
Natural Language Processing with
Convolutional Neural Networks

2025–26

Ion Androutsopoulos
http://www.aueb.gr/users/ion/

http://www.aueb.gr/users/ion/

2

Contents
• Quick background: Convolutional Neural Networks (CNNs) in

Computer Vision.
• Image to text generation with CNN encoders and RNN decoders.
• Text processing with CNNs.

3

Convolutions on images

From the blog post
“Understanding

Convolutional Neural
Networks for NLP” of

Denny Britz, 2015.
http://www.wildml.com/
2015/11/understanding-
convolutional-neural-

networks-for-nlp/

http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/
http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/
http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/
http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/
http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/
http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/
http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/
http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/
http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/
http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/
http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/
http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/

4

Convolutions on images

• Input: black/white image with pixel values -1 or +1.
• Check if the input contains any crosses and report where.

5

Convolutions on images

6

Convolutions on images

7

Convolutions on images

• Let 𝑿 be the part of the input where we apply the kernel (filter).
• Let 𝑾 be the kernel.

• The resulting feature of the feature map is: ∑𝒊"𝟏𝟑 ∑𝒋"𝟏𝟑 𝑾𝒊,𝒋	𝑿𝒊,𝒋
• In practice, we would also use an activation function and bias

term: 𝑓(∑'"() ∑*"() 𝑊',*𝑋',* + 𝑏)

8

Convolutions on images

• We can think of the resulting feature map as a new “image” that
indicates the position(s) of the cross(es) in the original image.
o No need to have the crosses at particular parts of the image.

• The new “image” is 4x4 instead of 6x6, because the kernel could
not slide outside the boundaries of the original image.

9

Wide convolutions on images

• We can pad the surrounding of the image with zeros, to allow the
kernel to slide outside the image boundaries.

• We can now obtain a feature map with the same resolution as
the input image (6x6).

10

Wide convolutions on images

11

Wide convolutions on images

12

Wide convolutions on images

• 𝑿: entire input image. 𝑭: feature map.
• 𝑾: kernel, but with rows and columns numbered −1, 0, 1.

• Feature map values: 𝐹',* = ∑+",((∑-",((𝑊+,-	𝑋'.+,*.-
• In practice: 𝐹',* = 𝑓(∑+",((∑-",((𝑊+,-	𝑋'.+,*.- + 𝑏)

13

Convolution or cross-correlation?
• Cross-correlation: 𝐹',* = ∑+",/./ ∑-",/./ 	𝑊+,-	𝑋'.+,*.-
• Convolution: 𝐹',* = ∑+",/./ ∑-",/./ 	𝑊+,-	𝑋',+,*,- = 𝑊 ∗ 𝑋
• We are actually computing cross-correlations, not convolutions.

o The cross-correlations we compute are equal to convolutions with the
kernel (or the image) flipped both vertically and horizontally.
o Convolution is like cross-correlation, but flips one of the two signals. We don’t flip the

kernel inside the cross-correlation, which is equivalent to giving the kernel already
flipped to the convolution; the convolution will flip the kernel once more, ending up
using the kernel without flipping.

o So we actually compute convolutions with flipped kernels or cross-
correlations with the original kernels.

o The example kernels were symmetric, so no difference.
o In CNNs (Convolutional Neural Networks), the kernels are learned, so

we don’t care if they are flipped in the “convolutions” we compute.
o So we usually say CNNs “compute convolutions”, though we actually use

the formulae of cross-correlations.

Optional study

14

Two kernels

• We now want to check the input image for crosses and “X”s.
• We use two kernels, one for crosses, one for “X”s.

15

Two kernels

16

Two kernels We can think of the two feature maps as two “channels” of
the new image, one for “+” info, one for “X” info.

17

Two input channels too

• The input image now also has two channels (e.g., from grayscale and depth
cameras). Each kernel now operates on both input channels.
o It has two slices, one per input channel (𝑐 = 1, 𝑐 = 2).

• We have two kernels, so the output also has two channels.
• At the output feature map of kernel W("), the value at cell (i, j) is:

𝐹$,&," =)
'()*

*

)
+()*

*

)
,(*

-

𝑊',+,,
(")	𝑋$.',&.+,,

• In practice, we would also have an activation function and bias term.

