OLAP/Data Warehouses

Yannis Kotidis

What is a Database?

- From Wikipedia:

- A database is a structured collection of records or data. A computer database relies upon software to organize the storage of data. The software models the database structure in what are known as database models. The model in most common use today is the relational model. Other models such as the hierarchical model and the network model use a more explicit representation of relationships ...
- Database management systems (DBMS) are the software used to organize and maintain the database. These are categorized according to the database model that they support. The model tends to determine the query languages that are available to access the database. A great deal of the internal engineering of a DBMS, however, is independent of the data model, and is concerned with managing factors such as performance, concurrency, integrity, and recovery from hardware failures. ..

Note

- Term "database" often used interchangeably for both the data and the system that manages it

Basic Database Usage (1): Querying

Relations

Statements
(select columns and rows)

Results

A	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}

Basic Database Usage (2): Updates

- Banking transaction: transfer 100 euro from account A to account B
- What can go wrong?

Issue 1: Partial results

- System failure prior to adding funds to account B (but after deleting them from A)

Issue 2: No isolation

- For an observer that monitors all funds money seem to temporality disappear (and reappear again)

Issue 3: lost update

- Two concurrent transactions on account A
- T1: remove 100
- T2: remove 50

Programming abstraction: Transactions

- Implement real-world transactions

- DBMSs guarantee ACID properties
- Atomicity
- Consistency
- Isolation
- Durability

Atomicity (A.C.I.D.)

- The "all or nothing" property.
- Programmer needn't worry about partial states persisting.
- Two possible outcomes: transaction commits or rollbacks (aborts)

- Examples:
- T1: Delete person from consultants table, insert person into employees table
- T2: Transfer funds from account A to account B

Consistency (A.C.I.D)

- The database should start out "consistent" (legal state), and at the end of transaction remain "consistent".
- The definition of "consistent" is up to the database administrator to define to the system
- integrity constraints
- other notions of consistency must be handled by the application.

Integrity or correctness of data

- Would like data to be "accurate" or "correct" at all times

EMP: | Name | Age |
| :---: | :---: |
| John | 52 |
| Jim | 24 |
| Martha | 1 |

[^0]
Integrity/consistency constraints

- Predicates data must satisfy
- Examples:
- age >= 18 and age < 65
$-x$ is key of relation R
$-x \rightarrow y$ holds in R
- Domain $(x)=\{$ Red, Blue, Green $\}$
- no employee should make more than twice the average salary

Isolation (A.C.I.D)

- Each transaction must appear to be executed as if no other transaction is executing at the same time.
- Transfer funds from A to B (T1).
- Another teller makes a query on A and $B(T 2)$.
- T2 could see funds on A or B but not in both!
- Result may be independent of the time transactions were submitted

Durability (A.C.I.D.)

- Once committed, the transactions effects should not disappear.
- Of course, they may be overwritten by subsequent committed transactions.

Implementation

- A, C, and D are mostly guaranteed by recovery (usually implemented via logging).
- I is mostly guaranteed by concurrency control (usually implemented via locking).
- Of course, life is not so simple. For example, recovery typically requires concurrency control and depends on certain behavior by the buffer manager...

Operational DBs: OLTP systems

- OLTP= On-Line Transaction Processing
- order update: pull up order\# XXX and update status flag to "completed"
update Orders set status="Completed"
where orderID="XXX"

Index on Orders.orderID

Reconstruction of logical records

Employees		Projects		Assignments		
EmplD	Ename	Projld	Pname	Empld	Projid	Hours
101	John Smith	2	Web_TV	101	3	16
102	Nick Long	3	Web_portal	102	2	24
103	Susan Goal	4	Billing	102	3	8
104	John English			104	4	32
105	Alice Web			105	4	24
106	Patricia Kane			106	4	24

- List projects \& hours assigned to employee Nick Long

Select Pname,Hours
From Employees E, Projects P, Assignments A
Where E.Ename = "Nick Long"
And E.EmpID=A.EmpID
And A.ProjlD=P.ProjlD

Physical Plan (step a): IndexSeek

Employees	
EmpID	Ename
101	John Smith
102	Nick Long
103	Susan Goal
104	John English
105	Alice Web
106	Patricia Kane

Projects	
ProjlD	Pname
2	Web_TV
3	Web_portal
4	Billing

Assignments		
EmpID	ProjID	Hours
101	3	16
102	2	24
102	3	8
104	4	32
105	4	24
106	4	24

Index on Employees.Ename

Physical Plan (step b):

 INLJ(Employees,Assignments)| Employees | | Projects | | Assignments | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| EmplD | Ename | Projld | Pname | Empld | Projld | Hours |
| 101 | John Smith | 2 | Web_TV | 101 | 3 | 16 |
| 102 | Nick Long | 3 | Web_portal | 102 | 2 | 24 |
| 103 | Susan Goal | 4 | Billing | 102 | 3 | 8 |
| 104 | John English | | | 104 | 4 | 32 |
| 105 | Alice Web | | | 105 | 4 | 24 |
| 106 | Patricia Kane | | | 106 | 4 | 24 |

Index on Assignments.EmpID

Physical Plan (step c): INLJ(Assignments,Projects)

Employees	
EmpID	Ename
101	John Smith
102	Nick Long
103	Susan Goal
104	John English
105	Alice Web
106	Patricia Kane

Projects	
Projld	Pname
2	Web_TV
3	Web_portal
4	Billing

Assignments

EmpID	Proild	Hours
101	3	16
102	2	24
102	3	8
104	4	32
105	4	24
106	4	24

Index on Projects.ProjID (primary key)

On-Line Transaction Processing

- Examples
- order update: pull up order\# XXX and update status flag to "completed"
- banking: transfer 100 euros from account \#A to account \#B
- Transactions:
- Implement structured, repetitive clerical data processing tasks
- Require detailed, up-to-date data
- Are (most of the times) short-lived
- read and/or update a few records
- Integrity of the database is critical
- DBMS should manage hundreds or thousands of concurrent transactions
- Systems supporting this kind of activity are called transactional systems
- Most traditional database management systems

Transactional Systems

- Transactional systems are optimized primarily for the here and now
- Can support many simultaneous users
- concurrent read/write access
- Transactional systems don't necessarily record all previous data states
- E.g. customer updates its address (moves to new town)
- Lots of data gets thrown away or archived
- Old orders are deleted/archived to reduce size

Analytical queries on a production system?

- CEO wants to report total sales per store in Athens, for stores with at least 500 sales
- 3 tables: Sales(custid, productid,storeid,amt)

Stores(storeid, manager,addressid)
Addresses(addressid,number,street,city)
SELECT Stores.storeid,SUM(amt) as totalSales Aggregation FROM Sales, Stores, Addresses
WHERE Stores.storeid = Sales.storeid
AND Stores.addressid=Addresses.addresid
AND Addresses.city="Athens"
GROUP BY Stores.storeid Group by
HAVING count(*) ≥ 500 Filter/Aggregation

Logical Plan

Sad realization

- Analytical queries on an operational database often take for ever
- Schema favors small atomic actions
- Excessive normalization results in costly joins
- Need to scan LOTS of records
- Indexes are not very useful when queries are not selective
- Interference with daily transactions
- Overhead of OLTP engine (logging, locking)

My employees \& their projects

EmplD	Ename	ProjlD	Pname	City	Hours
101	John Smith	3	Web_portal	Thessaloniki	16
102	Nick Long	2	Web_TV	Athens	24
103	Susan Goal	3	Web_portal	Thessaloniki	8
104	John English	4	Billing	Athens	32
105	Alice Web	4	Billing	Athens	24
106	Patricia Kane	4	Billing	Athens	24

- Schema is bad for OLTP (1NF)
- Update anomalies, repetition of values
- But is all we need for reporting our employees and their projects!

