diaper

• • •

#### Inferred rule:

 $buys(x, "Diaper") \rightarrow buys(x, "Beer") [5\%, 67\%]$ 

# Support and Confidence



| TID | Items   |
|-----|---------|
| T1  | A,C     |
| T2  | A,C,D   |
| Т3  | A,E     |
| T4  | D,E,F,G |

 $\Box \quad \text{Given rule } X,Y \Rightarrow Z$ 

Support: probability that a transaction contains {X,Y,Z}

s=P[X and Y and Z]

Confidence: probability that a transaction having {X,Y} also contains Z

 $\Box$  c=P[Z|X,Y]

Let minimum support 50%, and minimum confidence 50%, we have  $A \Rightarrow C (50\%, 66.6\%)$  $C \Rightarrow A (50\%, 100\%)$ 

# **Problem formulation**

#### □ Given

- a set of 'market baskets' (=binary matrix, of N rows/baskets and M columns/products)
- min-support 's' and
- min-confidence 'c'

#### □ Find

all the rules with:

support  $\geq$  s & confidence  $\geq$  c

| Tid | Diaper | Meat | Milk | Beer |
|-----|--------|------|------|------|
| 1   | 1      | 0    | 1    | 1    |
| 2   | 1      | 1    | 0    | 0    |
| 3   | 1      | 1    | 0    | 0    |
| 4   | 0      | 1    | 1    | 0    |

## From rules to itemsets

#### First, find frequent itemsets

- □ e.g. {X,Y,Z}
- "Frequent" means support  $\geq$  s (min-support)
- Once we have a 'frequent itemset', we can find out the qualifying rules easily (how?)

Support(X,Y $\rightarrow$ Z) = Freq({X,Y,Z})

 $Conf(X,Y \rightarrow Z) = P[Z|X,Y] = P[X,Y,Z]/P[X,Y]$ = Freq({X,Y,Z}) / Freq({X,Y})

Thus, let's focus on how to find frequent itemsets

14

□ Scan database once; maintain 2<sup>M</sup>-1 counters

- One counter for each of {A}, {B}, {C}, ..., {A,B}, {A,C}, {A,D}, ... {B,C}, {B,D}, {B,E},... {A,B,C}, ...
- Example (M=3, 2<sup>3</sup>-1=7 possible itemsets)



15

- □ Scan database once; keep 2<sup>M</sup>-1 counters
  - One counter for each of {A}, {B}, {C}, ..., {A,B}, {A,C}, {A,D}, ... {B,C}, {B,D}, {B,E},... {A,B,C}, ...
- Example (M=3)



16

- □ Scan database once; keep 2<sup>M</sup>-1 counters
  - One counter for each of {A}, {B}, {C}, ..., {A,B}, {A,C}, {A,D}, ... {B,C}, {B,D}, {B,E},... {A,B,C}, ...
- Example (M=3)



17

- □ Scan database once; keep 2<sup>M</sup>-1 counters
  - One counter for each of {A}, {B}, {C}, ..., {A,B}, {A,C}, {A,D}, ... {B,C}, {B,D}, {B,E},... {A,B,C}, ...
- Example (M=3)

| ltemset | Counter |
|---------|---------|
| {A}     | 1       |
| {B}     | 3       |
| {C}     | 1       |
| {A,B}   | 1       |
| {A,C}   | 0       |
| {B,C}   | 1       |
| {A,B,C} | 0       |

Basket 1: A,B Basket 2: B Basket 3: B,C

18

- □ Scan database once; keep 2<sup>M</sup>-1 counters
  - One counter for each of {A}, {B}, {C}, ..., {A,B}, {A,C}, {A,D}, ... {B,C}, {B,D}, {B,E},... {A,B,C}, ...
- Example (M=3)

| ltemset | Counter |
|---------|---------|
| {A}     | 2       |
| {B}     | 4       |
| {C}     | 1       |
| {A,B}   | 2       |
| {A,C}   | 0       |
| {B,C}   | 1       |
| {A,B,C} | 0       |

Basket 1: A,B Basket 2: B Basket 3: B,C Basket 4: A,B

19

- □ Scan database once; keep 2<sup>M</sup>-1 counters
  - One counter for each of {A}, {B}, {C}, ..., {A,B}, {A,C}, {A,D}, ... {B,C}, {B,D}, {B,E},... {A,B,C}, ...
- Example (M=3)

| ltemset | Counter |
|---------|---------|
| {A}     | 3       |
| {B}     | 4       |
| {C}     | 1       |
| {A,B}   | 2       |
| {A,C}   | 0       |
| {B,C}   | 1       |
| {A,B,C} | 0       |

 $A \rightarrow B$  [Support = ? , Confident = ?]

