
Natural Language Processing with 
Convolutional Neural Networks

2025–26

Ion Androutsopoulos
http://www.aueb.gr/users/ion/ 

http://www.aueb.gr/users/ion/


2

Contents
• Quick background: Convolutional Neural Networks (CNNs) in 

Computer Vision.
• Image to text generation with CNN encoders and RNN decoders.
• Text processing with CNNs. 
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Convolutions on images

From the blog post 
“Understanding 

Convolutional Neural 
Networks for NLP” of 

Denny Britz, 2015. 
http://www.wildml.com/
2015/11/understanding-
convolutional-neural-

networks-for-nlp/ 
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Convolutions on images

• Input: black/white image with pixel values -1 or +1.
• Check if the input contains any crosses and report where. 
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Convolutions on images
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Convolutions on images
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Convolutions on images

• Let 𝑿 be the part of the input where we apply the kernel (filter).
• Let 𝑾 be the kernel. 

• The resulting feature of the feature map is: ∑𝒊"𝟏𝟑 ∑𝒋"𝟏𝟑 𝑾𝒊,𝒋	𝑿𝒊,𝒋
• In practice, we would also use an activation function and bias 

term: 𝑓(∑'"() ∑*"() 𝑊',*𝑋',* + 𝑏) 
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Convolutions on images

• We can think of the resulting feature map as a new “image” that 
indicates the position(s) of the cross(es) in the original image.
o No need to have the crosses at particular parts of the image.

• The new “image” is 4x4 instead of 6x6, because the kernel could 
not slide outside the boundaries of the original image. 
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Wide convolutions on images

• We can pad the surrounding of the image with zeros, to allow the 
kernel to slide outside the image boundaries. 

• We can now obtain a feature map with the same resolution as 
the input image (6x6). 
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Wide convolutions on images
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Wide convolutions on images
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Wide convolutions on images

• 𝑿: entire input image. 𝑭: feature map.
• 𝑾: kernel, but with rows and columns numbered −1, 0, 1.

• Feature map values: 𝐹',* = ∑+",(( ∑-",(( 	𝑊+,-	𝑋'.+,*.-
• In practice: 𝐹',* = 𝑓(∑+",(( ∑-",(( 	𝑊+,-	𝑋'.+,*.- + 𝑏)
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Convolution or cross-correlation?
• Cross-correlation: 𝐹',* = ∑+",/./ ∑-",/./ 	𝑊+,-	𝑋'.+,*.-
• Convolution: 𝐹',* = ∑+",/./ ∑-",/./ 	𝑊+,-	𝑋',+,*,- = 𝑊 ∗ 𝑋
• We are actually computing cross-correlations, not convolutions.

o The cross-correlations we compute are equal to convolutions with the 
kernel (or the image) flipped both vertically and horizontally. 
o Convolution is like cross-correlation, but flips one of the two signals. We don’t flip the 

kernel inside the cross-correlation, which is equivalent to giving the kernel already 
flipped to the convolution; the convolution will flip the kernel once more, ending up 
using the kernel without flipping.

o So we actually compute convolutions with flipped kernels or cross-
correlations with the original kernels. 

o The example kernels were symmetric, so no difference.
o In CNNs (Convolutional Neural Networks), the kernels are learned, so 

we don’t care if they are flipped in the “convolutions” we compute.
o So we usually say CNNs “compute convolutions”, though we actually use 

the formulae of cross-correlations. 

Optional study
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Two kernels

• We now want to check the input image for crosses and “X”s. 
• We use two kernels, one for crosses, one for “X”s.
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Two kernels
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Two kernels We can think of the two feature maps as two “channels” of 
the new image, one for “+” info, one for “X” info.
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Two input channels too

• The input image now also has two channels (e.g., from grayscale and depth 
cameras). Each kernel now operates on both input channels.
o It has two slices, one per input channel (𝑐 = 1, 𝑐 = 2).

• We have two kernels, so the output also has two channels.
• At the output feature map of kernel W("), the value at cell (i, j) is:

𝐹$,&," = )
'()*

*

)
+()*

*

)
,(*

-

𝑊',+,,
(")	𝑋$.',&.+,,

• In practice, we would also have an activation function and bias term.
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Two input channels too
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Two input channels too

• We now have a mechanism, a “convolutional layer”, that maps an 
input image of any number of channels to a new output “image” 
of any number of channels (feature maps). 
o The kernels will have as many slices as the input channels.
o The number of kernels will be equal to the number of output channels.