OLAP:
 ONLINE ANALYTICAL PROCESSING

OLAP

- OLAP = online analytical processing
- OLAP is the process of creating and summarizing historical, multidimensional data
- To help organizations understand their data better
- Provide a basis for informed decisions (Decision Support Systems, Business Intelligence)
- Allow users to manipulate and explore data easily and intuitively

Data Analytics Stack

OLAP

- Well defined
computations over
data categorized by
multiple dimensions
of interest
- Enables users to
easily and
selectively extract
and query data in
order to analyse it
from different
points of view

Data Mining	Machine Learning
- Seek to find	- Build models for
relationships and	
patterns in data	prediction, classification etc. - Frequent itemset - Association rules - Clustering
	- Image classification
	- Speech processing
- Sentiment analysis	

OLAP Examples

OLAP

- Well defined computations over data categorized by multiple dimensions of interest
- Enables users to easily and selectively extract and query data in order to analyse it from different points of view
A. Group sales data (facts) across different dimensions: Product, Customer, Location (point of sale) and Time
- Dimensions identify what, who, where \& when
B. Compute interesting stats on selected measures

Examples:

1. "Average January sales ($€$) for all stores in Attika"
2. "Number of shoes over $100 €$ sold to female customers between ages 18 and 25 "
3. "Top-10 product-categories whose sales (\%) increased the most over the past year"

$1^{\text {st }}$ query in more details

OLAP

- Well defined computations over data categorized by multiple dimensions of interest
- Enables users to easily and selectively extract and query data in order to analyse it from different points of view
"Average January sales (€) for all stores in Attika"
${ }^{\uparrow}{ }^{\text {st }}$ dimension denotes when (time) ${ }^{\uparrow}$
$2^{\text {nd }}$ dimension denotes where (location)

A common aggregate function: AVG() over the available measure (sales €)

Other examples: $\operatorname{Max}(), \operatorname{Min}(), \operatorname{Count}(), \operatorname{StDev}()$, Median()

OLAP vs. OLTP

OITP
OLAP

User	Clerk, IT professional	Knowledge worker
Function	Day to day operations	Decision support
DB design	Application-oriented	Subject-oriented
	(E-R based)	(Star, snowflake)
Data	Current, Isolated	Historical, Consolidated
View	Detailed, Flat relational	Summarized, Multidimensional
Usage	Structured, Repetitive	Ad hoc (+reporting)
Unit of work	Short, simple transaction	Complex query
Access	Read/write	Read mostly
Operations	Index/hash on prim. key	Lots of scans
\# Records accessed	Tens	Millions
\# Users	Thousands	Hundreds
Db size	100 MB - GB	100 GB - TB
Metric	Trans. throughput	Query throughput, response

DATA WAREHOUSES

The Data Warehouse

- In order to support OLAP, data is collected from multiple data sources, cleansed and organized in data warehouses
- The data warehouse is a huge repository of enterprise data that will be used for decision making
- After data is loaded in the data warehouse, OLAP cubes are often pre-summarized across dimensions of interest to drastically improve query time

Data Warehouse definition

- A decision support database that is maintained separately from the organization's operational databases.
- A data warehouse is a
- subject-oriented,
- integrated,
- time-varying,
- non-volatile
collection of data that is used primarily in organizational decision making.
-- W.H. Inmon, Building the Data Warehouse, 1992.

Subject-Oriented

- Organized around major subjects, such as customer, product, sales
- Focusing on the modeling and analysis of data for decision makers, not on daily operations or transaction processing
- Provide a simple and concise view around particular subject issues by excluding data that are not useful in the decision support process

Integrated

- Constructed by integrating multiple, heterogeneous data sources
- relational databases, files, external sources
- Data cleaning and data integration techniques are applied
- Ensure consistency in naming conventions, keys, attribute measures, etc. among different data sources
- E.g., Hotel price: currency, tax, breakfast covered, etc.
- When data is moved to the warehouse, it is transformed

Time-Variant

- The time horizon for the data warehouse is significantly longer than that of operational systems
- Operational database: current data, old values overwritten, deleted or archived
- Data warehouse: provides data from a historical perspective (e.g., past 5-10 years) for trend analysis

Non-volatile

- A physically separate store of data transformed from the operational environment
- Operational update of data does not occur in the data warehouse environment
- Does not require transaction processing, recovery, and concurrency control mechanisms
- Requires only two operations in data accessing:
- loading of data and access to data

Data Warehouse Architecture

Implementation

- Warehouse database server
- Almost always a relational DBMS.
- OLAP Servers (for computing OLAP Cubes)
- Relational OLAP (ROLAP): extended relational DBMS that maps operations on multidimensional data to standard relational operations.
- Multidimensional OLAP (MOLAP): special purpose server that directly implements multidimensional data and operations.
- Clients
- Query and reporting tools.
- Analysis tools.
- Data mining tools.

Data Marts

- Smaller warehouses
- Span part of organization
- e.g., marketing (customers, products, sales)
- Do not require enterprise-wide consensus
- But may lead to long term integration problems

ETL

- Data is periodically (e.g. every night) pulled from the sources and feeds the Data Warehouse
- Modern application stretch the need for real time processing of updates (will not be covered in this class)
- To update the Data Warehouse with new data, ETL (Extract, Transform, Load) processes are utilized to extract, validate, cleanse, correct, transform, and load the data
- Verifying data accuracy to ensure that the data is correct and consistent
- Removing duplicates to eliminate redundant entries
- Filling in or removing incomplete data to ensure that all data points are complete and consistent
- Standardizing the data to ensure consistency in format and representation.
- High-quality data leads to better business decisions!
- Once the data has been loaded, precomputations are carried out in the form of data cubes (either complete or partial) to accelerate the processing of common queries

Basic Query Pattern

- The analyst selects a subset of dimensions from the data and computes relevant statistics to derive insights.
- In SQL this is expressed by grouping records using the selected attributes and computing aggregate functions (e.g. sum(), average(), count(), max()) over each group
- "Group by followed by aggregation"
- Additional filtering may be used to restrict the scope of the query

Example

- "Compute the total revenue (=sum) the minimum and maximum price for each combination of customer and store"
- Sales Data:

Time	Customer	Store	Product	Price
T 1	C 1	S 2	P 1	$\$ 90$
T 2	C 2	S 1	P 2	$\$ 70$
T 3	C 1	S 1	P 2	$\$ 45$
T 4	C 3	S 1	P 1	$\$ 40$
T 5	C 1	S 2	P 2	$\$ 25$
T 6	C 1	S 2	P 2	$\$ 50$
T 7	C 2	S 1	P 4	$\$ 45$
T 8	C 3	S 1	P 1	$\$ 10$

In SQL: Group By + Aggregation

Select Customer, Store, SUM(Price) as Revenue, $\operatorname{MIN}($ Price) as MinPrice, MAX(Price) as MaxPrice
From Sales Group by Customer, Store

1. Identify groups:
$C 1, S 1$
$C 2, S 1$
$C 3, S 1$
$C 1, S 2$
2. Perform aggregation

Time	Customer	Store	Product	Price
T1	C1	S 2	P 1	$\$ 90$
T 2	C 2	S 1	P 2	$\$ 70$
T 3	C 1	S 1	P 2	$\$ 45$
T 4	C 3	S 1	P 1	$\$ 40$
T 5	C 1	S 2	P 2	$\$ 25$
T 6	C 1	S 2	P 2	$\$ 50$
T 7	C 2	S 1	P 4	$\$ 45$
T 8	C 3	S 1	P 1	$\$ 10$

Customer	Store	Revenue	Min Price	Max Price
C2	S1	$\$ 115$	$\$ 45$	$\$ 70$
C1	S1	$\$ 45$	$\$ 45$	$\$ 45$
C3	S1	$\$ 50$	$\$ 10$	$\$ 40$
C1	S2	$\$ 165$	$\$ 25$	$\$ 90$

Relational Algebra (logical plan)

$Y_{\text {Store, }}$ Customer, SUM(Price)->Revenue, MIN(Price)->MinPrice, MAX(Price)->MaxPrice |

Sales

Map data and aggregates into a highdimensional space

- Example: compute total sales volume per productID and storeID

Total Sales		ProductID			
		1	2	3	4
	1	\$454	-	-	\$925
	2	\$468	\$800	-	-
	3	\$296	-	\$240	-
	4	\$652	-	\$540	\$745

StoreID

This value denotes
the result of the
aggregation

ProductID

Multidimensional Data Model

- A data warehouse is a collection of data points or facts that exist in a multidimensional space. These data points can represent various entities such as sales, orders, contracts, and so on.
- A fact has
- A set of dimensions with respect to which data is analyzed
- e.g., store, product, date associated with a sale
- A set of measures
- quantity that is analyzed, e.g., sale amount, quantity
- The dimensions create a sparsely populated coordinate system, where not all possible combinations exist as facts.
- For example, it is unlikely that a customer has visited every single store. Therefore, some combinations of dimensions may have no corresponding facts or data points.
- Each dimension is associated with a set of attributes that provide additional information about the data points. These attributes can be used to provide context and details about the data.
- e.g., owner, city and state of store
- Values of a dimension in a database may be related to one another.
- For example, the "product" dimension may have a hierarchical relationship, where each product belongs to a category and each category belongs to a larger group. This relationship between values can be used to create hierarchies or drill-down paths for analysis.

Product Hierarchy

K $\omega \delta$ เкоí үı α ó $\lambda \alpha$ t α tupıá tútou «фદ́т $\alpha »$

More on Attribute Hierarchies

- Values of a dimension may be related
- Hierarchies are most common
- Dependency graph may be:
- Hierarchy (tree): e.g., city \rightarrow state \rightarrow country
- Lattice:
date \rightarrow month \rightarrow year
 date \rightarrow week (of a year) \rightarrow year

Another example

- VIN: Vehicle Identification Number (unique key)
- Model: e.g. Fiesta
- Type: e.g. Compact Car
- Manufacturer: e.g.