Basket 1: A,B Basket 2: B Basket 3: B,C Basket 4: A,B Basket 5: A

- $\Box$  Scan database once; keep 2<sup>M</sup>-1 counters
  - One counter for each of {A}, {B}, {C}, ..., {A,B}, {A,C}, {A,D}, ... {B,C}, {B,D}, {B,E},... {A,B,C}, ...
- Drawback?
  - **•** For M = 1000 products,  $2^{1000}$  is prohibitive...
  - E.g. 16GB RAM (=2<sup>34</sup> bits) stores 2<sup>29</sup> counters using 32=2<sup>5</sup> bit integers
- Improvement?

Scan the db M times, looking for 1-, 2-, etc itemsets

Assume three products/items A,B and C (M=3)



#### Move on



min-sup:10

### Anti-monotonicity property

- If an itemset fails to be frequent, so will every superset of it
  hence all supersets can be pruned
- A subset of a frequent itemset must also be a frequent itemset
  i.e., if {AB} is a frequent itemset, both {A} and {B} should be a frequent itemset
- Sketch of the (famous!) 'a-priori' algorithm
  - Let L(i-1) be the set of large (=frequent) itemsets with i-1 elements
  - Let C(i) be the set of candidate itemsets (of size i)

#### Ο αλγόριθμος είναι εκτός ύλης

### The A-priori Algorithm

#### Compute L(1), by scanning the database.

#### repeat, for i=2,3...,

'join' L(i-1) with itself, to generate C(i)

two itemset in L(i-1) can be joined, if they agree on their first *i*-2 elements (i.e. all but the last)

prune the itemsets of C(i) (how?)

scan the db, finding the counts of the C(i) itemsets - those that reach or exceed threshold are placed in L(i)

unless L(i) is empty, repeat the loop

#### Ο αλγόριθμος είναι εκτός ύλης

notation for itemset {a,c,e}

notation for itemset {b,c,d}

## An Example

- L<sub>3</sub>={abc, abd, acd, ace, bcd}
- Self-joining:  $L_3 \triangleright \subset L_3$  to obtain candidates for  $C_4$ 
  - abcd is produced from <u>abc</u> and <u>abd</u>
  - acde is produced from <u>acd</u> and <u>ace</u>
- Pruning:
  - acde is removed because ade is not in  $L_3$
- C<sub>4</sub>={abcd}

#### Ο αλγόριθμος είναι εκτός ύλης

# Note on Self-joining $L_1 \bowtie L_1$

- The result is essentially a Cartesian Product (x)
- For example:
  - L<sub>1</sub>={a, b, c, d, e}
  - C<sub>2</sub> = L<sub>1</sub> x L<sub>1</sub> = {ab, ac, ad, ae, bc, bd, be, cd, ce, de}
- No pruning possible (why?)

# Example 2

Ο αλγόριθμος είναι εκτός ύλης Min Support = 2 (50%)



Εντός ύλης!

### Generate Rules

Min Support = 2(50%)

#### B→C [Support = ?, Confidence = ?]









Min Support = 2(50%)

#### $B \rightarrow C$ [Support = 2/4, Confidence = ?]







### Generate Rules

Min Support = 2(50%)

itemset sup.

{A}

{B}

{C}

{E}

2 3 3

3

30



Recall that Confidence = P[C|B] = P[B,C]/P[B]





 $L_1$ 

# From Itemsets to Association Rules

- Itemset {B,C,E} is frequent (support=50%)
- $\Box$  Consider rule B,C  $\rightarrow$ E
  - □ Support(B,C  $\rightarrow$  E) = P[B,C,E] = 50%
  - □ Confidence(B,C  $\rightarrow$  E) = P[B,C,E]/P[B,C]=2/2=100%
- □ Thus : B,C→E [50%,100%]
- □ More rules?
- $\square$  Also look at L<sub>2</sub>

#### MIN-SUPPORT = 50% MIN-CONFIDENCE=90%

# Exercise 3

#### Frequent Itemsets

- {A,B,C} support = 50%, {A,B} support = 50%, {A,C} support=80%, {B,C} support = 80%, {A}=90%, {B}=90%, {C}=90%
- $\square$  A,B $\rightarrow$ C [50%, 100%] (OK, exceeds thresholds)
- $\Box$  Reject the following (confidence < 90%)
  - A,C→B [50%, 62.5%]
  - B,C→A [50%, 62.5%]
  - A→B [50% , 55.5%]
    - (also  $B \rightarrow A$ ,  $A \rightarrow C$ ,  $C \rightarrow A$ ,  $B \rightarrow C$ ,  $C \rightarrow B$ )

