
Δοσοληψίες

Γ. Κωτίδης

2

Transaction
! Programming abstraction
! Implement real-world transactions

» Banking transaction
» Airline reservation

Begin Run
`

Commit
```

Abort



Transactions
! Transactions are concepts that allow a system to 

guarantee certain semantic properties.
! These guarantees must be rigorously defined so 

that people can build correct systems above them.
! Theory meets practice here in a nice way.

3



History
! System R team, led by Jim Gray, codified the formal notion of 

transactions and serializability. 
» Led to 1998 Turing Award for Gray.

! Christos Papadimitriou did early work formalizing theoretical results 
on transactions and has a book on the topic: 
» C. Papadimitriou:  The Theory of Database Concurrency Control, CS 

Press, 1988
! Notion of transaction processing exists outside of DBs

» Distributed applications and services. (Jim Gray, Andreas Reuter: 
Transaction Processing: Concepts and Techniques. M. Kaufmann, 1993) 

» Web sessions and services.
! When the strict versions of these concepts are absolutely needed, and 

when in practice they can be (and are) relaxed?
» Business Intelligence: small “errors” are statistically insignificant
» NOSQL/Big data systems (BASE: Basically Available, Soft 

state, Eventual consistency vs ACID: discussed in what follows)

4



5

DBMS guarantees ACID Properties
! Atomicity 

» All changes of the transaction recorded or none at all

! Consistency
» The database should start out "consistent“ (legal state), and at the 

end of transaction remain "consistent"

! Isolation
» Net effect as if the transaction executed in isolation

! Durability
» All future transactions see the changes made by this transaction if 

it completes



Atomicity
! The "all or nothing" property.

» Programmer needn't worry about partial states 
persisting.

» Two possible outcomes: transaction commits or 
rollbacks (aborts)

! Examples:
» T1: Delete person from consultants table, insert person 

into employees table
» T2: Transfer funds from account A to account B 6

Begin Run

Abort

Commit



Preliminaries
! Read(A,t): Αντίγραψε το περιεχόμενο της 

εγγραφής Α στην μεταβλητή t. Αν η Α δε 
βρίσκεται στη μνήμη, πρώτα διάβασε την από το 
δίσκο στη μνήμη.

! Write(A,t): Αντίγραψε το περιεχόμενο της 
μεταβλήτής t στο αντίγραφο της εγγραφής Α που 
έχεις στη μνήμη.

! Output(A): Εφόσον η εγγραφή Α έχει 
τροποποιηθεί στη μνήμη, αντίγραψε το 
περιεχόμενο της μνήμης πίσω στο δίσκο.

7



Example
! Transaction T1: double the amounts of user 

accounts A, B

8

A: 8
B: 8

disk



9

T1: Read (A,t);  t ¬ t´2
Write (A,t);
Read (B,t);  t ¬ t´2
Write (B,t);
Output (A);
Output (B);

A: 8 A: 8
B: 8

memory disk

Atomicity: execute all actions of a 
transaction or none at all



10

T1: Read (A,t);  t ¬ t´2
Write (A,t);
Read (B,t);  t ¬ t´2
Write (B,t);
Output (A);
Output (B);

A: 8 A: 8
B: 8

memory disk

16

Atomicity: execute all actions of a 
transaction or none at all



12

T1: Read (A,t);  t ¬ t´2
Write (A,t);
Read (B,t);  t ¬ t´2
Write (B,t);
Output (A);
Output (B);

A: 8
B: 8

A: 8
B: 8

memory disk

16
16

16

failure!

Atomicity: execute all actions of a 
transaction or none at all



Types of failures
! Transaction failure:  Transactions may fail 

because of incorrect input, deadlock, violation of 
constraints, etc.

! System failure:  System may fail because of 
operating system fault, RAM failure, etc.

! Media failure:  Disk head crash, power disruption 
kills disk, power surge fries SSD, etc.