Manufacturer

Model
Type

Using hierarchies

- When projecting data into a set of dimensions, it is common to select an appropriate hierarchy level for each dimension based on the analysis being performed.
- "Compute total sales per productID"

Vs

- "Compute total sales per product-category"
- In the second query, sales of different productIDs that all belong to the same category e.g. "Milk" will be accumulated together in the same "coordinate" (value) of the category dimension

Multidimensional View of selected hierarchy levels per dimension

- Aggregate sales volume as a function of product (category), time (day-of-week), geography (city)

All NY's sales of

Roll-up Operation

- Dimension reduction:
- e.g., total sales by city by product
- e.g., total sales by city

- Navigating attribute hierarchy:
- e.g., sales by city
\rightarrow total sales by state
\rightarrow total sales by country
- e.g., total sales by city and year
\rightarrow total sales by state and by year
\rightarrow total sales by country

ミఇuعí $\omega \sigma \eta$

- $\Sigma \varepsilon \alpha \cup \tau$ т́ то $\sigma \eta \mu \varepsilon i ́ o ~ \sigma u そ \eta \tau \alpha ́ \mu \varepsilon ~ ү \iota \alpha ~ \tau \varepsilon \lambda \varepsilon \sigma \tau \varepsilon ́ \varsigma ~ \mu \varepsilon ~$ tous олоíouৎ «иعтакıvoú $\mu \alpha \sigma \tau \varepsilon » ~ \sigma т о ~$

 алоӨ்́кпя.
- O t $\varepsilon \lambda \varepsilon \sigma \pi n ̃ \varsigma ~ R O L L U P ~ u \pi \alpha ́ \rho \chi \varepsilon ı ~ к \alpha ı ~ \sigma \tau \eta v ~ S Q L ~$

 bys $\mu \varepsilon \mu i \alpha \varepsilon \pi \varepsilon \rho \omega ́ t \eta \sigma \eta$.

Drill-Down

- Drill-down: Inverse operation of roll-up
- Provides the data set that was aggregated
- e.g., show "base" data for total sales figure of the state of CA

Other Operations

- Selection (slice \& dice) defines a subcube
- Project the cube on fewer dimensions by specifying coordinates of remaining dimensions
- e.g., sales to customer XXX

- Ranking
- top 3\% of cities by average sales

Warehouse Database Schema

- Relational design should reflect multidimensional view
- Typical schemas:
- Star Schema
- Snowflake Schema
- Fact Constellation Schema
- Data tables (relations) are of two types: fact tables and dimension tables

The Star Schema (Example 1)

time key	product key	location key	units	amount
T1	P44	L4	1	12
T2	P157	L4	3	180
T2	P6	L1	14	2560
T3	P25	L3	1	2
T3	P157	L1	1	60

Foreign keys to dimension tables measures

- Each row records measurements describing a fact
- Where? When? Who? How much? How many?
- Provides the most detailed view of the data an analyst has access to in the data warehouse
- this denotes the grain of the design

Dimension Tables

Keys uniquely identify each product

product key	product_name	category	brand	color	supplier name
P1	I7-8700K	CPU	Intel	black	Jim
P2	I5-2400	CPU	Intel	black	Jim
P3	Samsung 830	SSD	Samsung	brown	Ben
P4	Barracuda	HDD	Seagate	silver	Ben
P5	MQ01ABD032	HDD	Toshiba	silver	John

encodes product \rightarrow category hierarchy

- Dimension Tables contain
- a key column linked to a foreign key in the fact table
- textual descriptors such as name of products, addresses etc
- attributes that encode dependences within the dimension (e.g. hierarchies)
- Dimension tables may be wide
- Dimension tables are usually shallow (e.g. few thousand rows)

Advantages of Star Schema

- A single fact table where to look for facts to analyze
- One table for each dimension
- dimensions are clearly depicted in the schema
- Easy to comprehend (and write queries)
- Loading of data
- dimension tables are relatively static
- data is loaded (append mostly) into fact table(s)
- new indexing opportunities

Querying the Star Schema

"Find total sales per product-category in our stores in Europe"

TIME
time_key
day
day_of_the_week
month
quarter
year

	PRODUCT SALES		
product_key time_key product_key product_name lategory brand color supplier_name			
units_sold			
amount		\quad	LOCATION
:---	:---		

Querying the Star Schema

"Find total sales per product-category in our stores in Europe"

SELECT PRODUCT.category, SUM(SALES.amount)
FROM SALES, PRODUCT,LOCATION
WHERE SALES.product_key = PRODUCT.product_key
AND SALES.location_key = LOCATION.location_key
AND LOCATION.region="Europe"
GROUP BY PRODUCT.category

Join fact table SALES with dimension tables PRODUCT, LOCATION to fetch required attributes (category \& region in this example)

Star Schema Query Processing

Another Example

Order		Fact table	Product	
		ProdNo		
OrderNo			ProdName	
OrderType			ProdDescr	
OrderNotes			Category	
Customer			OrderNo SalespersonID	CategoryDescr
CustomerNo		UnitPrice QOH		
CustomerName		CustomerNo	Date	
CustomerAddress	\nearrow	ProdNo		
		DateKey CityName	DateKey	
			Date	
Salesperson		Quantity TotalPrice	Month	
SalespersonID			Year	
SalespersonName			City	
City			CityName	
Quota			State	

Fact constellation

- Multiple fact tables that share common dimension tables
- Example: Delivery and Sales fact tables share dimension tables Time \& Product

Snowflake Schema: represents dimensional hierarchy by normalization

Multidimensional Modeling Stages

 (adapted from https://www.kimballgroup.com/)

Gather Business Requirements and Data Realities

- Study the underlying business processes
- Understand their objectives based on key performance indicators (KPIs), compelling business issues, decision-making processes, and supporting analytic need
- Identify available data sources (internal and external)
- Assess their quality and completeness

Grain

- Establishes exactly what a single fact table row represents
- Different grains must not be mixed in the same fact table
- Atomic grain refers to the lowest level at which data is captured by a given business process
- Safer to start with the atomic grain in order to cope with unpredictable query workload

Identify the dimensions

- Dimensions provide the "who, what, where, when, why, and how" context surrounding a business process event.
- Dimension tables contain descriptive attributes used by BI applications for filtering and grouping the facts.

Identify the facts

- A single fact table row has a one-to-one relationship to a measurement event as described by the fact table's grain.
- Facts contain measurements that result from a business process event.
- Within a fact table, only facts consistent with the declared grain are allowed.

Indexing Techniques

- Exploiting indexes to reduce scanning of data is of crucial importance
- ROLAP
- Bitmap Indexes
- Join Indexes
- MOLAP
- Array representation

Bitmap Index Example

Base Table

Cust	Region	Rating
C1	N	H
C2	S	M
C3	W	L
C4	W	H
C5	S	L
C6	W	L
C7	N	H

Region Index

RowID	N	S	E	W
1	1	0	0	0
2	0	1	0	0
3	0	0	0	1
4	0	0	0	1
5	0	1	0	0
6	0	0	0	1
7	1	0	0	0

Bitmap Index Example

Base Table	
Cust Region Rating C1 N H C2 S M C3 W L C4 W H C5 S L C6 W L C7 N H	

Region Index

RowID	N	S	E	W
1	1	0	0	0
2	0	1	0	0
3	0	0	0	1
4	0	0	0	1
5	0	1	0	0
6	0	0	0	1
7	1	0	0	0

Bitmap encodes position of customer records in the base table (rows 1,7) that reside in the North Region

Bitmap Index Example

Base Table

Cust	Region	Rating
C1	N	H
C2	S	M
C3	W	L
C4	W	H
C5	S	L
C6	W	L
C7	N	H

Region Index

RowID	N	S	E	W
1	1	0	0	0
2	0	1	0	0
3	0	0	0	1
4	0	0	0	1
5	0	1	0	0
6	0	0	0	1
7	1	0	0	0

RowID	H	M	L
1	1	0	0
2	0	1	0
3	0	0	1
4	1	0	0
5	0	0	1
6	0	0	1
7	1	0	0

Bitmap Index Example

Base Table

Cust	Region	Rating
C1	N	H
C2	S	M
C3	W	L
C4	W	H
C5	S	L
C6	W	L
C7	N	H

Customers where

Region Index

RowID	N	S	E	W
1	1	0	0	0
2	0	1	0	0
3	0	0	0	1
4	0	0	0	1
5	0	1	0	0
6	0	0	0	1
7	1	0	0	0

and

RowID	H	M	L
1	1	0	0
2	0	1	0
3	0	0	1
4	1	0	0
5	0	0	1
6	0	0	1
7	1	0	0

Rating $=L$

Bit Map Index Example 2

Base Table

Cust	Region	Rating
C1	N	H
C2	S	M
C3	W	L
C4	W	H
C5	S	L
C6	W	L
C7	N	H

Region Index

RowID	N	S	E	W
1	1	0	0	0
2	0	1	0	0
3	0	0	0	1
4	0	0	0	1
5	0	1	0	0
6	0	0	0	1
7	1	0	0	0

How many customers in W region?