18

Two input channels too

19

Two input channels too

• We now have a mechanism, a “convolutional layer”, that maps an
input image of any number of channels to a new output “image”
of any number of channels (feature maps).
o The kernels will have as many slices as the input channels.
o The number of kernels will be equal to the number of output channels.

• We can stack multiple convolutional layers.
o Each one will operate on the “image” produced by the previous layer.
o All kernels will be randomly initialized and learned via backpropagation.

20

Max-pooling

• We keep the max value of each window, separately from each channel.
• The stride determines how much the window shifts vertically & horizontally.

21

Max-pooling

• Max-pooling layers are usually placed between stacked convolutional layers.

22

Stacking convolution, pooling, dense layers

• Each feature of the max-pooled feature maps is derived from (is “looking
at”) 4 features of the pre-pooled feature maps, and 16 features of the input.

• By stacking convolution and pooling layers, we can get features that are
increasingly aware of larger parts of the input (larger “receptive field”).

• Max-pooling gradually reduces the resolution at higher layers, allowing us to
use more channels (for the same total number of trainable parameters/layer).

• It also helps increase more quickly the receptive field.

LeN
et architecture as illustrated in D

ive
into D

eep Learning by Zhang et al.
(https://d2l.ai/chapter_convolutional-
neural-netw

orks/lenet.htm
l).

https://d2l.ai/chapter_convolutional-neural-networks/lenet.html
https://d2l.ai/chapter_convolutional-neural-networks/lenet.html
https://d2l.ai/chapter_convolutional-neural-networks/lenet.html
https://d2l.ai/chapter_convolutional-neural-networks/lenet.html
https://d2l.ai/chapter_convolutional-neural-networks/lenet.html

23

Stacking convolution, pooling, dense layers

• The features of the top feature maps are concatenated to a single vector and
passed to a dense (fully connected) layer or an MLP (with hidden layers).
o To recognize the digit (0-9) in an image, the dense layer (or output layer of the

MLP) would have 10 neurons with softmax, and we would use cross-entropy loss.
o To output the coordinates of the eyes in images (or video frames) of faces, the

dense layer (or output layer of the MLP) could have 4 neurons (x1, y1, x2, y2) with
no activation function, and we could use the mean squared error as loss. (But
better, more advanced models can be used...)

o The training examples would be digit or face images (or video frames) annotated
with the correct responses (digits or coordinates of the eyes).

• In practice we would also include dropout layers and residuals.

LeN
et architecture as illustrated in D

ive
into D

eep Learning by Zhang et al.
(https://d2l.ai/chapter_convolutional-
neural-netw

orks/lenet.htm
l).

https://d2l.ai/chapter_convolutional-neural-networks/lenet.html
https://d2l.ai/chapter_convolutional-neural-networks/lenet.html
https://d2l.ai/chapter_convolutional-neural-networks/lenet.html
https://d2l.ai/chapter_convolutional-neural-networks/lenet.html
https://d2l.ai/chapter_convolutional-neural-networks/lenet.html

24

What do the layers learn?

• The kernels of lower layers tend to detect low-level features (e.g., edges of
different directions). The kernels of higher layers tend to detect higher-level
features (e.g., eyes, ears).

• Pre-trained kernels of lower levels can be useful in many different tasks.

Figure from the recommended book “Deep Learning with Python” by F. Chollet,
Manning Publications, 1st edition. Also covers Keras. Optionally consult Chapter 5
(Deep Learning for Computer Vision) for ways to visualize what CNN layers learn.

https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python-second-edition

https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition

25

Re-using pretrained layers

• In practice, we start with a CNN pre-trained on a very large dataset.
o Often ImageNet, 1.4 million images, 1,000 classes (e.g., dogs, cats).

• We replace the top layers with a task-specific classification/regression layer.
o We train the task-specific layer on task-specific data, keeping the pre-trained

convolutional layers frozen (no weight updates in the frozen layers).
o We may then gradually unfreeze some of the convolutional layers too (weight

updates in both the task-specific layers and the unfrozen convolutional layers).

Figure from the recommended book “Deep Learning with Python” by F. Chollet, Manning
Publications, 1st edition. Also covers Keras. https://www.manning.com/books/deep-learning-

with-python https://www.manning.com/books/deep-learning-with-python-second-edition

https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition

26

Re-using pretrained layers

Figure from the recommended book “Deep
Learning with Python” by F. Chollet,

Manning Publications, 1st edition. Also covers
Keras. https://www.manning.com/books/deep-

learning-with-python
https://www.manning.com/books/deep-

learning-with-python-second-edition

https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition

27

Data augmentation

• We can increase the number of task-specific training examples by adding
artificial training examples.
o For example, we can rotate, squeeze, flip etc. the task-specific training images.
o Big improvements usually.