» For this we need redundant copies of the database



14

! If we are not sure that work for some 
transactions has been completed and stored 
on disk
» Undo all actions of the transaction and 

return DB in a prior state
! If work has been completed do nothing

One solution: Undo Logging



15

Undo-Logging Rules
! Log records with old values must be written 

before new values appear on disk
» So that we can recover old value when something goes 

wrong
! COMMIT log record must be written only after all 

changes are flushed to disk
» But as soon thereafter as possible 
» Acts as a proof that work has been completed and 

flushed to disk 

! Thus, if I see a COMMIT in the log I am sure that 
all changes were flushed to disk



17

T1: Read (A,t);  t ¬ t´2
Write (A,t);
Read (B,t);  t ¬ t´2
Write (B,t);
Output (A);
Output (B);

A:8
B:8

A:8
B:8

memory disk log

Undo logging

16
16

<T1, start>
<T1, A, 8>

16



18

T1: Read (A,t);  t ¬ t´2
Write (A,t);
Read (B,t);  t ¬ t´2
Write (B,t);
Output (A);
Output (B);

A:8
B:8

A:8
B:8

memory disk log

Undo logging

16
16

<T1, start>
<T1, A, 8>

16 <T1, B, 8>
16



19

T1: Read (A,t);  t ¬ t´2
Write (A,t);
Read (B,t);  t ¬ t´2
Write (B,t);
Output (A);
Output (B);

A:8
B:8

A:8
B:8

memory disk log

Undo logging

16
16

<T1, start>
<T1, A, 8>

<T1, commit>
16 <T1, B, 8>
16



One “complication”
! Log is first written in memory
! Not written to disk on every action (why?)

memory
DB

Log

20

A: 8 16
B: 8 16
Log:
<T1, start>
<T1, A, 8>
<T1, B, 8>

A: 8
B: 8



Data page flushed before relevant log entry

! What happens if there is a crash?

memory
DB

Log

21

A: 8 16
B: 8 16
Log:
<T1, start>
<T1, A, 8>
<T1, B, 8>

A: 8
B: 8

16
BAD STATE

# 1



Commit flushed while not all changes 
have been written back to disk

! What happens if there is a crash?

memory
DB

Log

22

A: 8 16
B: 8 16
Log:
<T1,start>
<T1, A, 8>
<T1, B, 8>
<T1, commit>

A: 8
B: 8

16
BAD STATE

# 2

<T1, B, 8>
<T1, commit>

...



Undo logging rules
(1) For every action generate undo log record 

(containing old value)
(2) Before x is modified on disk, log records 

pertaining to x must be on disk (Write Ahead 
Logging/WAL)

(3) Before commit is flushed to log, all writes of 
transaction must be reflected on disk

23



24

Now suppose we have a failure
! Need to find transactions whose actions have not 

been committed to disk and undo them (due to 
atomicity property)

! Committed transactions (in log) are OK (why?)



25

Recovery rules: Undo logging
(1) Let S = set of transactions with <Ti, start> in log, 

but no <Ti, commit> (or <Ti, abort>) record in log
(2) For each <Ti, X, v> in log,

in reverse order (latest ® earliest) do:

- if Ti Î S then   write (X, v)
output (X)

(3) For each Ti Î S do
- write <Ti, abort> to log



Example
! Undo Log:
<T,start>
<T,A,10>
<W,start>
<T,B,20>
<U,start>
<U,C,30>
<U,commit>
FAILURE

26



Identify transactions with no commit 
or abort record

! Undo Log:
<T,start>
<T,A,10>
<W,start>
<T,B,20>
<U,start>
<U,C,30>
<U,commit>

27

Set S={T,W}



Revert Modified Values (S={T,W})
! Undo Log:
<T,start>
<T,A,10>
<W,start>
<T,B,20>
<U,start>
<U,C,30>
<U,commit>

28

Undo Actions:
write(B,20)
output(B)
write(A,10)
output(A)



Append log with abort records
! Undo Log:
<T,start>
<T,A,10>
<W,start>
<T,B,20>
<U,start>
<U,C,30>
<U,commit>
<T,abort>
<W,abort>

29



Complications
! Undo logging

» cannot bring backup DB copies up to date
» need to output all changes before commit (may induce 

unnecessary I/Os)!!!