Bitmap Index

- An alternative representation of RID-list
- Comparison, join and aggregation operations are reduced to bit arithmetic
- Especially advantageous for low-cardinality domains
- Significant reduction in space and I/O (30:1)
- Have been adapted for higher cardinality domains
- Compression (e.g., run-length encoding) exploited
- Products: Model 204, Redbrick, IQ (Sybase), Oracle, etc

Join Index

- Traditional index maps the value in a column to a list of rows with that value
- Join index maintains relationships between attribute value of a dimension and the matching rows in the fact table
- Join index may span multiple dimensions (composite join index)

Example: Join Indexes

- "Combine" SALE, PRODUCT relations

sale	prodid	storeld		date		amt		product		id	name	price
	p1			1		12				p1	bolt	10
	p2	c1		1		11				p2	nut	5
	p1	c3		1		50						
	p2	c2		1		8						
	p1	c1		2		44						
	p1	c2		2		4						
		Tb	prod		nam		price	storeld	date	amt		
			p1		bo		10	c1	1	12		
			p2		nu		5	c1	1	11		
			p1		bo		10	c3	1	50		
			p2		nu		5	c2	1	8		
			p1		bo		10	c1	2	44		
			p1		bo		10	c2	2	4		

Join Indexes

join index

produc	id	name	price	jIndex		
	p1	bolt	10 rl	$\begin{gathered} \text { r1,r3,r5,r6 } \\ \text { r2,r4 } \end{gathered}$	- - - -	
	p2	nut	5			
sale	rld	prodid	storeld		amt	
	r1	p1	c1	1	12	
	r2	p2	c1	1		$\leftarrow-1$
	r3	p1	c3	1	50	
	r4	p2	c2	1	8	- -
	r5	p1	c1	2	44	
	r6	p1	c2	2	4	

Example: Compute total sales in AFRICA

TIME

time_key
day
day_of_the_week
month
quarter
year

year

SELECT SUM(sales.amount)
FROM sales, location
WHERE sales.location_key=location.location_key AND location.region="AFRICA"

PRODUCT
product_key product_name category brand color supplier_name
LOCATION
location_key store street_address city state country region

Join-Index in the Star Schema

- Join index relates the values of the dimensions of a star schema to rows in the fact table.
- a join index on region maintains for each distinct region a list of ROW-IDs of the tuples recording the sales in the region

Join Index on Location.Region implemented as bitmap index

Fact Table Sales

time_key	product_key	location_key	units	amount
T1	P44	L4	1	12
T2	P157	L4	3	180
T2	P6	L1	14	2560
T3	P25	L3	1	2
T3	P157	L1	1	60

Bitmaps for Location.Region

Africa	Asia	Europe	America
0	0	0	1
0	0	0	1
1	0	0	0
0	0	1	0
1	0	0	0

Assuming L1 refers to a store location in Africa, L2 to a store location in Asia etc This information is stored in the dimension table Location

In SQL

- Join index implemented as bitmap index: CREATE BITMAP INDEX loc_sales_bit
ON sales(location.region)
FROM sales, location
WHERE sales.loc_location_key = location.location_key;
- The following query uses the index to avoid computing the join
SELECT SUM(sales.amount)
FROM sales,location
WHERE sales.location_key=location.location_key
AND location.region="AFRICA"

THE DATA CUBE

Aggregation

(on a single group via filtering)

- Sum up amounts for day 1
- In SQL: SELECT sum(amt)

FROM SALE
WHERE day $=1$

Assume following fact table:

sale	prodid	storeld	day	amt
	p1	s1	1	12
	p2	s1	1	11
	p1	s3	1	50
	p2	s2	1	8
	p1	s1	2	44
	p1	s2	2	4

Group by \& Aggregation

- Sum up amounts by day

$$
\begin{aligned}
& \text { SELECT day, sum(amt) FROM SALE } \\
& \text { GROUP BY day }
\end{aligned}
$$

sale	prodld	storeld	day	amt
	p 1	s 1	1	12
	p 2	s 1	1	11
	p 1	s 3	1	50
	p 2	s 2	1	8
	p 1	s 1	2	44
	p 1	s 2	2	4

ans	day	sum
	1	81
	2	48

Common operations

- Sum up amounts by day, product
- In SQL: SELECT prodid,day,sum(amt) FROM SALE GROUP BY prodld, day

sale	prodld	storeld	day	amt	θ				
	p1	${ }^{\text {c1 }}$	1	${ }^{12}$		sale	prodld	day	amt
	p2	${ }^{\text {c1 }}$	1	11			p1	1	621948
	p1	c3 c2	1	50 8 8			p2	1	
	p1	c2 c 1	2	4			p1	2	
	p1	c2	2	4					

Recall: Star Schema Example 1

Compute volume of sales per product_key and store

Sales	Product_key				
	1	2	3	4	
	1	454	-	-	925
	2	468	800	-	-
	3	296	-	240	-
	4	652	-	540	745

Store
1
1
2
2
3
3
4
4
4

Product_key	sum(amount)
1	454
4	925
1	468
2	800
1	296
3	240
1	652
3	540
4	745

SQL: SELECT LOCATION.store, SALES.product_key, SUM (amount) FROM SALES, LOCATION

WHERE SALES.location_key=LOCATION.location_key
GROUP BY SALES.product_key, LOCATION.store

Multiple Simultaneous Aggregates

Cross-Tabulation (products/store)

Multiple Simultaneous Aggregates

Cross-Tabulation (products/store)

Sales	Product_key					
	1	2	3	4	ALL	
	1	454	-	-	925	1270
	2	468	800	-	-	1268
0	3	296	-	240	-	536
$=$	4	652	-	540	745	1937
	ALL	1870	800	780	1670	5120

Aggregate sales
group by (store,product_key)

Multiple Simultaneous Aggregates

Cross-Tabulation (products/store)

Sales	Product_key					
	1	2	3	4	ALL	
	1	454	-	-	925	1379
	2	468	800	-	-	1268
	3	296	-	240	-	536
	4	652	-	540	745	1937
	ALL	1870	800	780	1670	5120

Aggregate sales group by (store)

Multiple Simultaneous Aggregates

Cross-Tabulation (products/store)

Sales		Product_key				
		1	2	3	4	ALL
$\begin{gathered} 0 \\ 0 \\ 0 \end{gathered}$	1	454	-	-	925	1379
	2	468	800	-	-	1268
	3	296	-	240	-	536
	4	652	-	540	745	1937
	ALL	1870	800	780	1670	5120

Aggregate sales
group by (product_key)

Total sales: group by "none"

Sales	Product_key					
	1	2	3	4	ALL	
	1	454	-	-	925	1379
	2	468	800	-	-	1268
0.0	3	296	-	240	-	536
4	652	-	540	745	1937	
	ALL	1870	800	780	1670	5120

SQL: SELECT SUM (amount)
FROM SALES

Multiple Simultaneous Aggregates

Cross-Tabulation (products/store)

Sales		Product_key					(product_key) () Need to write 4 q Sub-totals per store
		1	2	3	4	ALL	
$\begin{gathered} 0 \\ \frac{0}{0} \\ \hline \end{gathered}$	1	454	-	-	925	1379	
	2	468	800	-	-	1268	
	3	296	-	240	-	536	
	4	652	-	540	745	1937)
	ALL	1870	800	780	1670	5120	

Sub-totals per product_key

Multiple Simultaneous Aggregates: Optimizations?

Cross-Tabulation (products/store)

Sales	Product_key					
	1	2	3	4	ALL	
	1	454	-	-	925	1379
	2	468	800	-	-	1268
	3	296	-	240	-	536
	652	-	540	745	1937	
	ALL	1870	800	780	1670	5120

4Group-bys here:
(store,product_key)
(store)
(product_key)
()

The Data Cube Operator

(Gray et al)

- All previous aggregates in a single query:

SELECT LOCATION.store, SALES.product_key, SUM (amount) FROM SALES, LOCATION
WHERE SALES.location_key=LOCATION.location_key
GROUP BY CUBE (SALES.product_key, LOCATION.store)

Challenge: Optimize Cube Computation

Relational View of Data Cube

Quiz

- SALES(customer,sales_person,store,product,amt)
- Assume the SUM() aggregate function
- What is the meaning of the following data cube records?
(ALL,'JOHN',ALL,ALL,5000)
('NICK’,ALL,ALL,'BEER’,250)
(ALL,ALL,ALL,'MILK',70000)
(ALL,ALL,ALL,ALL,250000)

Group by (Product, Quarter, Region)

SUM() aggregate function
Quarter

Total sales of VCRs in the $4^{\text {th }}$ Qtr in Europe

Group by (Product, Quarter, Region)

Total sales of PCs in the $4^{\text {th }}$ Qtr in Asia

Group by (Product, Quarter, Region)

Total sales of DVDs in the $1^{\text {st }}$ Qtr in America

Data Cube: Multidimensional View

How are aggregates computed?