• How do we do data augmentation for NLP?

Figure from the recommended book “Deep Learning with Python” by F. Chollet,
Manning Publications, 1st edition. Also covers data augmentation in Keras.

https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python-second-edition

https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition

Image captioning

From I. Pavlopoulos, V. Kougia, I.
Androutsopoulos, “A Survey on Biomedical

Image Captioning”.
https://www.aclweb.org/anthology/W19-1803/

Possible applications:
• Image retrieval via captions.
• Eyesight problems.
• Drafting medical reports.

28

Optional study

https://www.aclweb.org/anthology/W19-1803/
https://www.aclweb.org/anthology/W19-1803/
https://www.aclweb.org/anthology/W19-1803/

Hierarchical image to text generation

B. Jing, P. Xie, E.P. Xing, “On the Automatic Generation of Medical Imaging Reports”,
ACL 2018 (http://www.aclweb.org/anthology/P18-1240).

• The CNN encoder produces “visual features” (one vector per “pixel” of
the last max-pooling layer, channels are dimensions).

• An MLP (“MLC”) predicts tags given the visual features.
• The word embeddings of the tags are “semantic features”.
• A sentence-level LSTM produces sentence embeddings (“topics”).

o A stop control (classifier) decides when to stop producing sentences.
o At each time-step, attention over visual and semantic features.

• For each sentence embedding, a word-level LSTM produces words.

29

http://www.aclweb.org/anthology/P18-1240
http://www.aclweb.org/anthology/P18-1240
http://www.aclweb.org/anthology/P18-1240

30

Convolutions on text
Let’s pretend that we know what

the dimensions of the word
embeddings represent, and that

the dimensions are binary.

Embeddings
Words Subject Positive Stress Quantity
I 1 0 0 0
like 0 1 0 0
this 0 0 0 0
movie 0 0 0 0
very 0 0 1 0
much 0 0 0 1
! 0 0 1 0

Filter for “I like”, “we admire”…
1 0 0 0
0 1 0 0

Filter for “very much”, “so much”…
0 0 1 0
0 0 0 1

2

31

Convolutions on text

Embeddings
Words Subject Positive Stress Quantity
I 1 0 0 0
like 0 1 0 0
this 0 0 0 0
movie 0 0 0 0
very 0 0 1 0
much 0 0 0 1
! 0 0 1 0

Filter for “I like”, “we admire”…
1 0 0 0
0 1 0 0

Filter for “very much”, “so much”…
0 0 1 0
0 0 0 1

0

Let’s pretend that we know what
the dimensions of the word

embeddings represent, and that
the dimensions are binary.

32

Convolutions on text

Embeddings
Words Subject Positive Stress Quantity
I 1 0 0 0
like 0 1 0 0
this 0 0 0 0
movie 0 0 0 0
very 0 0 1 0
much 0 0 0 1
! 0 0 1 0

Filter for “I like”, “we admire”…
1 0 0 0
0 1 0 0

Filter for “very much”, “so much”…
0 0 1 0
0 0 0 1

2
0
0
0
0
0

33

Convolutions on text

Embeddings
Words Subject Positive Stress Quantity
I 1 0 0 0
like 0 1 0 0
this 0 0 0 0
movie 0 0 0 0
very 0 0 1 0
much 0 0 0 1
! 0 0 1 0

Filter for “I like”, “we admire”…
1 0 0 0
0 1 0 0

Filter for “very much”, “so much”…
0 0 1 0
0 0 0 1

02
0
0
0
0
0

0
0
0

34

Convolutions on text

Embeddings
Words Subject Positive Stress Quantity
I 1 0 0 0
like 0 1 0 0
this 0 0 0 0
movie 0 0 0 0
very 0 0 1 0
much 0 0 0 1
! 0 0 1 0

Filter for “I like”, “we admire”…
1 0 0 0
0 1 0 0

Filter for “very much”, “so much”…
0 0 1 0
0 0 0 1

02
0
0
0
0
0

0
0
0
2

35

Convolutions on text

Embeddings
Words Subject Positive Stress Quantity
I 1 0 0 0
like 0 1 0 0
this 0 0 0 0
movie 0 0 0 0
very 0 0 1 0
much 0 0 0 1
! 0 0 1 0

Filter for “I like”, “we admire”…
1 0 0 0
0 1 0 0

Filter for “very much”, “so much”…
0 0 1 0
0 0 0 1

02
0
0
0
0
0

0
0
0
2
0

global
max

pooling

2 2

Best scores of the two filters:
to what extent they match
anywhere in the sentence.