! Redo Logging

» for every action, generate redo log record (containing 
new value)

» before X is modified on disk (DB), all log records for 
transaction that modified X (including commit) must be 
on disk

» + can play back log to update an old DB copy
» - deferred updates: need to keep all modified blocks in 

memory until commit

30



Rules of Redo Logging
! For every action, generate redo log record 

(containing new value)
! Before X is modified on disk (DB), all log records 

for transaction that modified X (including commit) 
must be on disk

31



32

Redo logging (deferred modification)

T1: Read(A,t); t   t´2; write (A,t);
Read(B,t); t   t´2; write (B,t);
Output(A); Output(B)   

A: 8
B: 8

A: 8
B: 8

memory DB LOG

16
16

<T1, start>
<T1, A, 16>
<T1, B, 16>

<T1, commit>

output
16



Now suppose we have a failure
! If I see a commit log entry I am not sure whether 

changes are written to disk
» Need to redo all such transactions!
» But at least I know what to do (all details are in the log)

! Do not worry about uncommitted transactions 
(why?)



35

Uncommitted transaction

T1: Read(A,t); t   t´2; write (A,t);
Read(B,t); t   t´2; write (B,t);
Output(A); Output(B)   

A: 8
B: 8

A: 8
B: 8

memory DB LOG

16
16

<T1, start>
<T1, A, 16>



(1) Let S = set of transactions with
<Ti, commit> in log

(2) For each <Ti, X, v> in log, in forward
order (earliest ® latest) do:

- if Ti Î S then  Write(X, v)
Output(X)

Recovery (redo loging)



Example
! Redo Log:
<T,start>
<T,A,10>
<W,start>
<T,B,20>
<U,start>
<U,C,30>
<U,commit>
FAILURE

37



Identify committed transactions
! Redo Log:
<T,start>
<T,A,10>
<W,start>
<T,B,20>
<U,start>
<U,C,30>
<U,commit>

38

Set S={U}



Playback Changes (S={U})

! Redo Log:
<T,start>
<T,A,10>
<W,start>
<T,B,20>
<U,start>
<U,C,30>
<U,commit>

39

Redo Actions:
write(C,30)
output(C)



Comparison
! Undo logging: need to output changes before commit (may 

induce unnecessary I/Os)

! Redo logging: need to keep all modified blocks in memory 
until commit

ALSO

! Redo logging: can play log on a DB copy to bring 
it up to date

40



Backup database server (+redo log)

41

Active Database Server

Daily transactions

Backup Database Server
(backup taken this morning)

How to bring backup 
server up to date?

<T1,start>
<T1,A,16>
…

daily log



Similar Idea: Master-Slave Replication

42

Master Database Server

Read/Write transactions

Slave Database Server

Transfer log entries (near real-time refresh)

Read-only transactions

Load Balancer



Recall
! Undo logging: need to output changes before commit (may 

induce unnecessary I/Os)
! Redo logging: need to keep all modified blocks in memory 

until commit (memory utilization)

43



Solution: undo/redo logging!
! Update Þ <Ti, Xid, New X val, Old X val>
! page X

44



45

Rules
! Page X can be flushed before or after transaction 

commits (unlike redo log)
! Log record flushed before corresponding updated 

page (WAL)



Recovery Rules
! Identify transactions that committed
! Undo uncommitted transactions
! Redo committed transactions

46



47

Recovery is very, very SLOW !

Redo log:

First T1 wrote A,B Last
Record Committed a year ago Record
(1 year ago) --> STILL, Need to redo after crash!!

... ... ...

Crash



Checkpoints
! The entire log file needs to be processed in case of 

a failure.
» Need to redo all committed transactions from start of 

the log
» Need to undo uncommitted transactions, playing back 

the log in reverse
! To simplify recovery, we can checkpoint the log 

periodically. 
» Then, old parts of the log (before the checkpoint) can 

be discarded

48



Checkpoint (simplified)
!Periodically:

(1) Do not accept new transactions
(2) Wait until all transactions finish
(3) Flush all log records to disk (log)
(4) Flush all buffers to disk (DB) (do not 

discard buffers)
(5) Write “checkpoint” record on disk (log)
(6) Resume transaction processing

49



50

Example: what to do at recovery?