1. Bring all records with same values in the groupping attributes together
2. Aggregate their measures

- (1) is done via Hashing / Sorting
- (2) depends on the type of function used
- Simple calculations for max, sum, count etc
- Harder for median

Example: Sum sales/prodld ?

Raw data (fact table)

sale	prodld	storeld	date	amt
	p1	s1	1	12
	p2	s1	1	11
	p1	s3	1	50
	p2	s2	1	8
	p1	s1	2	44
	p1	s2	2	4

Step 1: Sort tuples by prodld

 Raw data (fact table)| sale | prodld | storeld | date | amt |
| :---: | :---: | :---: | :---: | :---: |
| | p 1 | s 1 | 1 | 12 |
| | p 2 | s 1 | 1 | 11 |
| | p 1 | s 3 | 1 | 50 |
| | p 2 | s 2 | 1 | 8 |
| | p 1 | s 1 | 2 | 44 |
| | p 1 | s 2 | 2 | 4 |
| | | | | |

Sort(prodld) ${ }^{\text {sale }}$	prodid	storeld	date	amt
	p1	s1	1	12
	p1	s1	2	44
	p1	s2	2	4
	p1	s3	1	50
	p2	s1	1	11
	p2	s2	1	8

Step 2: Aggregate records (sum amt)

Sorted Raw data

sale	prodld	storeld	date	amt
	p1	s1	1	12
	p1	s1	2	44
	p1	s2	2	4
	p1	s3	1	50
	p2	s1	1	11
	p2	s2	1	8

Aggregate

More on aggregate

- Assumed SUM() function
- How much space needed?
- How about AVG()?
- How about MEDIAN()?

sale	prodld	storeld	date	amt
	p 1	s 1	1	12
	p 1	s 1	2	44
	p 1	s 2	2	4
	p 1	s 3	1	50
	p 2	s 1	1	11
	p 2	s 2	1	8

Aggregate Computation

- Certain functions (SUM,MIN,MAX,COUNT,AVERAGE, etc) require small (bounded) space for storing their state and may be computed on the fly, while executing the merging phase of the 2-phase sort algorithm.
- Cost $=3^{*} B(R)$, assuming $M^{2} \geq B(R)>M$

Hashing

key \rightarrow h(key)

Example: 2 records/bucket

INSERT:
$h(a)=1$
$h(b)=2$
$h(c)=1$
$h(d)=0$

$$
h(e)=1
$$

How does this work for aggregates?

Hash on prodid	prodld	storeld	date	amt	Possibly keep
	p1	s1	1	12	records sorted
	p1	s3	1	50	within bucket
	p1	s1	2	44	within bucket
	p1	s2	2	4	
	p3	s5	1	7	
					Two buckets
prodid mod 2 prodid \mid storeld date $^{\text {amt }}$					
-	p2	s1	1	11	
	p2	s2	1	8	

Naïve Data Cube Computation

- Fact table:

sale	prodld	storeld	amt
	p1	s1	12
	p2	s1	11
	p1	s3	50
	p2	s2	8
	p1	s1	44
	p1	s2	4

- Compute: SUM(amt) GROUP BY prodld,storeld WITH CUBE
- 4 group bys contained in this Data Cube:

prodid	storeld	sum(amt)	prodid	amt	storeld	amt	amt
p1	s1	56	p1	110	s1	67	129
p1	s2	4	p2	19	s2	12	
p1	s3	50			s3	50	
p2	s1	11					
p2	s2	8					

Full Data Cube

 (from previous example)| prod ld storeld sum(amt) | | |
| :--- | :--- | :--- |
| p1 | s1 | 56 |
| p1 | s2 | 4 |
| p1 | s3 | 50 |
| p2 | s1 | 11 |
| p2 | s2 | 8 |
| p1 | ALL | 110 |
| p2 | ALL | 19 |
| ALL | s1 | 67 |
| ALL | s2 | 12 |
| ALL | s3 | 50 |
| ALL | ALL | 129 |

How much does it cost to compute?

- Assume $B(S A L E S)=1$ Million Blocks, larger than available memory
- Our (brute force) strategy: compute each group by independently
- Compute GROUP BY prodid,storeld
- Compute GROUP BY prodld
- Compute GROUP BY storeld
- Compute GROUP BY none (=total amt)

First Group By: prodld,storeld

- In SQL

SELECT prodid,storeld,sum(amt)
FROM SALES
GROUP BY prodld,storeld

- Use sorting: $3 * B(S A L E S)=3 \mathrm{M} \mathrm{I/O}$

Second Group By: prodld

- In SQL

SELECT prodid,sum(amt)
FROM SALES
GROUP BY prodid

- Use sorting: $3^{*} \mathrm{~B}($ SALES $)=3 \mathrm{M}$ I/O (same)

Third Group By: storeld

- In SQL

SELECT storeld,sum(amt)
FROM SALES
GROUP BY storeld

- Use sorting: $3 * B(S A L E S)=3 \mathrm{M} \mathrm{I} / \mathrm{O}$ (same)

Group By (none) = sum(amt)

- SQL:

SELECT sum(amt)
FROM SALES

- Cost ?

Recap

- Group By prodld,storeld : 3M I/Os
- Group By prodld : 3M I/Os
- Group By storeld : 3M I/Os
- Group By none : 1M I/Os
- Compute aggregate function over all records, no sorting necessary
- Total Cost for the Data Cube: 10 M I/Os
- Is this a lot?

Practice Problem

- Rotation speed 7200rpm
- 128 sectors/track
- 4096 bytes/sector
- 4 sectors/block (16KB page size)
- Sequential I/O: ignore SEEKTIME, gaps, etc

Sustained disk speed

- 1 full rotation
- takes 60/7200=8.33ms
- retrieves 1 track = 128 sectors = 32 pages (blocks)
- 10 Million blocks in
$8.33 / 1000 * 10 \mathrm{M} / 32=43.5$ minutes
- Can we do better?

Share sort orders

If sorted on (prodld, storeld)

| prodld | storeld | date | amt | | Then, also sorted on (prodid) | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| p1 | s1 | 1 | 12 | | prodld | storeld | date | amt |
| p1 | s1 | 2 | 44 | | p 1 | s 1 | 1 | 12 |
| p1 | s 2 | 2 | 4 | \square | p 1 | s 1 | 2 | 44 |
| p1 | s 3 | 1 | 50 | \square | p 1 | s 2 | 2 | 4 |
| p2 | s 1 | 1 | 11 | | p 1 | s 3 | 1 | 50 |
| p2 | s 2 | 1 | 8 | | p 2 | s 1 | 1 | 11 |

Thus, no need to sort SALES twice!

Two group-bys with a single sort on (prodid, storeld)

Output of 2-phase sort algorithm (one row at a time)

Maintain 2 variables output

prodid	storeld	date	amt		SUM1	SUM2		
p1	s1	1	12		12	12		
p1	s1	2	44	+	56	56		
p1	s2	2	4	\square	4	60	p1,s1,56	
p1	s3	1	50		50	110	p1,s2,4	
p2	s1	1	11		11	11	p1,s3,50	p1,110
p2	s2	1	8		8	19	p2,s1,11	
EOT (End	f-Table)						p2,s2,8	$\xrightarrow{\mathrm{p} 2,19}$

- SUM1 is used for group-by(prodld,storeld), SUM2 for group-by(prodld)
-Each time we see a new (prodld,storeld) combination we report the previous pair and SUM1 value and initialize SUM1 to the new amt
- Similar logic for SUM2
- Report last combination at EOT

Share sort orders for multiple group bys

- Sort SALES on prodld,storeld
- At the merging phase compute both group by prodid and prodid,storeld
- Also compute group by none
- Then compute group by storeld by sorting SALES on storeld

prodld	storeld	date	amt
p1	s1	1	12
p1	s1	2	44
p1	s2	2	4
p1	s3	1	50
p2	s1	1	11
p2	s2	1	8

- Cost $=3 \mathrm{~B}($ SALES $)+3 \mathrm{~B}($ SALES $)=$ 6M I/Os
- Compared to 10M I/Os
- 40\% savings

Can we do better?