36

Convolutional Neural Networks

From “A Sensitivity Analysis of
(and Practitioners’ Guide to)

Convolutional Neural Networks
for Sentence Classification”,

Zhang et al., 2015.
http://arxiv.org/abs/1510.03820

Rows are word
embeddings.

Filter looking
for positive

bigrams like “I
like”, “I adore”.

The numbers in each filter are
learned by backpropagation.
The embeddings can also be

learned during backpropagation.

How well the yellow bigram filter matched
each bigram of the sentence (scores).

Max pooling: Max score of the yellow
bigram filter. Best evidence that there
was a bigram like “I like” or “I adore”

anywhere in the sentence.

Filter looking
for negative
bigrams like

“never buy”, “not
get”, “dont like”.

http://arxiv.org/abs/1510.03820

37

Convolutions on text – closer to reality

Embeddings
Words 𝑑! 𝑑" 𝑑# 𝑑$
I 𝑥!,! 𝑥!," 𝑥!,# 𝑥!,$
like 𝑥",! 𝑥"," 𝑥",# 𝑥",$
this 𝑥#,! 𝑥#," 𝑥#,# 𝑥#,$
movie 𝑥$,! 𝑥$," 𝑥$,# 𝑥$,$
very 𝑥&,! 𝑥&," 𝑥&,# 𝑥&,$
much 𝑥',! 𝑥'," 𝑥',# 𝑥',$
! 𝑥(,! 𝑥(," 𝑥(,# 𝑥(,$

A bigram filter
𝑤!,! 𝑤!," 𝑤!,# 𝑤!,$
𝑤",! 𝑤"," 𝑤",# 𝑤",$

ReLU 𝑤𝑥 + 𝑏

𝑤 = 𝑤*,*, 𝑤*,-, 𝑤*,/, … , 𝑤-,/, 𝑤-,0

𝑥1 = 𝑥*,*, 𝑥*,-, 𝑥*,/, … , 𝑥-,/, 𝑥-,0

𝑏

38

Convolutions on text – closer to reality

Embeddings
Words 𝑑! 𝑑" 𝑑# 𝑑$
I 𝑥!,! 𝑥!," 𝑥!,# 𝑥!,$
like 𝑥",! 𝑥"," 𝑥",# 𝑥",$
this 𝑥#,! 𝑥#," 𝑥#,# 𝑥#,$
movie 𝑥$,! 𝑥$," 𝑥$,# 𝑥$,$
very 𝑥&,! 𝑥&," 𝑥&,# 𝑥&,$
much 𝑥',! 𝑥'," 𝑥',# 𝑥',$
! 𝑥(,! 𝑥(," 𝑥(,# 𝑥(,$

A bigram filter
𝑤!,! 𝑤!," 𝑤!,# 𝑤!,$
𝑤",! 𝑤"," 𝑤",# 𝑤",$

ReLU 𝑤𝑥 + 𝑏

𝑤 = 𝑤*,*, 𝑤*,-, 𝑤*,/, … , 𝑤-,/, 𝑤-,0

𝑥1 = 𝑥-,*, 𝑥-,-, 𝑥-,/, … , 𝑥/,/, 𝑥/,0

𝑏

39

Now applying three bigram filters

Embeddings
Words 𝑑! 𝑑" 𝑑# 𝑑$
I 𝑥!,! 𝑥!," 𝑥!,# 𝑥!,$
like 𝑥",! 𝑥"," 𝑥",# 𝑥",$
this 𝑥#,! 𝑥#," 𝑥#,# 𝑥#,$
movie 𝑥$,! 𝑥$," 𝑥$,# 𝑥$,$
very 𝑥&,! 𝑥&," 𝑥&,# 𝑥&,$
much 𝑥',! 𝑥'," 𝑥',# 𝑥',$
! 𝑥(,! 𝑥(," 𝑥(,# 𝑥(,$

