

Natural Language Processing with Convolutional Neural Networks

2025-26

Ion Androutsopoulos

http://www.aueb.gr/users/ion/

Contents

- Quick background: Convolutional Neural Networks (CNNs) in Computer Vision.
- Image to text generation with CNN encoders and RNN decoders.
- Text processing with CNNs.

Averaging each pixel with its neighboring values blurs an image:

From the blog post

"Understanding
Convolutional Neural
Networks for NLP" of
Denny Britz, 2015.

http://www.wildml.com/2015/11/understanding-networks-for-nlp/

Input Kernel (Filter) Feature Map

-1	1	-1	-1	-1	-1
1	1	1	-1	-1	-1
-1 -1 -1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1
-1	-1	-1	-1	1	-1
-1	-1	-1	1	-1	1



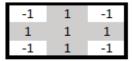
- **Input:** black/white image with pixel values -1 or +1.
- Check if the input contains any crosses and report where.

Input Kernel (Filter) Feature Map

-1			-1	-1	-1
1	1	1	-1	-1	-1
-1	1	-1		-1	
-1	-1	-1	1	-1	1
-1	-1	-1	-1	1	-1
-1	-1	-1	1	-1	1

-1	1	-1
1	1	1
-1	1	-1

-1 1 -1	1	-1	-1 -1 -1	-1	-1
1	1	1	-1	-1	-1
-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1
-1	-1	-1	-1	1	-1
-1 -1 -1	-1	-1	1	-1	1



9

Input

Kernel (Filter)

Feature Map

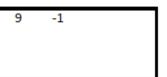
-1	1	-1	-1	-1	-1
1	1	1	-1	-1	-1
-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1
-1	-1	-1	-1	1	-1
-1 1 -1 -1 -1 -1	-1	-1	1	-1	1

-1	1	-1
1	1	1
-1	1	-1

-1	1	-1	-1	-1	-1
1	1	1	-1	-1	-1
-1 1 -1	1	-1	-1 -1 -1	-1	-1 -1 -1
-1	-1	-1	1	-1	1
-1	-1	-1	-1	1	-1
-1 -1 -1	-1	-1	1	-1	1

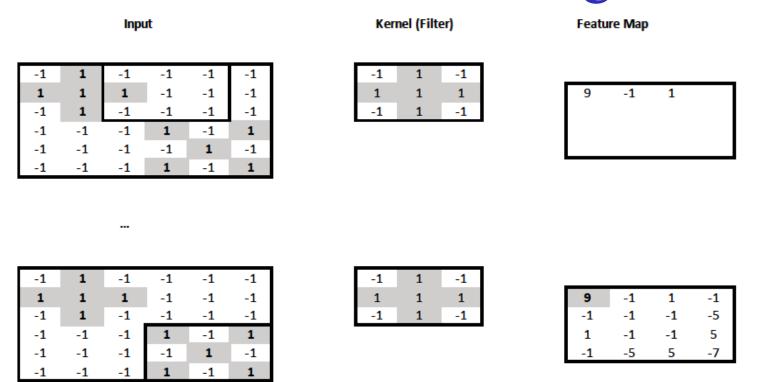


-1	1	-1	-1	-1 -1 -1	-1
-1 1 -1	1	1	-1	-1	-1
-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1
-1	-1	-1	-1	1	-1
-1	-1	-1	1	-1	1