# Criticism on high conf/support

#### Example 1: (Aggarwal & Yu, PODS98)

- Among 5000 students
  - 3000 play basketball
  - 3750 eat cereal
  - 2000 both play basket ball and eat cereal
- Compare the following two rules
  - play basketball  $\Rightarrow$  eat cereal [40%, 66.7]
  - play basketball  $\Rightarrow$  not eat cereal [20%, 33.3%]

|            | basketball | not basketball | sum(row) |
|------------|------------|----------------|----------|
| cereal     | 2000       | 1750           | 3750     |
| not cereal | 1000       | 250            | 1250     |
| sum(col.)  | 3000       | 2000           | 5000     |

2000/3000

2000/5000

# Strong Rules Are Not Necessarily Interesting

34

- □ play basketball ⇒ eat cereal [40%, 66.7%] is misleading because the overall percentage of students eating cereal is 75% which is higher than 66.7%.
- play basketball  $\Rightarrow$  not eat cereal [20%, 33.3%] is more interesting, although with lower support and confidence

|            | basketball | not basketball | sum(row) |
|------------|------------|----------------|----------|
| cereal     | 2000       | 1750           | 3750     |
| not cereal | 1000       | 250            | 1250     |
| sum(col.)  | 3000       | 2000           | 5000     |

# Criticism to Support and Confidence (Cont.)

- Example 2:
  - X and Y: positively correlated,
  - X and Z, negatively related
  - support and confidence of X→Z dominates
- We need a measure of dependent or correlated events

| Rule | Support | Confidence |
|------|---------|------------|
| X=>Y | 25%     | 50%        |
| X=>Z | 37,50%  | 75%        |



# Lift of an Association Rule

- □ Lift(X→Y) = P(X and Y)/(P(X)\*P(Y))
  - P(X and Y) = support observed in the dataset
  - P(X)\*P(Y) = expected support if X and Y were independent
  - Lift(X→Y)>1 suggests that X&Y appear together more often that expected. Thus, the occurrence of X has a positive effect on the occurrence of Y





In some cases rare items may produce rules with very high values of lift

# Lift of an Association Rule

- □ Lift(X→Y) = P(X and Y)/(P(X)\*P(Y))
  - P(X and Y) = support observed in the dataset
  - P(X)\*P(Y) = expected support if X and Y were independent
  - Lift(X→Y)>1 suggests that X&Y appear together more often that expected. Thus, the occurrence of X has a positive effect on the occurrence of Y





In some cases rare items may produce rules with very high values of lift

# Lift of an Association Rule

- □ Lift(X→Y) = P(X and Y)/(P(X)\*P(Y))
  - P(X and Y) = support observed in the dataset
  - P(X)\*P(Y) = expected support if X and Y were independent
  - Lift(X→Y)>1 suggests that X&Y appear together more often that expected. Thus, the occurrence of X has a positive effect on the occurrence of Y

| X | 1 | 1 | 1            | 1                       | 0 | 0 | 0 | 0 | Itemset | Support | Lift |
|---|---|---|--------------|-------------------------|---|---|---|---|---------|---------|------|
|   | 1 |   | $\mathbf{O}$ | $\overline{\mathbf{O}}$ |   |   |   |   | {X,Y}   | 25%     | 2.00 |
|   |   |   | U            | U                       | U | U |   |   | {X,Z}   | 37.5%   | 0.86 |
| Ζ | 0 | 1 | 1            | 1                       | 1 | 1 | 1 | 1 | {Y,Z}   | 12.5%   | 0.57 |

In some cases rare items may produce rules with very high values of lift

### Rules with multiple items in the antecedent

 $\Box \text{ Lift}(\mathbf{A} \rightarrow \mathbf{B}) = \mathbf{P}(\mathbf{A} \text{ and } \mathbf{B})/(\mathbf{P}(\mathbf{A})^*\mathbf{P}(\mathbf{B}))$ 

A in this formula can be a set of items

Example:

Assume rule  $X, Y \rightarrow Z$ 

| Х | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|---|
| Y | 1 | ┭ | 0 | 0 | 0 | 0 | 0 | 0 |
| Ζ | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

Lift(X, Y 
$$\rightarrow$$
 Z) =  $\frac{\frac{1}{8}}{\frac{2}{8} * \frac{7}{8}} = 0.57$ 

# Back to the student's survey

play basketball  $\Rightarrow$  eat cereal [40%, 66.7%]

Lift = (2000/5000)/((3000/5000)\*(3750/5000)) = 0.89 < 1

 $\Box$  play basketball  $\Rightarrow$  not eat cereal [20%, 33.3%]

Lift = (1000/5000)/((3000/5000)\*(1250/5000)) = 1.33 > 1

|            | basketball | not basketball | sum(row) |
|------------|------------|----------------|----------|
| cereal     | 2000       | 1750           | 3750     |
| not cereal | 1000       | 250            | 1250     |
| sum(col.)  | 3000       | 2000           | 5000     |