ℎ- = ReLU 𝑊𝑥 + 𝑏 ∈ ℝ/×*

𝑥1 = 𝑥-,*, 𝑥-,-, … , 𝑥/,/, 𝑥/,0 ∈ ℝ*×3

𝑊 =
𝑤*,*,* 𝑤*,*,- 𝑤*,*,/ … 𝑤*,-,/ 𝑤*,-,0
𝑤-,*,* 𝑤-,*,- 𝑤-,*,/ … 𝑤-,-,/ 𝑤-,-,0
𝑤/,*,* 𝑤/,*,- 𝑤/,*,/ … 𝑤/,-,/ 𝑤/,-,0

∈ ℝ/×3 𝑏 =
𝑏*
𝑏-
𝑏/

∈ ℝ/×*

40

Applying 3 bigram filters

Embeddings
Words 𝑑! 𝑑" 𝑑# 𝑑$
I 𝑥!,! 𝑥!," 𝑥!,# 𝑥!,$
like 𝑥",! 𝑥"," 𝑥",# 𝑥",$
this 𝑥#,! 𝑥#," 𝑥#,# 𝑥#,$
movie 𝑥$,! 𝑥$," 𝑥$,# 𝑥$,$
very 𝑥&,! 𝑥&," 𝑥&,# 𝑥&,$
much 𝑥',! 𝑥'," 𝑥',# 𝑥',$
! 𝑥(,! 𝑥(," 𝑥(,# 𝑥(,$

ℎ- = ℎ-,*, ℎ-,-, ℎ-,/
1 ∈ ℝ/×*

𝑊 =
𝑤*,*,* 𝑤*,*,- 𝑤*,*,/ … 𝑤*,-,/ 𝑤*,-,0
𝑤-,*,* 𝑤-,*,- 𝑤-,*,/ … 𝑤-,-,/ 𝑤-,-,0
𝑤/,*,* 𝑤/,*,- 𝑤/,*,/ … 𝑤/,-,/ 𝑤/,-,0

∈ ℝ/×3 𝑏 =
𝑏*
𝑏-
𝑏/

∈ ℝ/×*

41

Applying 3 bigram filters

Embeddings
Words 𝑑! 𝑑" 𝑑# 𝑑$
I 𝑥!,! 𝑥!," 𝑥!,# 𝑥!,$
like 𝑥",! 𝑥"," 𝑥",# 𝑥",$
this 𝑥#,! 𝑥#," 𝑥#,# 𝑥#,$
movie 𝑥$,! 𝑥$," 𝑥$,# 𝑥$,$
very 𝑥&,! 𝑥&," 𝑥&,# 𝑥&,$
much 𝑥',! 𝑥'," 𝑥',# 𝑥',$
! 𝑥(,! 𝑥(," 𝑥(,# 𝑥(,$

ℎ- = ℎ-,*, ℎ-,-, ℎ-,/
1

𝑊 =
𝑤*,*,* 𝑤*,*,- 𝑤*,*,/ … 𝑤*,-,/ 𝑤*,-,0
𝑤-,*,* 𝑤-,*,- 𝑤-,*,/ … 𝑤-,-,/ 𝑤-,-,0
𝑤/,*,* 𝑤/,*,- 𝑤/,*,/ … 𝑤/,-,/ 𝑤/,-,0

∈ ℝ/×3 𝑏 =
𝑏*
𝑏-
𝑏/

∈ ℝ/×*

ℎ* = ℎ*,*, ℎ*,-, ℎ*,/
1

ℎ/ = ℎ/,*, ℎ/,-, ℎ/,/
1

ℎ0 = ℎ0,*, ℎ0,-, ℎ0,/
1

ℎ4 = ℎ4,*, ℎ4,-, ℎ4,/
1

…

ℎ"56 = max(ℎ∗,*) ,max ℎ∗,- , max(ℎ∗,/)
1

global max
pooling Feature vector

sent to a
classifier,

regressor, etc.

42

Stacked CNNs for classification/regression

pad ℎ!
($) ℎ"

($) ℎ#
($) ℎ$

($) ℎ&
($) … ℎ+,!

($) ℎ+
($) pad

pad ℎ!
(#) ℎ"

(#) ℎ#
(#) ℎ$

(#) ℎ&
(#) … ℎ+,!