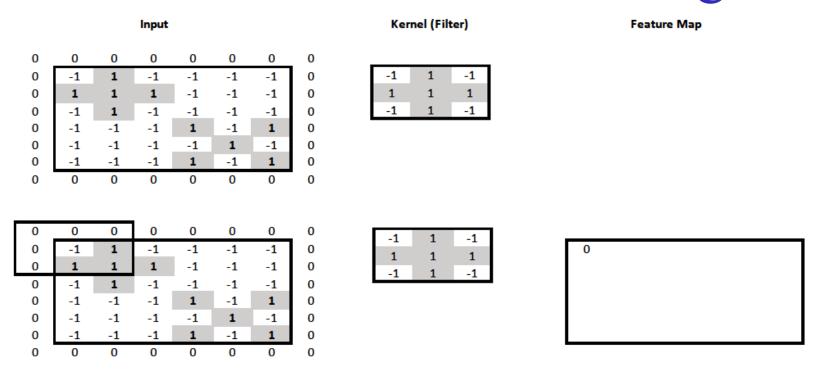


		Inpo	ıt			Kernel (Filter)	Feature Map				
-1 1 -1	1 1 1	-1 1 -1	-1 -1 -1	-1 -1 -1	-1 -1 -1	-1 1 -1 1 1 1 -1 1 -1	9 -1 1				
-1 -1	-1 -1	-1 -1	1 -1	-1 1	1 -1						
-1	-1	-1	1	-1	1	'					

- Let X be the part of the input where we apply the kernel (filter).
- Let W be the kernel.
- The resulting feature of the feature map is: $\sum_{i=1}^{3} \sum_{j=1}^{3} W_{i,j} X_{i,j}$
- In practice, we would also use an **activation function** and **bias** term: $f(\sum_{i=1}^{3} \sum_{j=1}^{3} W_{i,j} X_{i,j} + b)$



- We can think of the resulting **feature map as a new "image"** that indicates the **position(s) of the cross(es)** in the original image.
 - No need to have the crosses at particular parts of the image.
- The new "image" is 4x4 instead of 6x6, because the kernel could not slide outside the boundaries of the original image.



- We can **pad** the surrounding of the image with zeros, to allow the kernel to slide outside the image boundaries.
- We can now obtain a **feature map** with the **same resolution as** the input image (6x6).

			Input					Kernel (Filter)	Feature Map
0 0 0 0 0 0	0 -1 1 -1 -1 -1 -1	0 1 1 1 -1 -1 -1	0 -1 1 -1 -1 -1 -1	0 -1 -1 -1 1 -1 1 0	0 -1 -1 -1 -1 1 -1	0 -1 -1 -1 1 -1 1	0 0 0 0 0 0	-1 1 -1 1 1 1 -1 1 -1	
0 0 0 0 0 0	0 -1 1 -1 -1 -1 -1	0 1 1 -1 -1 -1	0 -1 1 -1 -1 -1 -1	0 -1 -1 -1 1 -1 0	0 -1 -1 -1 -1 1 -1	0 -1 -1 -1 1 -1 0	0 0 0 0 0 0	-1 1 -1 1 1 1 -1 1 -1	0
0 0 0 0 0 0	0 -1 1 -1 -1 -1 -1	0 1 1 -1 -1 -1	0 -1 1 -1 -1 -1 -1	0 -1 -1 -1 1 -1 0	0 -1 -1 -1 -1 1 -1	0 -1 -1 -1 1 -1 1	0 0 0 0 0 0	-1 1 -1 1 1 1 -1 1 -1	0 -2

		1	Input					Kernel (Filter)			Featu	re Map			
								, ,							
			-		I .										
0	0	0	0	0	0	0	0	-1 1 -1	0	2	^				
0	-1 1	1	-1 1	-1 -1	-1 -1	-1 -1	0	1 1 1 -1	0	-2	0				
		1	-1	-1	-1 -1		0	-1 1 -1							
0	-1 -1	1 -1	-1 -1	1	-1 -1	-1 1	0								
0	-1 -1	-1 -1	-1 -1	-1	1	-1	0								
0	-1	-1	-1	1	-1	1	0								
0	0	0	0	0	0	0	0								
U	U	U	U	U	U	U	U								
0	0	0	0	0	0	0	0	-1 1 -1							
0	-1	1	-1	-1	-1	-1	0	1 1 1	0	-2	0	-4	-2	-2	
0	1	1	1	-1	-1	-1	0	-1 1 -1	-2						
0	-1	1	-1	-1	-1	-1	0								
0	-1	-1	-1	1	-1	1	0								
0	-1	-1	-1	-1	1	-1	0								
0	-1	-1	-1	1	-1	1	0								
0	0	0	0	0	0	0	0								
0	0	0	0	0	0	0	0	-1 1 -1							
0	-1	1	-1	-1	-1	-1	0	1 1 1	0	-2	0	-4	-2	-2	
0	1	1	1	-1	-1	-1	0	-1 1 -1	-2	9				l	
0	-1	1	-1	-1	-1	-1	0							l	
0	-1	-1	-1	1	-1	1	0							l	
0	-1	-1	-1	-1	1	-1	0		1						