• We can stack multiple convolutional layers.
o Each one will operate on the “image” produced by the previous layer.
o All kernels will be randomly initialized and learned via backpropagation.
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Max-pooling

• We keep the max value of each window, separately from each channel.
• The stride determines how much the window shifts vertically & horizontally.
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Max-pooling

• Max-pooling layers are usually placed between stacked convolutional layers.
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Stacking convolution, pooling, dense layers

• Each feature of the max-pooled feature maps is derived from (is “looking 
at”) 4 features of the pre-pooled feature maps, and 16 features of the input.

• By stacking convolution and pooling layers, we can get features that are 
increasingly aware of larger parts of the input (larger “receptive field”).

• Max-pooling gradually reduces the resolution at higher layers, allowing us to 
use more channels (for the same total number of trainable parameters/layer).

• It also helps increase more quickly the receptive field. 

LeN
et architecture as illustrated in D

ive 
into D

eep Learning by Zhang et al. 
(https://d2l.ai/chapter_convolutional-
neural-netw

orks/lenet.htm
l).

https://d2l.ai/chapter_convolutional-neural-networks/lenet.html
https://d2l.ai/chapter_convolutional-neural-networks/lenet.html
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Stacking convolution, pooling, dense layers

• The features of the top feature maps are concatenated to a single vector and 
passed to a dense (fully connected) layer or an MLP (with hidden layers).
o To recognize the digit (0-9) in an image, the dense layer (or output layer of the 

MLP) would have 10 neurons with softmax, and we would use cross-entropy loss.
o To output the coordinates of the eyes in images (or video frames) of faces, the 

dense layer (or output layer of the MLP) could have 4 neurons (x1, y1, x2, y2) with 
no activation function, and we could use the mean squared error as loss. (But 
better, more advanced models can be used...)  

o The training examples would be digit or face images (or video frames) annotated 
with the correct responses (digits or coordinates of the eyes). 

• In practice we would also include dropout layers and residuals.

LeN
et architecture as illustrated in D

ive 
into D

eep Learning by Zhang et al. 
(https://d2l.ai/chapter_convolutional-
neural-netw

orks/lenet.htm
l).

https://d2l.ai/chapter_convolutional-neural-networks/lenet.html
https://d2l.ai/chapter_convolutional-neural-networks/lenet.html
https://d2l.ai/chapter_convolutional-neural-networks/lenet.html
https://d2l.ai/chapter_convolutional-neural-networks/lenet.html
https://d2l.ai/chapter_convolutional-neural-networks/lenet.html
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What do the layers learn?

• The kernels of lower layers tend to detect low-level features (e.g., edges of 
different directions). The kernels of higher layers tend to detect higher-level 
features (e.g., eyes, ears). 

• Pre-trained kernels of lower levels can be useful in many different tasks.

Figure from the recommended book “Deep Learning with Python” by F. Chollet, 
Manning Publications, 1st edition. Also covers Keras. Optionally consult Chapter 5 
(Deep Learning for Computer Vision) for ways to visualize what CNN layers learn. 

https://www.manning.com/books/deep-learning-with-python 
https://www.manning.com/books/deep-learning-with-python-second-edition
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Re-using pretrained layers

• In practice, we start with a CNN pre-trained on a very large dataset.
o Often ImageNet, 1.4 million images, 1,000 classes (e.g., dogs, cats).

• We replace the top layers with a task-specific classification/regression layer.
o We train the task-specific layer on task-specific data, keeping the pre-trained 

convolutional layers frozen (no weight updates in the frozen layers).
o We may then gradually unfreeze some of the convolutional layers too (weight 

updates in both the task-specific layers and the unfrozen convolutional layers).

Figure from the recommended book “Deep Learning with Python” by F. Chollet, Manning 
Publications, 1st edition. Also covers Keras. https://www.manning.com/books/deep-learning-

with-python https://www.manning.com/books/deep-learning-with-python-second-edition
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Re-using pretrained layers

Figure from the recommended book “Deep 
Learning with Python” by F. Chollet, 

Manning Publications, 1st edition. Also covers 
Keras. https://www.manning.com/books/deep-

learning-with-python 
https://www.manning.com/books/deep-

learning-with-python-second-edition
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Data augmentation

• We can increase the number of task-specific training examples by adding 
artificial training examples. 
o For example, we can rotate, squeeze, flip etc. the task-specific training images.
o Big improvements usually.