- Sort SALES on prodld,storeld
- At the merging phase compute both group by (prodld,storeld)) and group by (prodid)
- Also compute group by none at the same time
- Compute group by (storeld) by sorting the result of group by (prodld,storeld) on storeld
- Notice that by construction $\mathrm{B}($ gb (prodld, storeld) $) \leq \mathrm{B}($ SALES $)$
- Each tuple in gb(prodid,storeld) is produced by one or more tuples in SALES
gb(prodid,storeld)

prodld	storeld	sum(amt)
p1	s1	56
p1	s2	4
p1	s3	50
p2	s1	11
p2	s2	8

gb(storeld)

storeld	sum(amt)
s1	67
s2	12
s3	50

Cost $=3 * \mathrm{~B}($ SALES $)+3 * \mathrm{~B}(\mathrm{gb}($ prodld, storeld $))$

3D Data Cube Lattice

- Model dependencies among the aggregates (independently of the method of computation, e.g. by sorting or otherwise)

can be computed from grouby (product,store,quarter) by summing-up all quarterly sales
gb(product,store) is equivalent to gb(store,product)

Discussed optimization (sharing sort orders) on the 3D Data Cube

- Sort SALES on product,store,quarter (also get gb product,store, gb product and gb none)
- Sort SALES on product,quarter
- Sort SALES on store,quarter (also get gb store)
- Sort SALES on quarter

Cost of new plan
$4 * 3 \mathrm{M}=12 \mathrm{M} \mathrm{I} / \mathrm{Os}$
(45\% savings)

Compute from "smallest parent"

VS
 "sharing sort orders"

- Consider computation of gb product, quarter
- Previously: Sort SALES on product,quarter
- Alternative: read and sort previously computed gb product,store,quarter
- This gb will be smaller than SALES
- It may even fit in memory (one-pass sort)
- This gb is partially sorted (common prefix) product,store,quarter

ESTIMATING THE DATA CUBE SIZE

How many group bys in the Data Cube?

- N-dimensional data, no hierarchies
2^{N} group bys
Order of dimensions doesn't matter in the notation

2D Data Cube lattice

- 2-dimensional data (product, store)
$2^{2}=4$ group bys

Let's add a simple hierarchy

- Assume that products are organized into categories
- When we group the sales (facts) we have the option to use this knowledge
- Aggregate sales per category
- Aggregate sales per category and store
- But it does not make sense to aggregate sales per product and category (WHY?)

Compare these two results

product	category	sum(amt)			product	sum(amt)
p1	cat1	110			p1	110
p2	cat1	19		p2	19	
p3	cat3	240			p3	240
p4	cat2	255		p4	255	
p5	cat1	75			p5	75

Notice that there is no difference in the computed aggregates, since prodld \rightarrow category

2D Data Cube lattice with simple hierarchy

2D Data Cube lattice with 2 separate hierarchies on the product dimension

Notice lack of gb on (product,store,brand,category)

\#of group bys when there is a single hierarchy per dimension

- N dimensions
- Dimension d_{i} has a hierachy of length L_{i}
- Location: store \rightarrow city \rightarrow country

$$
\mathrm{L}_{\text {Location }}=3
$$

- If no hierarchy, then $L_{i}=1$
- Number of group bys $=\left(1+L_{1}\right)\left(1+L_{2}\right) \ldots\left(1+L_{N}\right)$
- No need to memorize formulas! Seek to understand their derivation instead (next slide)

How is the formula derived

- Consider Location dimension with hierarchy
- store \rightarrow city \rightarrow country (i.e. $\mathrm{L}_{\text {Location }}=3$)
- In a group by (aggregate) query I may
- Not consider location at all (e.g. total sales per product)
- Another way to think about this is that +1 stands for ALL
- Consider location information at the store-level
- (e.g. total sales per customer, store)
- Consider location information at the city-level
- (e.g. total sales per product, city)
- Consider location information at the country-level
- (e.g. total sales per sales_person, country)
- There are $(1+3)$ choices regarding that dimension independently on what other dimensions I select in a gb
- Thus, $\left(1+L_{1}\right)\left(1+L_{2}\right) \ldots\left(1+L_{N}\right)$ possible combinations of dimensions in a query

Example

- 8 dimensions (typical)
- 3-level hierarchy/dimension
- Number of group bys $=4^{8}=65536$ group bys
- BUT, how many tuples in the cube?
- Depends on data distribution
- Worst case is uniform

Upper bound on the size of each group by

- Assume relation R (fact table) has $\mathrm{T}(\mathrm{R})$ tuples
- Each dimension has cardinality t_{i}
- Size of group by $\left(d_{1}, d_{2}, \ldots d_{k}\right)$ is upper bounded by both
$-\mathrm{t}_{1}{ }^{*} \mathrm{t}_{2}{ }^{*} . .{ }^{*} \mathrm{t}_{\mathrm{k}}$
$-T(R)$ (since records in the group by are produced by combination of attribute values that appear in existing facts)

Example gb(customer,product)

- Assume I have 1000 customers and 50 products
- Assume uniform distribution (customers buy products with same probability)
- There can be 1000×50 combinations of pairs (customer, product) in the fact table (sales)
- Thus, 50000 records in gb(customer, product) (at most)
- Each record in this gb is derived from a real sale
- There can not be an aggregated record if there are not base records in the fact table to support it
- Thus, there can not be more records in the gb than the number of actual sales in the fact table

Example

- Consider R(product,store,quarter,amt) with 1 M records
- 10,000 products, 30 stores, 4 quarters
- Let $G(x, y)$ denote the maximum number of records in group by x, y
- G(product,store,quarter)=min(1M,10000*30*4)=1,000,000
- G(product,store) $=\min (1 \mathrm{M}, 10000 * 30)=300,000$
- G(product,quarter)=min(1M,10000*4)=40,000
- G(store,quarter)=min(1M,30*4)=120
- $G($ product $)=\min (1 \mathrm{M}, 10000)=10,000$
- G(store) $=\min (1 \mathrm{M}, 30)=30$
- G(quarter) $=\min (1 \mathrm{M}, 4)=4$
- G(none)=1
- Maximum cube size $=1,350,155$ records

Quick and Dirty Upper Bound

MAX-SIZE<=10001*31*5 = 1550155

$$
\left(1+t_{1}\right)^{*}\left(1+t_{2}\right)^{*}\left(1+t_{3}\right)
$$

(compare with 1350155)

This upper bound ignores size of fact table WHY ??

Data Cube: Multidimensional View

Extended Cube with Hierarchies

- Products are organized in 50 categories
- Additional group bys in extended cube
$-+G($ category,store,quarter $)=\min (1 \mathrm{M}, 50 * 30 * 4)=6,000$
- +G(category,store) $=\min (1 \mathrm{M}, 50 * 30)=1,500$
$-+G($ category,quarter $)=\min (1 \mathrm{M}, 50 * 4)=200$
$-+G($ category $)=\min (1 \mathrm{M}, 50)=50$
- Maximum ext-cube size $=1,357,905$ records

Correlated Attributes

- In practice there is some correlation between different dimensions
- Example 1: each store sells up to 1,000 products (specialized stores)
- Example 2: some products are not sold through-out the year
- Ice cream, watermelon, snow-chains

Solve Example-1

- R(product,store,customer) with 1 M records
- 1,000 products, 20 stores, 100 customers
- Each customer buys from one store (closest) FD: customer \rightarrow store

G(store,customer) $=\min \left(1 \mathrm{M}, \mathbf{1}^{*} \mathbf{1 0 0}\right)=100$

G(product,store,customer)=min(1M,1000*1*100)
$=100,000$

More realistic example

- 100,000 parts
- 20,000 customers
- 2,000 suppliers
- 5 years (=365 *5 days)
- 100 stores
- 1,000 sales persons
- Max-cube size $=738,855,253,876,896,582,426$ (tuples)

Catch With Data Cube

- too0000 many aggregates
- So Data Cube is large!
- And takes time to compute...

What to Materialize?

- Data Cube extremely large for many applications
- Store in warehouse results useful for common queries
- Example:
- Total sales per product, store
- Max sales per product
-Avg sales per store,day

Materialization Factors

- Type/frequency of queries
- Query response time
- Storage cost
- Update cost

MATERIALIZED VIEWS

Preliminaries

- We will consider solutions that selectively materialize some of the groups by in the Data Cube
- We will be referring to the group bys as "views"
- When a group by is materialized we will call it "materialized view"

Views in OLTP databases

- Views are derived tables
- Instance of view is generated on demand by executing the view query:
create view V as
select ename,age, address,telno
from employee
where employee.dept = "Sales"
- Views have many uses
- Shortcuts for complex queries
- Logical-physical independence
- Hide details from the end-user
- Integration systems

Materialized Views (OLAP)

- Sometimes, we may want to compute and store the content of the view in the database
- Such Views are called materialized
- Queries on the materialized view instance will be much faster
- Materialized views are now supported by some vendors
- Otherwise we will be storing their data in regular tables
- This is our extended architecture:

Data Warehouse=
detailed records (star schema) + aggregates (materialized views)

Used to speed up certain queries of interest

Materialized views in OLAP

- Contain derived data
- Can be computed from the star schema
- Populated while updating the data warehouse
- Usually, they contain results of complex aggregate queries
- Several interesting problems:
- How to select which views to materialize?
- How to compute/refresh these views?
- How to store these views in the relational schema?
- How to use these views at query time?

