Association Rule Mining

Yannis Kotidis

kotidis@aueb.gr
Professor, Department of Informatics

Athens University of Economics and Business

Suggested Reading

\square Data Mining: Concepts and Techniques, $3^{\text {rd }}$ Edition (The Morgan Kaufmann Series in Data Management Systems) 3rd Edition, by Jiawei Han, Micheline Kamber, Jian Pei (Chapter 6)
\square Mining of Massive Datasets, $2^{\text {nd }}$ Edition, by Jure Leskovec, Anand Rajaraman, Jeffrey David Ullman, Stanford University (Chapter 6)

Data Mining

\square The process of analyzing data to identify patterns or relationships
\square Has become a well-established discipline related to Artificial Intelligence and Statistical Analysis
\square Led by advances in computer hardware and our ability to analyze big datasets

- Data warehousing, BI, Cloud Computing

Association Rule Mining

\square Finding frequent patterns (associations) among sets of items in transactional databases
\square Basket data analysis, catalog design, direct mailing,...
\square Basic question: "Which groups or sets of items are customers likely to purchase on a given trip to the store?"
\square Learned patterns or itemsets, sush as \{diapers, beers\}, are used to construct if-then scenario (probabilistic) rules
\square buys(x, "diapers") \rightarrow buys(x, "beers") [5\%, 60\%]

What to do with rule Diapers \rightarrow Beers?

\square Enhance observed behavior
\square Place products in proximity to further encourage the combined sale
\square Increase the price of diapers but put beer in discount for a combined sale
\square Put products at opposite ends of the store to make customers spend more time (and buy more products) at the store

More ideas

\square Assume laptops and printers are frequently sold together
\square Place a higher-margin printer near the laptop section
\square Take a soon to be updated software suite and bundle it in an offer with laptops and printers
\square See https://www.kdnuggets.com/news/98/n01.html
\square What Wal-Mart might do with Barbie doll \rightarrow Candy bars association rule

Basic Concepts

\square Example: Basket Data analysis
\square Each transaction (basket) is a set of items (e.g. purchased by a customer in a visit)
T1: Milk, Diaper, Chocolate
T2: Diaper, Beer, Meat
T3: Sugar, Beer, Diaper

Inferred rule: buys(x, "Diaper") \rightarrow buys(x, "Beer") [5\%, 67\%]

Support and Confidence

TID	Items
T1	A,C
T2	A,C,D
T3	A,E
T4	D,E,F,G

\square Given rule $X, Y \Rightarrow Z$
\square Support: probability that a transaction contains $\{X, Y, Z\}$
$\square s=P[X$ and Y and $Z]$
\square Confidence: probability that a transaction having $\{X, Y\}$ also contains Z
$\square c=P[Z \mid X, Y]$

Let minimum support 50\%, and minimum confidence 50%, we have

$$
\begin{aligned}
& A \Rightarrow C(50 \%, 66.6 \%) \\
& C \Rightarrow A(50 \%, 100 \%)
\end{aligned}
$$

Problem formulation

\square Given
\square a set of 'market baskets'
(=binary matrix, of N rows/baskets and M columns/products)
\square min-support ' s ' and
\square min-confidence ' c '

Tid	Diaper	Meat	Milk	Beer
1	1	0	1	1
2	1	1	0	0
3	1	1	0	0
4	0	1	1	0

\square Find
\square all the rules with:
support $\geq \mathrm{s} \&$ confidence $\geq \mathrm{c}$

From rules to itemsets

\square First, find frequent itemsets

- e.g. $\{X, Y, Z\}$
\square "Frequent" means support $\geq \mathrm{s}$ (min-support)
\square Once we have a 'frequent itemset', we can find out the qualifying rules easily (how?)

$$
\begin{aligned}
& \text { Support }(X, Y \rightarrow Z)=\operatorname{Freq}(\{X, Y, Z\}) \\
& \begin{aligned}
\operatorname{Conf}(X, Y \rightarrow Z) & =P[Z \mid X, Y]=P[X, Y, Z] / P[X, Y] \\
& =\operatorname{Freq}(\{X, Y, Z\}) / \operatorname{Freq}(\{X, Y\})
\end{aligned}
\end{aligned}
$$