• How do we do data augmentation for NLP? 

Figure from the recommended book “Deep Learning with Python” by F. Chollet, 
Manning Publications, 1st edition. Also covers data augmentation in Keras. 

https://www.manning.com/books/deep-learning-with-python 
https://www.manning.com/books/deep-learning-with-python-second-edition
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Image captioning

From I. Pavlopoulos, V.  Kougia, I. 
Androutsopoulos, “A Survey on Biomedical 

Image Captioning”.
https://www.aclweb.org/anthology/W19-1803/ 

Possible applications:
• Image retrieval via captions.
• Eyesight problems.
• Drafting medical reports. 

28

Optional study

https://www.aclweb.org/anthology/W19-1803/
https://www.aclweb.org/anthology/W19-1803/
https://www.aclweb.org/anthology/W19-1803/


Hierarchical image to text generation

B. Jing, P. Xie, E.P. Xing, “On the Automatic Generation of Medical Imaging Reports”, 
ACL 2018 (http://www.aclweb.org/anthology/P18-1240). 

• The CNN encoder produces “visual features” (one vector per “pixel” of 
the last max-pooling layer, channels are dimensions). 

• An MLP (“MLC”) predicts tags given the visual features.
• The word embeddings of the tags are “semantic features”. 
• A sentence-level LSTM produces sentence embeddings (“topics”).

o A stop control (classifier) decides when to stop producing sentences.
o At each time-step, attention over visual and semantic features.

• For each sentence embedding, a word-level LSTM produces words. 

29

http://www.aclweb.org/anthology/P18-1240
http://www.aclweb.org/anthology/P18-1240
http://www.aclweb.org/anthology/P18-1240
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Convolutions on text
Let’s pretend that we know what 

the dimensions of the word 
embeddings represent, and that 

the dimensions are binary.

Embeddings
Words Subject Positive Stress Quantity
I 1 0 0 0
like 0 1 0 0
this 0 0 0 0
movie 0 0 0 0
very 0 0 1 0
much 0 0 0 1
! 0 0 1 0

Filter for “I like”, “we admire”…
1 0 0 0
0 1 0 0

Filter for “very much”, “so much”…
0 0 1 0
0 0 0 1

2
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Convolutions on text

Embeddings
Words Subject Positive Stress Quantity
I 1 0 0 0
like 0 1 0 0
this 0 0 0 0
movie 0 0 0 0
very 0 0 1 0
much 0 0 0 1
! 0 0 1 0

Filter for “I like”, “we admire”…
1 0 0 0
0 1 0 0

Filter for “very much”, “so much”…
0 0 1 0
0 0 0 1

0

Let’s pretend that we know what 
the dimensions of the word 

embeddings represent, and that 
the dimensions are binary.
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Convolutions on text

Embeddings
Words Subject Positive Stress Quantity
I 1 0 0 0
like 0 1 0 0
this 0 0 0 0
movie 0 0 0 0
very 0 0 1 0
much 0 0 0 1
! 0 0 1 0

Filter for “I like”, “we admire”…
1 0 0 0
0 1 0 0

Filter for “very much”, “so much”…
0 0 1 0
0 0 0 1

2
0
0
0
0
0
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Convolutions on text

Embeddings
Words Subject Positive Stress Quantity
I 1 0 0 0
like 0 1 0 0
this 0 0 0 0
movie 0 0 0 0
very 0 0 1 0
much 0 0 0 1
! 0 0 1 0

Filter for “I like”, “we admire”…
1 0 0 0
0 1 0 0

Filter for “very much”, “so much”…
0 0 1 0
0 0 0 1

02
0
0
0
0
0

0
0
0
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Convolutions on text

Embeddings
Words Subject Positive Stress Quantity
I 1 0 0 0
like 0 1 0 0
this 0 0 0 0
movie 0 0 0 0
very 0 0 1 0
much 0 0 0 1
! 0 0 1 0

Filter for “I like”, “we admire”…
1 0 0 0
0 1 0 0

Filter for “very much”, “so much”…
0 0 1 0
0 0 0 1

02
0
0
0
0
0

0
0
0
2
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Convolutions on text