View selection problem

- Set up as an optimization problem
- $\mathrm{V}_{\mathrm{DC}}=$ set of all group bys (=views) in the Data Cube
- Give a constraint
- Usually space bound B, e.g. materialize up to 100 GB from the CUBE
- What else?
- Give an objective
- Minimize cost of answering set of (frequent/interesting) queries Q
- View selection problem (with space constraint):
$\operatorname{minimize} \operatorname{Cost}(Q)$
$\mathrm{V} \subseteq \mathrm{V}_{\mathrm{DC}}$
such that $\operatorname{Size}(\mathrm{V}) \leq \mathrm{B}$
- Problem is NP-hard

View Selection Problem: Heuristic

- Use some notion of benefit per view considering the interdependencies illustrated in the Data Cube lattice

group by(product,store)

product	store	sum(amt)
p1	s1	56
p1	s2	4
p1	s3	50
p2	s1	11
p2	s2	8

Regardless of the specific computation method (such as sorting, hashing, etc.), queries related to these GROUP BYs can be effectively performed by leveraging a materialized view on the grouping attributes (product, store)

A simple greedy algorithm

- Employ a benefit criterion to evaluate and compare the potential advantages of different views. Select the one with the highest benefit at each step.
- Assume V represents the set of views that have been selected thus far, reflecting the current state.
- Let v be a candidate view under consideration, which is not currently included in set V.
- Benefit $(\mathrm{v})=$ cost of answering queries using V - cost of answering queries using $\mathrm{V} \mathrm{U}\{\mathrm{v}\}$
- Assesses the reduction in the cost associated with answering queries if the candidate view, v , is materialized
- The utilization of view v may potentially result in a decrease in the cost of certain queries, although it is also possible that no cost reduction would occur.
- Benefit $(\mathrm{v}) \geq 0$
- Simple Greedy algorithm:
- At each iteration, select the view that offers the highest benefit among the available options.
- Re-compute benefits of remaining views
- Update space budget B, set $B=B-$ sizeof(v)
- Remove views that do not fit in new budget B
- Stop if no more space available or no view fits in the remaining space or remaining views provide no benefit (query cost reduction)

Simple Example

- Star schema with three dimensions and one measure
- Product (p), Store location (s), Quarter (q), amount (amt)
- Fact table: SALES(product, store, quarter, amt)
- Assume the following set of queries
$-Q=\{(p, s),(s, q),(p, q),(p),(s)\}$
- Notation (1): (s, q) is a query on group by (store,quarter), i.e.

$(\mathrm{s}, \mathrm{q}):$ SELECT store, quarter, sum(amt)
 FROM SALES
 GROUP BY store, quarter

- Notation (2): View $\mathrm{v}_{\text {store, }}$ quarter is a materialized view containing the result of the previous query

Query computation cost

- For ease of presentation, let us assume that each query can be computed from the fact table SALES with the same cost 100 I/O
$(\mathrm{s}, \mathrm{q}):$ SELECT store, quarter, sum(amt) FROM SALES
GROUP BY store, quarter

$$
\text { Cost = } 100 \text { I/O }
$$

Data Cube result size

- Assume each group by in the Data Cube requires the depicted number of blocks, when stored as a materialized view

Assumption (linear cost model)

- A group by query is computable from an ancestor materialized view v with Cost=size(v)

View Selection Problem

- Minimize the cost of answering the depicted queries when available space $B=100$ blocks

Initial Benefits

(no view is materialized yet, $\mathrm{V}=\{ \}$)

Group By (Materialized View)	Benefit for $\mathrm{Q}=\{(\mathrm{p}, \mathrm{s}),(\mathrm{s}, \mathrm{q}),(\mathrm{p}, \mathrm{q}),(\mathrm{p}),(\mathrm{s})\}$
$\mathrm{p}, \mathrm{s}, \mathrm{q}$	$(100-80)+(100-80)+(100-$ $80)+(100-80)+(100-80)=100$
p,q	$2^{*}(100-25)=150$
s,q	$2^{*}(100-13)=174$
p,s	$3^{*}(100-60)=120$
p	$100-4=96$
s	$100-3=97$
q	0
None	0

First Iteration

- Materialize view $\mathrm{v}_{\mathrm{s}, \mathrm{q}}$
- Update space budget $B=100-13=87$
- Recompute benefits (next slide)

Space $=87$

Updated Benefits

 $\mathrm{V}=\left\{\mathrm{v}_{\mathrm{s}, \mathrm{q}}\right\}$| Group By (Materialized
 View) | Benefit for
 $\mathrm{Q}=\{(\mathrm{p}, \mathrm{s}),(\mathrm{s}, \mathrm{q}),(\mathrm{p}, \mathrm{q}),(\mathrm{p}),(\mathrm{s})\}$ |
| :--- | :--- |
| $\mathrm{p,s,q}$ | $3^{*}(100-80)=60$ |
| p, q | $(100-25)+(100-25)=150$ |
| $\mathrm{~s}, \mathrm{q}$ | MATERIALIZED |
| $\mathrm{p,s}$ | $2^{*}(100-60)=80$ (careful) |
| p | $100-4=96$ |
| s | $13-3=10$ (careful) |
| q | 0 |
| None | 0 |

Second Iteration

- Materialize view $\mathrm{v}_{\mathrm{p}, \mathrm{q}}$
$-\mathrm{V}=\left\{\mathrm{v}_{\mathrm{s}, \mathrm{q}}, \mathrm{v}_{\mathrm{p}, \mathrm{q}}\right\}$
- Update space budget $\mathrm{B}=87-25=62$
- Update benefits (next slide)

Space=62

Updated Benefits

 $V=\left\{v_{s, q}, v_{p, q}\right\}$| Group By (Materialized
 View) | Benefit for
 $\mathrm{Q}=\{(\mathrm{p}, \mathrm{s}),(\mathrm{s}, \mathrm{q}),(\mathrm{p}, \mathrm{q}),(\mathrm{p}),(\mathrm{s})\}$ |
| :--- | :--- |
| $\mathrm{p,s,q}$ | Not-enough-space-left |
| p, q | MATERIALIZED |
| s, q | MATERIALIZED |
| $\mathrm{p,s}$ | $(100-60)=40$ (careful) |
| p | $25-4=21$ (careful) |
| s | $13-3=10$ (careful) |
| q | 0 |
| None | 0 |

Third Iteration

- Materialize view $\mathrm{v}_{\mathrm{p}, \mathrm{s}}$
- $V=\left\{v_{s, q}, v_{p, q}, v_{p, s}\right\}$
- Update space budget $B=62-60=2$
- Update benefits

Space=2

Updated Benefits

Group By (Materialized View)	Benefit for $\mathrm{Q}=\{(\mathrm{p}, \mathrm{s}),(\mathrm{s}, \mathrm{q}),(\mathrm{p}, \mathrm{q}),(\mathrm{p}),(\mathrm{s})\}$
$\mathrm{p}, \mathrm{s}, \mathrm{q}$	Not-enough-space-left
p, q	MATERIALIZED
s, q	MATERIALIZED
p, s	MATERIALIZED
p	Not-enough-space-left
s	Not-enough-space-left
q	0
None	0

Greedy algorithm selection

- Final choice $V=\left\{v_{s, q}, v_{p, q}, v_{p, s}\right\}$
- Utilize 25+13+60=98 blocks out of 100 available

Considerations

- To account for the varying sizes of views, it is advisable to select views based on their amortized benefit.
- amortizedBenefit(v) $=$ (cost of answering queries using V - cost of answering queries using $\vee \cup\{v\}$) / size(v)
- Or, dynamically materialize views while answering user queries!
- DynaMat: A Dynamic View Management System for Data Warehouses. Y. Kotidis, N. Roussopoulos. In Proceedings of ACM SIGMOD International Conference on Management of Data (best paper award), pages 371-382, Philadelphia, Pennsylvania, June 1999
- Smart-Views: Decentralized OLAP View Management using Blockchains.
K. Messanakis, P. Demetrakopoulos, Y. Kotidis. In Proceedings of the 23 rd International Conference on Big Data Analytics and Knowledge Discovery (DaWaK 2021), September 27-30, Linz, Austria, 2021.