			Input					Kernel (Filter) Feature Map						
0 0 0 0	0 -1 1 -1 -1	0 1 1 1 -1	0 -1 1 -1 -1	0 -1 -1 -1 -1	0 -1 -1 -1 -1	0 -1 -1 -1 1 -1	0 0 0 0	-1 1 -1 1 1 1 -1 1 -1	0 -2	-2 9	0 -1	-4	-2	-2
0	-1 -1 0	-1 -1 0	-1 -1 0	1 0	-1 0	1 0	0							
U	U	U		U	U	U	U							
0	0	0	0	0	0	0	0	-1 1 -1						
0	-1	1	-1	-1	-1	-1	0	1 1 1	0	-2	0	-4	-2	-2
0	-1	1	-1	-1 -1	-1 -1	-1 -1	0	-1 1 -1	-2 0	9 -1	-1 -1	1 -1	-1 -5	-2 0
0	-1	-1	-1 -1	1	-1	1	0		-4	1	-1	-1	5	-2
0	-1	-1	-1	-1	1	-1	0		-2	-1	-5	5	-7	4
0	-1	-1	-1	1	-1	1	0		-2	-2	0	-2	4	-2
0	0	0	0	0	0	0	0							

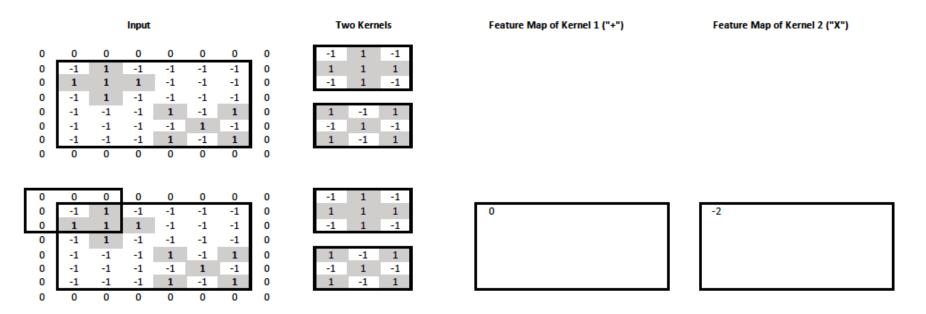
- X: entire input image. F: feature map.
- W: kernel, but with rows and columns numbered -1, 0, 1.
- Feature map values: $F_{i,j} = \sum_{k=-1}^{1} \sum_{l=-1}^{1} W_{k,l} X_{i+k,j+l}$
- In practice: $F_{i,j} = f(\sum_{k=-1}^{1} \sum_{l=-1}^{1} W_{k,l} X_{i+k,j+l} + b)$

Convolution or cross-correlation?