Embeddings
Words Subject Positive Stress Quantity
I 1 0 0 0
like 0 1 0 0
this 0 0 0 0
movie 0 0 0 0
very 0 0 1 0
much 0 0 0 1
! 0 0 1 0

Filter for “I like”, “we admire”…
1 0 0 0
0 1 0 0

Filter for “very much”, “so much”…
0 0 1 0
0 0 0 1

02
0
0
0
0
0

0
0
0
2
0

global 
max 

pooling

2   2

Best scores of the two filters: 
to what extent they match 
anywhere in the sentence.
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Convolutional Neural Networks

From “A Sensitivity Analysis of 
(and Practitioners’ Guide to) 

Convolutional Neural Networks 
for Sentence Classification”, 

Zhang et al., 2015. 
http://arxiv.org/abs/1510.03820 

Rows are word 
embeddings.

Filter looking 
for positive 

bigrams like “I 
like”, “I adore”. 

The numbers in each filter are 
learned by backpropagation. 
The embeddings can also be 

learned during backpropagation.

How well the yellow bigram filter matched 
each bigram of the sentence (scores).

Max pooling: Max score of the yellow 
bigram filter. Best evidence that there 
was a bigram like “I like” or “I adore” 

anywhere in the sentence.

Filter looking 
for negative 
bigrams like 

“never buy”, “not 
get”, “dont like”. 

http://arxiv.org/abs/1510.03820
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Convolutions on text – closer to reality

Embeddings
Words 𝑑! 𝑑" 𝑑# 𝑑$
I 𝑥!,! 𝑥!," 𝑥!,# 𝑥!,$
like 𝑥",! 𝑥"," 𝑥",# 𝑥",$
this 𝑥#,! 𝑥#," 𝑥#,# 𝑥#,$
movie 𝑥$,! 𝑥$," 𝑥$,# 𝑥$,$
very 𝑥&,! 𝑥&," 𝑥&,# 𝑥&,$
much 𝑥',! 𝑥'," 𝑥',# 𝑥',$
! 𝑥(,! 𝑥(," 𝑥(,# 𝑥(,$

A bigram filter
𝑤!,! 𝑤!," 𝑤!,# 𝑤!,$
𝑤",! 𝑤"," 𝑤",# 𝑤",$

ReLU 𝑤𝑥 + 𝑏

𝑤 = 𝑤*,*, 𝑤*,-, 𝑤*,/, … , 𝑤-,/, 𝑤-,0

𝑥1 = 𝑥*,*, 𝑥*,-, 𝑥*,/, … , 𝑥-,/, 𝑥-,0

𝑏
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Convolutions on text – closer to reality

Embeddings
Words 𝑑! 𝑑" 𝑑# 𝑑$
I 𝑥!,! 𝑥!," 𝑥!,# 𝑥!,$
like 𝑥",! 𝑥"," 𝑥",# 𝑥",$
this 𝑥#,! 𝑥#," 𝑥#,# 𝑥#,$
movie 𝑥$,! 𝑥$," 𝑥$,# 𝑥$,$
very 𝑥&,! 𝑥&," 𝑥&,# 𝑥&,$
much 𝑥',! 𝑥'," 𝑥',# 𝑥',$
! 𝑥(,! 𝑥(," 𝑥(,# 𝑥(,$

A bigram filter
𝑤!,! 𝑤!," 𝑤!,# 𝑤!,$
𝑤",! 𝑤"," 𝑤",# 𝑤",$

ReLU 𝑤𝑥 + 𝑏

𝑤 = 𝑤*,*, 𝑤*,-, 𝑤*,/, … , 𝑤-,/, 𝑤-,0

𝑥1 = 𝑥-,*, 𝑥-,-, 𝑥-,/, … , 𝑥/,/, 𝑥/,0

𝑏
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Now applying three bigram filters

Embeddings
Words 𝑑! 𝑑" 𝑑# 𝑑$
I 𝑥!,! 𝑥!," 𝑥!,# 𝑥!,$
like 𝑥",! 𝑥"," 𝑥",# 𝑥",$
this 𝑥#,! 𝑥#," 𝑥#,# 𝑥#,$
movie 𝑥$,! 𝑥$," 𝑥$,# 𝑥$,$
very 𝑥&,! 𝑥&," 𝑥&,# 𝑥&,$
much 𝑥',! 𝑥'," 𝑥',# 𝑥',$
! 𝑥(,! 𝑥(," 𝑥(,# 𝑥(,$