Redo log (disk):

<
T1

,A
,1

6>

<
T1

,c
om

m
it>

Ch
ec

kp
oi

nt

<
T2

,B
,1

7>

<
T2

,c
om

m
it>

<
T3

,C
,2

1>

Crash... ... ... ... ..
.

..
.

Redo <T2,B,17>



Issue with simple checkpoint
! The DBMS effectively halts until all current 

transactions have committed or aborted.
» This is not desirable in a production system

! Nonquiescent checkpointing (μη αδρανή σημεία 
ελέγχου) is a technique that avoids this bottleneck. 

! Nonquiescent checkpointing (undo/redo log):
1. Write a record <START CKPT(T1...Tk)>. T1,...Tk

are the active transactions. New transactions are 
allowed during checkpointing.

2. Flush log and all pages modified by all active 
transactions.

3. Write <END CKPT> to the log. 

51



52

Non-quiescent checkpoint

L
O
G

for
undo flush dirty buffer

pool pages
log flushed (redo/undo)

Start-ckpt
active TR:

Ti,T2,...

end
ckpt

.........



53

Examples what to do at recovery time?

no T1 commit

L
O
G

T1,-
a ... Ckpt

T1 ... Ckpt
end ... T1-

b...

ý Undo T1  (undo b,a)



54

Example
L
O
G

... T1
a ... ... T1

b ... ... T1
c ... T1

cmt ...ckpt-
end

ckpt-s
T1

ý Redo T1: (redo b,c)
(note: this is for undo/redo case)



Recovery process:
! Backwards pass (end of log Ü latest checkpoint start)

» construct set S of committed transactions
» undo actions of transactions not in S

! Undo pending transactions
» follow undo chains for transactions in

(checkpoint active list) - S

! Forward pass (latest checkpoint start Ü end of log)
» redo actions of S transactions

55

backward pass

forward pass
start
check-
point



59

Media failure (loss of non-volatile 
storage)

A: 16

Solution: Make copies of data!



Nonquiescent Checkpointing (with db dump)

60

check-
point

db
dump

last
needed
undo

not needed for
media recovery

not needed for undo
after system failure

not needed for
redo after system failure

log

time



Consistency (A.C.I.D)
! The database should start out "consistent“ (legal 

state), and at the end of transaction remain 
"consistent". 

! The definition of "consistent" is up to the database 
administrator to define to the system
» integrity constraints 
» other notions of consistency must be handled by the 

application.

69



Integrity or correctness of data
! Would like data to be “accurate” or “correct” at all 

times

EMP:

70

Name

John
Jim   
Helen

Age

52
24
1

CREATE TABLE EMP (
Name varchar(255) NOT NULL,
Age int,
CHECK (Age>=18)

); 



Integrity/consistency constraints
! Predicates data must satisfy
! Examples:

» age >= 18 and age < 65
» x is key of relation R
» x ® y holds in R
» Domain(x) = {Red, Blue, Green}
» no employee should make more than twice the average 

salary

71



Ultimate Goal
! Database should reflect real world

72

DB Reality



But will settle for this…

73

Consistent DB Consistent DB’T

Transaction: collection of actions 
that preserve consistency



Isolation (A.C.I.D)
! Each transaction must appear to be executed as if 

no other transaction is executing at the same time.
! Transfer funds from A to B (T1).
! Another teller makes a query on A and B (T2).
! T2 could see funds on A or B but not in both!

» Result may be independent of the time transactions 
were submitted

74



75

Isolation & Lost Update
! Consider two transactions

» T1: Deposit 200 euros in account A
» T2: Deposit 100 euros in the same account

! What could go wrong?



76

Assume depicted order of execution

Time  Transaction T1           Transaction T2
1        read(A,x)
2        x:=x+200
3 read(A,y)
4 y:=y+100
5        write(x,A);output(A)
6 write(y,A);output(A)
7 commit
8        commit

What is the final outcome?