Query costs for this selection

- $Q=\{(p, s),(s, q)$,
(p,q), (p),(s)\}
$-\operatorname{Cost}(p, s)=60$
$-\operatorname{Cost}(\mathrm{s}, \mathrm{q})=13$
$-\operatorname{Cost}(p, q)=25$
$-\operatorname{Cost}(p)=25$
$-\operatorname{Cost}(\mathrm{s})=$?

Benefit of using Materialized Views

 (for the assumptions of this running example)$$
Q=\{(p, s),(s, q),(p, q),(p),(s)\}
$$

Using the suggested Materialized Views
$\operatorname{Cost}(p, s)=60$
$\operatorname{Cost}(\mathrm{s}, \mathrm{q})=13$
$\operatorname{Cost}(p, q)=25$
$\operatorname{Cost}(\mathrm{p})=25$
Cost(s) $=13$
Total Query Cost $=136$

Querying the
Fact Table
$\operatorname{Cost}(p, s)=100$
$\operatorname{Cost}(s, q)=100$
$\operatorname{Cost}(p, q)=100$
$\operatorname{Cost}(p)=100$
Cost(s) $=100$
Total QueryCost $=500$

The View Update problem

Materialized View: Vsc

Store	Customer	Price
S1	C2	$\$ 700$
S1	C3	$\$ 240$
S2	C1	$\$ 190$
S2	C3	$\$ 450$

How to update this view?

Table Deltas:
(new records to be appended in the fact table)

New sale: | Store | Customer | Product | Price |
| :---: | :---: | :---: | :---: |
| S 1 | C 2 | P 2 | $\$ 55$ |
| S 1 | C 2 | P 3 | $\$ 15$ |
| S 1 | C 1 | P 1 | $\$ 50$ |
| S 2 | C 1 | P 3 | $\$ 20$ |

Choice 1: Re-compute from fact table

- First update fact table (append new facts)
- Then re-execute SQL query to obtain view

In SQL:
//load new records
insert into Fact select * from Delta
//drop and recreate View
drop Vsc;
create table Vsc(store,customer,price);
//recompute View from scratch
insert into Vsc
select store,customer,sum(price)
from Fact
group by store,customer;

Choice-2: Incremental Updates

- Adding delta tuples means
- Step 1: Update sum() from combinations already in the view
- Step 2: Insert sum() with new coordinates for rest

Store	Customer	Price
S1	C2	$\$ 700$
S1	C3	$\$ 240$
S2	C1	$\$ 190$
S2	C3	$\$ 450$

Store	Customer	Product	Price
S1	C 2	P 2	$\$ 55$
S1	C 2	P 3	$\$ 15$
S1	C 1	P 1	$\$ 50$
S2	C 1	P 3	$\$ 20$

Step 1: Increment existing combinations

update Vsc
set Vsc.m=Vsc.m+(select sum(price) from Delta where Vsc.store=Delta.store and
Vsc.customer=Delta.customer)
where (Vsc.store,Vsc.customer)
in
(select store,customer from Delta);

Step 2: Add new combinations

insert into Vsc select store,customer,sum(price)
from Delta where (store,customer) not in
(select store,customer from Vsc)
group by store,customer;

Choice-2: Alternative

- Idea: add delta records to the view, create a new table to hold updated records, then rename
insert into Vsc
select store,customer,sum(price) from Delta group by store,customer;
create table Vnew(store,customer,price); insert into Vnew
select store,customer,sum(price) from Vsc
group by store,customer
drop table Vsc;
rename table Vnew to Vsc;

Simple Example

After insertion of deltas
Final View

Store	Customer	Price
S1	C 2	$\$ 700$
S 1	C 3	$\$ 240$
S 2	C 1	$\$ 190$
S 2	C 3	$\$ 450$
S 1	C 1	$\$ 50$
S 1	C 2	$\$ 70$
S 2	C 1	$\$ 20$

Store	Customer	Price
S1	C 1	$\$ 50$
S 1	C 2	$\$ 770$
S 1	C 3	$\$ 240$
S 2	C 1	$\$ 210$
S 2	C 3	$\$ 450$

Multiple View Update

Assume V2 descendant of V1 in the Data Cube Lattice (e.g. V1 can be
 used to compute V2)

Scenario 1: Re-compute views after finishing updating the Fact table

Scenario 2: Re-compute v1 from Fact.

 Then, recompute v2 from v1

Scenario 3: Incrementally update v1 from delta then recompute v2 from v1

Scenario 4: Incrementally update both v1 and v2 from delta

Consider

- More scenarios?
- Now consider the case of 100 views

PHYSICAL REPRESENTATION OF MATERIALIZED VIEWS IN THE STAR SCHEMA

Want to create View:

SUM(Quantity), SUM(TotalPrice) per Category, CityName

SQL Eлєри́tŋбп

Select Category,CityName,SUM(TotalPrice) as Sum_TotalPrice,SUM(Quantity) as Sum_Quantity
From Fact,Product
Where Fact.ProdNo=Product.ProdNo Group by Category,CityName

Create New Fact Table (= this view)

Using Materialized Views through

Selection

- A query can use a view through a selection if
- Each selection condition C on each dimension d in the query logically implies a condition C^{\prime} on dimension d in the view
- Example: A view has sum(sales) by product and by year for products introduced after 1991
- OK to use for sum(sales) by product for products introduced after 1992
- CANNOT use for sum(sales) for products introduced after 1989

Using Materialized Views through Group By (Roll Up)

- The view V may be applicable via roll-up if for every grouping attribute g of the query Q :
- Q has Group By a1,.., g, an
- V has Group By a1,..,h, an
- Attribute g is higher than h in the attribute hierarchy
- Aggregation functions are distributive (sum, count, max, etc)
- Example: Compute "sum(sales) by category" from the view "sum(sales) by product"

Using Views

- Need cost-based optimization to decide which view(s) to use for answering a query
- Consider a query on (category, state) and three materialized aggregate views on

1. (product, state)
2. (category, city)
3. (category, country)

- (product, state) and (category, city) are candidate materialized views to answer the query

$\Sigma \eta \mu \varepsilon i \omega \sigma \eta$

- Ta па $\alpha \alpha \kappa \alpha ́ \tau \omega ~ s l i d e s ~ \varepsilon i ́ v \alpha ı ~ \varepsilon к т o ́ \varsigma ~ u ́ \lambda \eta \varsigma ~$

Data Cube Storage and Indexing

- Several approaches within the relational world
- Cubetrees, QC-trees, Dwarf, CURE
- Main idea: exploit inherent redundancy of multidimensional aggregates

The Dwarf (sigmod 2002)

- Data-Driven DAG
- Factors out inter-view redundancies
- 100\% accurate (no approximation)
- All views are included
- Indexes for free
- Partial materialization possible
- Look at the Data Cube Records
- Common Prefixes
- high in dense areas
- Common Suffixes
- extremely high in sparse areas

Redundancy in the Cube (1)

- Common Prefixes

S2,C1,P1,90
S2,C1,P2,50
S2,C1,ALL,140

Mostly in dense areas:
$>$ customer C1 buys a lot of products at store S2
$>$ all these records have the same prefix: S2,C1

Store	Customer	Product	Price
S 1	C 2	P 2	$\$ 70$
S 1	C 3	P 1	$\$ 40$
S 2	C 1	P 1	$\$ 90$
S 2	C 1	P 2	$\$ 50$

Redundancy in the Cube (2)

- Common Suffices

S2,C1, P1,90
S2,ALL,P1,90
ALL,C1, P1,90

Mostly in sparse areas
C1 only visits S2 and is the only customer that buys P1,P2

Store	Customer	Product	Price
S1	C 2	P 2	$\$ 70$
S 1	C 3	P 1	$\$ 40$
S 2	C 1	P 1	$\$ 90$
S 2	C 1	P 2	$\$ 50$

Dwarf Example

Store	Customer	Product	Price
S1	C 2	P 2	$\$ 70$
S1	C 3	P 1	$\$ 40$
S2	C 1	P 1	$\$ 90$
S2	C 1	P 2	$\$ 50$

Dwarf Example

(3)

Product Level.

Store	Customer	Product	Price
S1	C2	P2	$\$ 70$
S1	C3	P1	$\$ 40$
S2	C1	P1	$\$ 90$
S2	C1	P2	$\$ 50$

Group-by Product:

Store	Customer	Product	Sum(Price)
ALL	ALL	P1	$\$ 130$
ALL	ALL	P2	$\$ 120$

Dwarf Example

(3)

Product Level.

Store	Customer	Product	Price
S1	C2	P2	$\$ 70$
S1	C3	P1	$\$ 40$
S2	C1	P1	$\$ 90$
S2	C1	P2	$\$ 50$

Group-by Store:

Store	Customer	Product	Sum(Price)
S1	ALL	ALL	$\$ 110$
S2	ALL	ALL	$\$ 140$

[^0]: CREATE TABLE EMP (
 Name varchar(255) NOT NULL, Age int, CHECK (Age>=18)
);