ℎ- = ReLU 𝑊𝑥 + 𝑏 ∈ ℝ/×*

𝑥1 = 𝑥-,*, 𝑥-,-, … , 𝑥/,/, 𝑥/,0 ∈ ℝ*×3

𝑊 =
𝑤*,*,* 𝑤*,*,- 𝑤*,*,/ … 𝑤*,-,/ 𝑤*,-,0
𝑤-,*,* 𝑤-,*,- 𝑤-,*,/ … 𝑤-,-,/ 𝑤-,-,0
𝑤/,*,* 𝑤/,*,- 𝑤/,*,/ … 𝑤/,-,/ 𝑤/,-,0

∈ ℝ/×3 𝑏 =
𝑏*
𝑏-
𝑏/

∈ ℝ/×*
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Applying 3 bigram filters

Embeddings
Words 𝑑! 𝑑" 𝑑# 𝑑$
I 𝑥!,! 𝑥!," 𝑥!,# 𝑥!,$
like 𝑥",! 𝑥"," 𝑥",# 𝑥",$
this 𝑥#,! 𝑥#," 𝑥#,# 𝑥#,$
movie 𝑥$,! 𝑥$," 𝑥$,# 𝑥$,$
very 𝑥&,! 𝑥&," 𝑥&,# 𝑥&,$
much 𝑥',! 𝑥'," 𝑥',# 𝑥',$
! 𝑥(,! 𝑥(," 𝑥(,# 𝑥(,$

ℎ- = ℎ-,*, ℎ-,-, ℎ-,/
1 ∈ ℝ/×*

𝑊 =
𝑤*,*,* 𝑤*,*,- 𝑤*,*,/ … 𝑤*,-,/ 𝑤*,-,0
𝑤-,*,* 𝑤-,*,- 𝑤-,*,/ … 𝑤-,-,/ 𝑤-,-,0
𝑤/,*,* 𝑤/,*,- 𝑤/,*,/ … 𝑤/,-,/ 𝑤/,-,0

∈ ℝ/×3 𝑏 =
𝑏*
𝑏-
𝑏/

∈ ℝ/×*
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Applying 3 bigram filters

Embeddings
Words 𝑑! 𝑑" 𝑑# 𝑑$
I 𝑥!,! 𝑥!," 𝑥!,# 𝑥!,$
like 𝑥",! 𝑥"," 𝑥",# 𝑥",$
this 𝑥#,! 𝑥#," 𝑥#,# 𝑥#,$
movie 𝑥$,! 𝑥$," 𝑥$,# 𝑥$,$
very 𝑥&,! 𝑥&," 𝑥&,# 𝑥&,$
much 𝑥',! 𝑥'," 𝑥',# 𝑥',$
! 𝑥(,! 𝑥(," 𝑥(,# 𝑥(,$

ℎ- = ℎ-,*, ℎ-,-, ℎ-,/
1

𝑊 =
𝑤*,*,* 𝑤*,*,- 𝑤*,*,/ … 𝑤*,-,/ 𝑤*,-,0
𝑤-,*,* 𝑤-,*,- 𝑤-,*,/ … 𝑤-,-,/ 𝑤-,-,0
𝑤/,*,* 𝑤/,*,- 𝑤/,*,/ … 𝑤/,-,/ 𝑤/,-,0

∈ ℝ/×3 𝑏 =
𝑏*
𝑏-
𝑏/

∈ ℝ/×*

ℎ* = ℎ*,*, ℎ*,-, ℎ*,/
1

ℎ/ = ℎ/,*, ℎ/,-, ℎ/,/
1

ℎ0 = ℎ0,*, ℎ0,-, ℎ0,/
1

ℎ4 = ℎ4,*, ℎ4,-, ℎ4,/
1

…

ℎ"56 = max(ℎ∗,*) ,max ℎ∗,- , max(ℎ∗,/)
1

global max 
pooling Feature vector 

sent to a 
classifier, 

regressor, etc.
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Stacked CNNs for classification/regression

pad ℎ!
($) ℎ"

($) ℎ#
($) ℎ$

($) ℎ&
($) … ℎ+,!