Assume A=1000 (time=0)



Isolation Level
! Default is Serializable

» T1->T2 or T2->T1
! In reality we want to allow parallelism

» Serializable refers to the net-effect
! Can be implemented via locks

» Locks reduce concurrency
» Fine granularity of locks reduces risk of deadlocks

– database, table, tuple
! Serializability can be guaranteed using locks in a 

certain fashion
» Tests for serializability are redundant!
» Rollover when required (e.g. deadlocks)

77



Is it always worth it?
! T1: compute average salary per dept of your 

20000 employees
! T2: tries to move employee “Smith” to “Sales” 

department 
» Eventually aborted, no office space can be allocated

! It is worth for T1 to be executed in isolation?
» What if we allow “dirty” (=uncommited) reads?

78



79

Example 2

Select sum(amount)
From BankData
Where bankLocation=“Athens”

Compute total balance
of all accounts in Athens:

Ενημέρωσε λογαριασμό
ενός πελάτη από στην Αθήνα

UPDATE BankData
SET amount=amount+10
WHERE accountId=‘12345’

BankData(accountId,bankLocation,amount)

Read Locks

W
rite Lock



Isolation Levels
! Read Uncommitted (dirty reads allowed)
! Read Committed
! Repeatable Reads
! Serializable (default)

80



Read Committed Isolation Level
! Forbids reading of dirty (uncommitted) data

! It is possible for a transaction to issue the same 
query several times and get different answers, as 
long as the answers reflect data has been written 
by transactions that already committed

81



Repeatable Read
! If a tuple is retrieved the first time, the system 

guarantees that the identical tuple will be retrieved 
again if the query is repeated
» Insertions that happen while the transaction is executed 

will be seen (phantom tuples)

! Assume relation with banking accounts
» The balances of accounts I read, will not change every 

time I make an inquiry within the same transaction
» But I will be able to see newly generated accounts

82



SQL-92 Isolation Levels

83

Isolation Level Dirty Reads Nonrepeatable
Reads

Phantom Tuples

Read Uncommitted Yes Yes Yes

Read Committed No Yes Yes

Repeatable Read No No Yes

Serializable No No No



Durability (A.C.I.D.)
! Once committed, the transactions effects should 

not disappear. 
» Of course, they may be overwritten by subsequent 

committed transactions.

84



Implementation
! A, C, and D are mostly guaranteed by recovery 

(usually implemented via logging).
! I is mostly guaranteed by concurrency control 

(usually implemented via locking).
! Of course, life is not so simple. For example, 

recovery typically requires concurrency control 
and depends on certain behavior by the buffer 
manager…

85



Quick Lesson on Recovery
! Every change is logged
! Log manager negotiates with buffer manager to 

flush changes to non-volatile storage
! In case of a “problem” (machine crash, violation 

of “A” and “C” properties) recovery manager 
examines logs and returns database to some 
consistent state

86



Quick Lesson on Concurrency 
Control

! Usually implemented via Locking
! Most OLTP systems measure success via 

#transactions/second
» Airline reservation, banking

! Required for Isolation

87



Bottom Line
! DBMS are monsters

» Complicated systems
» Guarantee integrity, longevity the data
» Goal is to execute as many transactions/secs as possible

! Is it always worth it?
» Want to analyze millions of facebook/twitter records
» Do we need strict ACID properties?
» Do we need SQL to do it?

88



Note
! Οι παρακάτω διαφάνειες είναι εκτός ύλης

89



Top-10 most frequent words with 
NoSQL (Apache Spark + Scala)

val file = sc.textFile("/home/yannisk/wordfile")
val words = file.flatMap(line => line.split(" "))
val pairs=words.map(word => (word, 1))
val wordCounts = pairs.reduceByKey(_ + _)

val invCounts = wordCounts.map(x => (x._2,x._1)).sortByKey(false)

invCounts.take(10).foreach(println)



Sample text file
Panathinaikos B.C. also known simply as Panathinaikos, or by its full name, Panathinaikos BSA Athens, 
is the professional basketball team of the major Athens-based multi-sport club Panathinaikos A.O. It is 
owned by the billionaire Giannakopoulos family.