\square Thus, let's focus on how to find frequent itemsets

Brute-force Frequent Itemsets Counting

\square Scan database once; maintain $2^{M}-1$ counters
\square One counter for each of $\{A\},\{B\},\{C\}, \ldots .,\{A, B\},\{A, C\}$, $\{A, D\}, \ldots\{B, C\},\{B, D\},\{B, E\}, \ldots\{A, B, C\}, \ldots$
\square Example ($M=3,2^{3}-1=7$ possible itemsets)

Brute-force Frequent Itemsets Counting

\square Scan database once; keep 2^{M} - 1 counters
\square One counter for each of $\{A\},\{B\},\{C\}, \ldots .,\{A, B\},\{A, C\}$, $\{A, D\}, \ldots\{B, C\},\{B, D\},\{B, E\}, \ldots\{A, B, C\}, \ldots$
\square Example ($M=3$)

Liemset	Counter	
$\{\{A\}$	1	
$\{B\}$	$1+1$	Basket 1: A,B
$\{C\}$	0	Basket 2: B
$\{A, B\}$	1	
$\{A, C\}$	0	
$\{B, C\}$	0	
$\{A, B, C\}$	0	

Brute-force Frequent Itemsets Counting

\square Scan database once; keep 2^{M} - 1 counters
\square One counter for each of $\{A\},\{B\},\{C\}, \ldots .,\{A, B\},\{A, C\}$, $\{A, D\}, \ldots\{B, C\},\{B, D\},\{B, E\}, \ldots\{A, B, C\}, \ldots$
\square Example ($M=3$)

| $\left.\begin{array}{lll}\text { Hemset } & \text { Counter } & \\ \{A\} & 1 & \\ \{B\} & 2+1 & \text { Basket 1: A,B } \\ \{C\} & 0^{+1} & \text { Basket 2: B } \\ \{A, B\} & 1 & \text { Basket 3: B,C } \\ \{A, C\} & 0 & \\ \{B, C\} & 0^{+1} & \\ \{A, B, C\} & 0 & \end{array}\right)$ |
| :--- | :--- | :--- |

Brute-force Frequent Itemsets Counting

\square Scan database once; keep 2^{M} - 1 counters
\square One counter for each of $\{A\},\{B\},\{C\}, \ldots .,\{A, B\},\{A, C\}$, $\{A, D\}, \ldots\{B, C\},\{B, D\},\{B, E\}, \ldots\{A, B, C\}, \ldots$
\square Example ($M=3$)

Itemset	Counter
$\{A\}$	1
$\{B\}$	3
$\{C\}$	1
$\{A, B\}$	1
$\{A, C\}$	0
$\{B, C\}$	1
$\{A, B, C\}$	0

Basket 1: A,B
Basket 2: B
Basket 3: B,C

Brute-force Frequent Itemsets Counting

\square Scan database once; keep 2^{M} - 1 counters
\square One counter for each of $\{A\},\{B\},\{C\}, \ldots .,\{A, B\},\{A, C\}$, $\{A, D\}, \ldots\{B, C\},\{B, D\},\{B, E\}, \ldots\{A, B, C\}, \ldots$
\square Example ($M=3$)

Itemset	Counter
$\{A\}$	2
$\{B\}$	4
$\{C\}$	1
$\{A, B\}$	2
$\{A, C\}$	0
$\{B, C\}$	1
$\{A, B, C\}$	0

Basket 1: A,B
Basket 2: B
Basket 3: B,C
Basket 4: A,B

Brute-force Frequent Itemsets Counting

\square Scan database once; keep 2^{M} - 1 counters
\square One counter for each of $\{A\},\{B\},\{C\}, \ldots .,\{A, B\},\{A, C\}$, $\{A, D\}, \ldots\{B, C\},\{B, D\},\{B, E\}, \ldots\{A, B, C\}, \ldots$
\square Example ($M=3$)

liemset	Counter
$\{A\}$	3
$\{B\}$	4
$\{C\}$	1
$\{A, B\}$	2
$\{A, C\}$	0
$\{B, C\}$	1
$\{A, B, C\}$	0