($) ℎ+
($) pad

pad ℎ!
(#) ℎ"

(#) ℎ#
(#) ℎ$

(#) ℎ&
(#) … ℎ+,!

(#) ℎ+
($) pad

pad ℎ!
(") ℎ"

(") ℎ#
(") ℎ$

(") ℎ&
(") … ℎ+,!

(") ℎ+
(") pad

pad ℎ!
(!) ℎ"

(!) ℎ#
(!) ℎ$

(!) ℎ&
(!) … ℎ+,!

(!) ℎ+
(!) pad

pad 𝑥! 𝑥" 𝑥# 𝑥$ 𝑥& … 𝑥+,! 𝑥+ pad m-dimensional word 
embeddings

1st convolution layer (𝑚 filters)

2nd convolution layer (𝑚 filters)

3rd convolution layer (𝑚 filters)

4th convolution layer (𝑚 filters)

ℎ"56 = max ℎ∗,*
0 , max ℎ∗,-

0 , … ,max(ℎ∗,"
(0) )

1
∈ ℝ*×"

global max 
pooling

Feature vector sent to a 
document classifier or regressor 

(e.g., MLP). 

ℎ$
(&) = ReLU 𝑊(&) ℎ$)*

(&)*); ℎ$
(&)*); ℎ$.*

(&)*) + 𝑏(&) + ℎ$
&)* ∈ ℝ"×*

ℎ$
(*) = ReLU 𝑊(*) 𝑥$)*; 𝑥$; 𝑥$.* + 𝑏(*) + 𝑥$ ∈ ℝ"×*

Residual (shortcut) connection, needed when stacking many CNNs (or RNNs).
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Stacked CNNs for token classification

pad ℎ!
($) ℎ"

($) ℎ#
($) ℎ$

($) ℎ&
($) … ℎ+,!

($) ℎ+
($) pad

pad ℎ!
(#) ℎ"

(#) ℎ#
(#) ℎ$

(#) ℎ&
(#) … ℎ+,!

(#) ℎ+
($) pad

pad ℎ!
(") ℎ"

(") ℎ#
(") ℎ$

(") ℎ&
(") … ℎ+,!

(") ℎ+
(") pad

pad ℎ!
(!) ℎ"

(!) ℎ#
(!) ℎ$

(!) ℎ&
(!) … ℎ+,!

(!) ℎ+
(!) pad

pad 𝑥! 𝑥" 𝑥# 𝑥$ 𝑥& … 𝑥+,! 𝑥+ pad m-dimensional word 
embeddings

1st convolution layer (𝑚 filters)

2nd convolution layer (𝑚 filters)

3rd convolution layer (𝑚 filters)

4th convolution layer (𝑚 filters)

dense + 
softmax

Predicted labels of words

ℎ$
(&) = ReLU 𝑊(&) ℎ$)*

(&)*); ℎ$
(&)*); ℎ$.*

(&)*) + 𝑏(&) + ℎ$
&)* ∈ ℝ"×*

ℎ$
(*) = ReLU 𝑊(*) 𝑥$)*; 𝑥$; 𝑥$.* + 𝑏(*) + 𝑥$ ∈ ℝ"×*

dense + 
softmax

dense + 
softmax

B-Pers I-Pers O B-Loc I-Loc I-Org O



CNNs/RNNs that produce word embeddings 
from character embeddings

Z. Zhai, D.Q. Nguyen and K. Verspoor, “Comparing CNN and LSTM Character-
Level Embeddings in BiLSTM-CRF Models for Chemical and Disease Named 
Entity Eecognition”. 9th Int. Workshop on Health Text Mining and Information 

Analysis, Brussels, Belgium, 2018. http://aclweb.org/anthology/W18-5605 44
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Recommended reading
• Y. Goldberg, Neural Network Models for Natural Language 

Processing, Morgan & Claypool Publishers, 2017. 
o Mostly Chapter 13.

• Jurafsky and Martin’s, Speech and Language Processing is 
being revised (3rd edition) to include DL methods.
o http://web.stanford.edu/~jurafsky/slp3/ (free draft)

• A. Zhang et al., Dive into Deep Learning. 
o Freely available at: https://d2l.ai/
o See Chapters 7 and 8 for CNNs.

http://web.stanford.edu/~jurafsky/slp3/
http://web.stanford.edu/~jurafsky/slp3/
https://d2l.ai/