(#) ℎ+
($) pad

pad ℎ!
(") ℎ"

(") ℎ#
(") ℎ$

(") ℎ&
(") … ℎ+,!

(") ℎ+
(") pad

pad ℎ!
(!) ℎ"

(!) ℎ#
(!) ℎ$

(!) ℎ&
(!) … ℎ+,!

(!) ℎ+
(!) pad

pad 𝑥! 𝑥" 𝑥# 𝑥$ 𝑥& … 𝑥+,! 𝑥+ pad m-dimensional word
embeddings

1st convolution layer (𝑚 filters)

2nd convolution layer (𝑚 filters)

3rd convolution layer (𝑚 filters)

4th convolution layer (𝑚 filters)

ℎ"56 = max ℎ∗,*
0 , max ℎ∗,-

0 , … ,max(ℎ∗,"
(0))

1
∈ ℝ*×"

global max
pooling

Feature vector sent to a
document classifier or regressor

(e.g., MLP).

ℎ$
(&) = ReLU 𝑊(&) ℎ$)*

(&)*); ℎ$
(&)*); ℎ$.*

(&)*) + 𝑏(&) + ℎ$
&)* ∈ ℝ"×*

ℎ$
(*) = ReLU 𝑊(*) 𝑥$)*; 𝑥$; 𝑥$.* + 𝑏(*) + 𝑥$ ∈ ℝ"×*

Residual (shortcut) connection, needed when stacking many CNNs (or RNNs).

43

Stacked CNNs for token classification

pad ℎ!
($) ℎ"

($) ℎ#
($) ℎ$

($) ℎ&
($) … ℎ+,!

($) ℎ+
($) pad

pad ℎ!
(#) ℎ"

(#) ℎ#
(#) ℎ$

(#) ℎ&
(#) … ℎ+,!

(#) ℎ+
($) pad

pad ℎ!
(") ℎ"

(") ℎ#
(") ℎ$

(") ℎ&
(") … ℎ+,!

(") ℎ+
(") pad

pad ℎ!
(!) ℎ"

(!) ℎ#
(!) ℎ$

(!) ℎ&
(!) … ℎ+,!

(!) ℎ+
(!) pad

pad 𝑥! 𝑥" 𝑥# 𝑥$ 𝑥& … 𝑥+,! 𝑥+ pad m-dimensional word
embeddings

1st convolution layer (𝑚 filters)

2nd convolution layer (𝑚 filters)

3rd convolution layer (𝑚 filters)

4th convolution layer (𝑚 filters)

dense +
softmax

Predicted labels of words

ℎ$
(&) = ReLU 𝑊(&) ℎ$)*

(&)*); ℎ$
(&)*); ℎ$.*

(&)*) + 𝑏(&) + ℎ$
&)* ∈ ℝ"×*

ℎ$
(*) = ReLU 𝑊(*) 𝑥$)*; 𝑥$; 𝑥$.* + 𝑏(*) + 𝑥$ ∈ ℝ"×*

dense +
softmax

dense +
softmax

B-Pers I-Pers O B-Loc I-Loc I-Org O

CNNs/RNNs that produce word embeddings
from character embeddings

Z. Zhai, D.Q. Nguyen and K. Verspoor, “Comparing CNN and LSTM Character-
Level Embeddings in BiLSTM-CRF Models for Chemical and Disease Named
Entity Eecognition”. 9th Int. Workshop on Health Text Mining and Information

Analysis, Brussels, Belgium, 2018. http://aclweb.org/anthology/W18-5605 44

http://aclweb.org/anthology/W18-5605
http://aclweb.org/anthology/W18-5605
http://aclweb.org/anthology/W18-5605

45

Recommended reading
• Y. Goldberg, Neural Network Models for Natural Language

Processing, Morgan & Claypool Publishers, 2017.
o Mostly Chapter 13.

• Jurafsky and Martin’s, Speech and Language Processing is
being revised (3rd edition) to include DL methods.
o http://web.stanford.edu/~jurafsky/slp3/ (free draft)

• A. Zhang et al., Dive into Deep Learning.
o Freely available at: https://d2l.ai/
o See Chapters 7 and 8 for CNNs.

http://web.stanford.edu/~jurafsky/slp3/
http://web.stanford.edu/~jurafsky/slp3/
https://d2l.ai/