$\mathrm{A} \rightarrow \mathrm{B}$ [Support $=$? , Confident $=$? $]$
Basket 1: A,B
Basket 2: B
Basket 3: B,C
Basket 4: A,B
Basket 5: A

Brute-force Frequent Itemsets Counting

\square Scan database once; keep 2^{M} - 1 counters
\square One counter for each of $\{A\},\{B\},\{C\}, \ldots .\{A, B\},\{A, C\}$, $\{A, D\}, \ldots\{B, C\},\{B, D\},\{B, E\}, \ldots\{A, B, C\}, \ldots$
\square Drawback?
\square For $M=1000$ products, 2^{1000} is prohibitive...
\square E.g. 16GB RAM ($=2^{34}$ bits) stores 2^{29} counters using $32=2^{5}$ bit integers
\square Improvement?
\square Scan the db M times, looking for 1-, 2-, etc itemsets

Assume three products/items A, B and C ($M=3$)

200

first pass
min-sup:10

Move on

Anti-monotonicity property

\square If an itemset fails to be frequent, so will every superset of it
\square hence all supersets can be pruned
\square A subset of a frequent itemset must also be a frequent itemset
i.e., if $\{A B\}$ is a frequent itemset, both $\{A\}$ and $\{B\}$ should be a frequent itemset
\square Sketch of the (famous!) 'a-priori' algorithm
\square Let $L(i-1)$ be the set of large (=frequent) itemsets with i-1 elements
\square Let $C(i)$ be the set of candidate itemsets (of size i)

O a入үópıӨноऽ عívaı єктós ú入ns

The A-priori Algorithm

Compute $L(1)$, by scanning the database.
repeat, for $\mathrm{i}=2,3 \ldots$...
'join' $L(i-1)$ with itself, to generate $C(i)$
two itemset in $\mathrm{L}(\mathrm{i}-1)$ can be joined, if they agree on their first
$i-2$ elements (i.e. all but the last)
prune the itemsets of $\mathrm{C}(\mathrm{i})$ (how?)
scan the db , finding the counts of the $\mathrm{C}(\mathrm{i})$ itemsets - those that reach or exceed threshold are placed in L(i)
unless $L(i)$ is empty, repeat the loop

An Example

- $L_{3}=\{a b c, a b d, ~ a c d, ~ a c e, b c d\}$
- Self-joining: $L_{3} \bowtie L_{3}$ to obtain candidates for C_{4}
- abcd is produced from abc and abd
- acde is produced from acd and ace
- Pruning:
- acde is removed because ade is not in L_{3}
- $\mathrm{C}_{4}=\{a b c d\}$

Note on Self-joining $L_{7} \bowtie L_{1}$

- The result is essentially a Cartesian Product (x)
- For example:
- $L_{1}=\{a, b, c, d, e\}$
- $C_{2}=L_{1} \times L_{1}=\{a b, a c, a d, a e, b c, b d, b e, c d, c e, d e\}$
- No pruning possible (why?)

O $\alpha \lambda$ үópıӨноऽ عívaı єктós ú uns

Example 2

Database D

TID	Items
100	A,C,D
200	B,C,E
300	A,B,C, E
400	B E

L_{1}	items	su
	\{A\}	2
\longrightarrow	\{B\}	3
	\{C\}	3
	\{E\}	3

C_{2} itemset sup
Scan D

$\{A, B\}$	1
$\{A, C\}$	2
$\{A, E\}$	1
$\{B, C\}$	2
$\{B, E\}$	3
$\{C, E\}$	2

C_{2} itemset
$\{\mathrm{A}, \mathrm{B}\}$
$\{A, C\}$
$\{\mathrm{A}, \mathrm{E}\}$
\{B,C\}
$\{B, E\}$
$\{C, E\}$

C_{3}| itemset |
| :--- |
| $\{\mathrm{B}, \mathrm{C}, \mathrm{E}\}$ |

Scan D	L_{3}	itemset
	sup	
	$\{B, C, E\}$	2

Evtós úlns!