The parent athletic club was founded in 1908, while the basketball team was created in 1919, being one of 
the oldest in Greece. Alongside Aris, they are the only un-relegated teams with participation in every 
Greek First Division Championship until today. Panathinaikos has developed into the most successful 
basketball club in Greek basketball's history, and among the best in Europe, creating its own dynasty. 
They have won thirty-seven Greek Basket League Championships, eighteen Greek Cups, ten Doubles (all 
records), six EuroLeague Championships, one Intercontinental Cup and two Triple Crowns. They also 
hold the record for most consecutive Greek League titles, as they are the only team to have won nine 
consecutive championships (2003 - 2011), as well as for the most consecutive Greek Basketball Cup titles 
(six in a row 2012 to 2017). The team plays in the Olympic Indoor Hall, which has a capacity of 18,989 
for basketball games.



Output
val file = sc.textFile("/home/yannisk/wordfile")
val words = file.flatMap(line => line.split(" "))
val pairs=words.map(word => (word, 1))
val wordCounts = pairs.reduceByKey(_ + _)

val invCounts = wordCounts.map(x => (x._2,x._1)).sortByKey(false)

invCounts.take(10).foreach(println)

(12,the)
(8,in)
(6,Greek)
(4,Panathinaikos)
(4,as)
(4,team)
(4,basketball)
(3,consecutive)
(3,club)
(3,for)



Issues with NoSQL
! Efficient but ugly

! Long-term maintenance of codebase?

! Query processing is procedural unlike SQL

! Declarative queries (SQL) allow optimizations by 
well designed systems 



Top-10 most freq. words 
(DataFramess+SQL)

import org.apache.spark.sql.SparkSession
import spark.implicits._
val spark = SparkSession.builder.config(sc.getConf).getOrCreate()

val file = sc.textFile("/home/yannisk/wordfile")
val words = file.flatMap(line => line.split(" "))

val wordsDF = words.toDF(colNames="word")
wordsDF.createOrReplaceTempView("R")

val result = spark.sql("Select word,count(*) as counter from R
group by word order by counter DESC limit 10")

result.show()



Create a DataFrame containing all 
words in the document

import org.apache.spark.sql.SparkSession
import spark.implicits._
val spark = SparkSession.builder.config(sc.getConf).getOrCreate()

val file = sc.textFile("/home/yannisk/wordfile")
val words = file.flatMap(line => line.split(" "))

val wordsDF = words.toDF(colNames="word")
wordsDF.createOrReplaceTempView("R")

val result = spark.sql("Select word,count(*) as counter from R
group by word order by counter DESC limit 10")

result.show()



Define a View
import org.apache.spark.sql.SparkSession
import spark.implicits._
val spark = SparkSession.builder.config(sc.getConf).getOrCreate()

val file = sc.textFile("/home/yannisk/wordfile")
val words = file.flatMap(line => line.split(" "))

val wordsDF = words.toDF(colNames="word")
wordsDF.createOrReplaceTempView("R")

val result = spark.sql("Select word,count(*) as counter from R
group by word order by counter DESC limit 10")

result.show()



Query View R using SQL
import org.apache.spark.sql.SparkSession
import spark.implicits._
val spark = SparkSession.builder.config(sc.getConf).getOrCreate()

val file = sc.textFile("/home/yannisk/wordfile")
val words = file.flatMap(line => line.split(" "))

val wordsDF = words.toDF(colNames="word")
wordsDF.createOrReplaceTempView("R")

val result = spark.sql("Select word,count(*) as counter from R
group by word order by counter DESC limit 10")

result.show()



Show Results
import org.apache.spark.sql.SparkSession
import spark.implicits._
val spark = SparkSession.builder.config(sc.getConf).getOrCreate()

val file = sc.textFile("/home/yannisk/wordfile")
val words = file.flatMap(line => line.split(" "))

val wordsDF = words.toDF(colNames="word")
wordsDF.createOrReplaceTempView("R")

val result = spark.sql("Select word,count(*) as counter from R
group by word order by counter DESC limit 10")

result.show()