Generate Rules

Min Support $=2$ (50\%)

$\mathrm{B} \rightarrow \mathrm{C}$ [Support = ?, Confidence = ?]

L_{l}| itemset | sup. |
| :---: | :---: |
| $\{A\}$ | 2 |
| $\{B\}$ | 3 |
| $\{C\}$ | 3 |
| $\{E\}$ | 3 |

L_{2}| itemset | sup |
| :---: | :---: |
| A, C | 2 |
| | $\{\mathrm{~B}, \mathrm{C}\}$ |
| | $\{\mathrm{B}, \mathrm{E}\}$ |
| | 2 |
| | $3 \mathrm{C}, \mathrm{E}\}$ |
| | 2 |

L_{3}| itemset | sup |
| :---: | :---: |
| $\{B, C, E\}$ | 2 |

Generate Rules

Min Support $=2$ (50\%)

$B \rightarrow C$ [Support $=2 / 4$, Confidence $=$?]

L_{l}| itemset | sup. |
| :---: | :---: |
| $\{\mathrm{A}\}$ | 2 |
| $\{B\}$ | 3 |
| $\{\mathrm{C}\}$ | 3 |
| $\{\mathrm{E}\}$ | 3 |

L_{2}| itemset | sup | |
| :---: | :---: | :---: |
| | $\{A, C\}$ | 2 |
| | $\{B, C\}$ | 2 |
| | $\{B, E\}$ | 3 |
| | $\{C, E\}$ | 2 |

L_{3}| itemset | sup |
| :---: | :---: |
| $\{B, C, E\}$ | 2 |

Generate Rules

Min Support $=2$ (50\%)

Recall that Confidence $=\mathrm{P}[\mathrm{C} \mid \mathrm{B}]=\mathrm{P}[\mathrm{B}, \mathrm{C} \mid / \mathrm{P}[\mathrm{B}]$

L_{2}	itemset	sup
	\{A,C\}	2
	$\{\mathrm{B}, \mathrm{C}\}$	2
	$\{\mathrm{B}, \mathrm{E}\}$	3
	$\{\mathrm{C}, \mathrm{E}\}$	2

L_{3}| itemset | sup |
| :--- | :---: |
| $\{B, C, E\}$ | 2 |

From Itemsets to Association Rules

\square Itemset $\{B, C, E\}$ is frequent (support=50\%)
\square Consider rule $B, C \rightarrow E$
\square Support $(B, C \rightarrow E)=P[B, C, E]=50 \%$
\square Confidence $(B, C \rightarrow E)=P[B, C, E] / P[B, C]=2 / 2=100 \%$
\square Thus: $\quad B, C \rightarrow E[50 \%, 100 \%]$
\square More rules?
\square Also look at L_{2}

Exercise 3

\square Frequent Itemsets
$\square\{A, B, C\}$ support $=50 \%,\{A, B\}$ support $=50 \%,\{A, C\}$ support $=80 \%,\{B, C\}$ support $=80 \%,\{A\}=90 \%,\{B\}=90 \%$, $\{C\}=90 \%$
$\square A, B \rightarrow C[50 \%, 100 \%]$ (OK, exceeds thresholds)
\square Reject the following (confidence $<90 \%$)

- $A, C \rightarrow B[50 \%, 62.5 \%]$
- $B, C \rightarrow A[50 \%, 62.5 \%]$
- $A \rightarrow B[50 \%, 55.5 \%]$
- (also $B \rightarrow A, A \rightarrow C, C \rightarrow A, B \rightarrow C, C \rightarrow B$)

Criticism on high conf/support

\square Example 1: (Aggarwal \& Yu, PODS98)
\square Among 5000 students

- 3000 play basketball
- 3750 eat cereal
- 2000 both play basket ball and eat cereal
\square Compare the following two rules
\square play basketball \Rightarrow eat cereal $[40 \%, 66.7]$
\square play basketball \Rightarrow not eat cereal [20\%, 33.3\%]

	basketball	not basketball	sum(row)
cereal	2000	1750	3750
not cereal	1000	250	1250
sum(col.)	3000	2000	5000

Strong Rules Are Not Necessarily Interesting

\square play basketball \Rightarrow eat cereal $[40 \%, 66.7 \%$] is misleading because the overall percentage of students eating cereal is 75% which is higher than 66.7\%.
\square play basketball \Rightarrow not eat cereal [20\%,33.3\%] is more interesting, although with lower support and confidence

	basketball	not basketball	sum(row)
cereal	2000	1750	3750
not cereal	1000	250	1250
sum(col.)	3000	2000	5000

Criticism to Support and Confidence (Cont.)

\square Example 2:
$\square \mathrm{X}$ and Y : positively correlated,
$\square X$ and Z, negatively related

X	1	1	1	1	0	0	0	0
Y	1	1	0	0	0	0	0	0
Z	0	1	1	1	1	1	1	1

\square support and confidence of $X \rightarrow Z$ dominates
\square We need a measure of dependent or correlated events

Rule	Support	Confidence
$X=>Y$	25%	50%
$X=>Z$	$37,50 \%$	75%

Lift of an Association Rule

$\square \operatorname{Lift}(X \rightarrow Y)=P(X$ and $Y) /\left(P(X)^{*} P(Y)\right)$
$\square P(X$ and $Y)=$ support observed in the dataset
$\square P(X)^{*} P(Y)=$ expected support if X and Y were independent
$\square \operatorname{Lift}(X \rightarrow Y)>1$ suggests that $X \& Y$ appear together more often that expected. Thus, the occurrence of X has a positive effect on the occurrence of Y

X	1	1	1	1	0	0	0
Y	1	1	0	0	0	0	0
Z	0	1	1	1	1	1	1

- In some cases rare items may produce rules with very high values of lift

Lift of an Association Rule

$\square \operatorname{Lift}(X \rightarrow Y)=P(X$ and $Y) /\left(P(X)^{*} P(Y)\right)$
$\square P(X$ and $Y)=$ support observed in the dataset
$\square P(X)^{*} P(Y)=$ expected support if X and Y were independent
$\square \operatorname{Lift}(X \rightarrow Y)>1$ suggests that $X \& Y$ appear together more often that expected. Thus, the occurrence of X has a positive effect on the occurrence of Y

X	1	1	1	1	0	0	0
Y	1	1	0	0	0	0	0
Z	0	1	1	1	1	1	1

- In some cases rare items may produce rules with very high values of lift

Lift of an Association Rule

$\square \operatorname{Lift}(X \rightarrow Y)=P(X$ and $Y) /(P(X) * P(Y))$
$\square P(X$ and $Y)=$ support observed in the dataset
$\square P(X)^{*} P(Y)=$ expected support if X and Y were independent
$\square \operatorname{Lift}(X \rightarrow Y)>1$ suggests that $X \& Y$ appear together more often that expected. Thus, the occurrence of X has a positive effect on the occurrence of Y

X	1	1	1	1	0	0	0
Y	1	1	0	0	0	0	0
Z	0	1	1	1	1	1	1

Ifemset	Support	Lift
$\{X, Y\}$	25%	2.00
$\{X, Z\}$	37.5%	0.86
$\{Y, Z\}$	12.5%	0.57

- In some cases rare items may produce rules with very high values of lift

Rules with multiple items in the antecedent

$\square \operatorname{Lift}(A \rightarrow B)=P(A$ and $B) /(P(A) * P(B))$
$\square \mathbf{A}$ in this formula can be a set of items
\square Example:
Assume rule $X, Y \rightarrow Z$

X	1	1	1	1	0	0	0
0							
Y	1	1	0	0	0	0	0

Back to the student's survey

\square play basketball \Rightarrow eat cereal [40\%, 66.7\%]
\square Lift $=(2000 / 5000) /((3000 / 5000) *(3750 / 5000))=0.89<1$
\square play basketball \Rightarrow not eat cereal $[20 \%, 33.3 \%$]
\square Lift $=(1000 / 5000) /((3000 / 5000) *(1250 / 5000))=1.33>1$

	basketball	not basketball	sum(row)
cereal	2000	1750	3750
not cereal	1000	250	1250
sum(col.)	3000	2000	5000