13

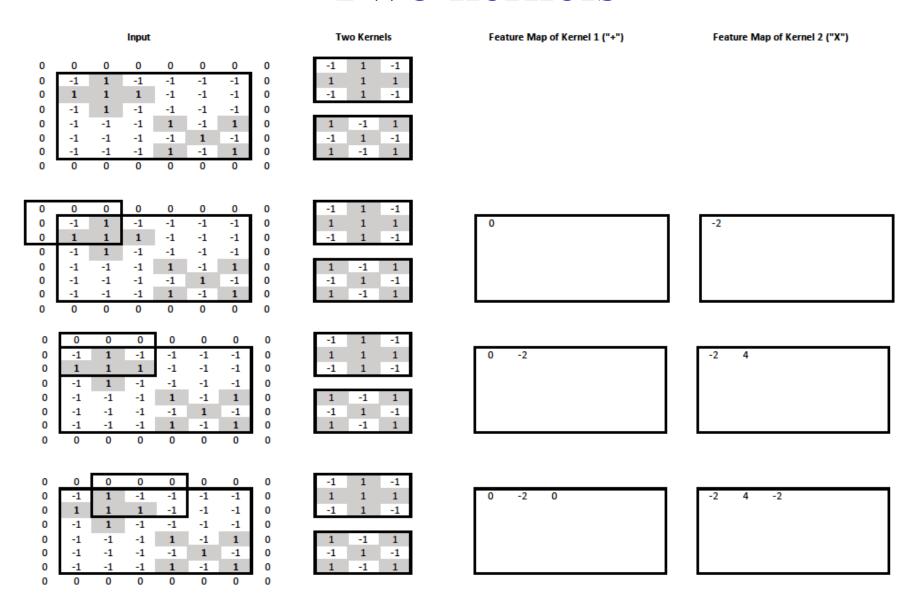
- Cross-correlation: $F_{i,j} = \sum_{k=-\infty}^{+\infty} \sum_{l=-\infty}^{+\infty} W_{k,l} X_{i+k,j+l}$ Optional study
- Convolution: $F_{i,j} = \sum_{k=-\infty}^{+\infty} \sum_{l=-\infty}^{+\infty} W_{k,l} X_{i-k,j-l} = W * X$
- We are actually computing cross-correlations, not convolutions.
 - The cross-correlations we compute are equal to convolutions with the kernel (or the image) flipped both vertically and horizontally.
 - Convolution is like cross-correlation, but flips one of the two signals. We don't flip the kernel inside the *cross-correlation*, which is equivalent to giving the kernel already flipped to the convolution; the convolution will flip the kernel once more, ending up using the kernel without flipping.
 - So we actually compute convolutions with flipped kernels or crosscorrelations with the original kernels.
 - The example kernels were symmetric, so no difference.
 - In CNNs (Convolutional Neural Networks), the kernels are learned, so we don't care if they are flipped in the "convolutions" we compute.
 - So we usually say CNNs "compute convolutions", though we actually use the formulae of cross-correlations.

Two kernels



- We now want to check the input image for crosses and "X"s.
- We use **two kernels**, one for crosses, one for "X"s.

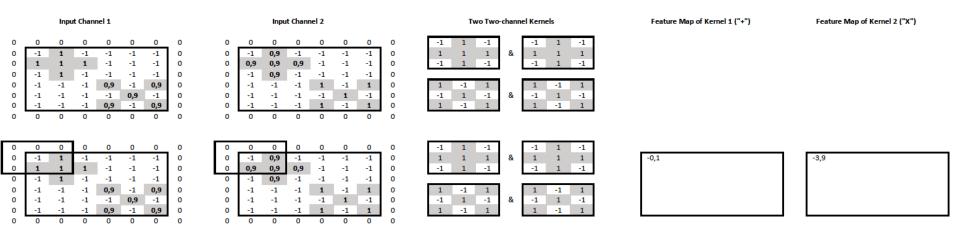
Two kernels



Two kernels We can think of the two feature maps as two "channels" of the new image, one for "+" info, one for "X" info.

		8 /	
Input	Two Kernels	Feature Map of Kernel 1 ("+")	Feature Map of Kernel 2 ("X")
0 0 0 0 0 0 0 0 0 -1 1 -1 -1 -1 -1 -1 0 0 1 1 1 -1 -1 -1 -1 0 0 -1 1 -1 -1 -1 -1 0 0 0 -1 -1 -1 -1 1 -1 0 0 0 0 0 0 0 -1 -1 -1 -1 1 -1 1 0	-1 1 -1 1 1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1	0 -2 0 -4 -2 -2 -2	-2 4 -2 2 0 0 4
0 0 0 0 0 0 0 0 0 -1 1 -1 -1 -1 -1 -1 0 0 1 1 1 -1 -1 -1 -1 0 0 -1 1 -1 -1 -1 -1 0 0 0 -1 -1 -1 -1 1 -1 1 0 0 -1 -1 -1 -1 1 -1 1 0 0 0 0 0 0 0 0 0 0	-1 1 -1 1 1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1	0 -2 0 -4 -2 -2 -2 -2 9	-2 4 -2 2 0 0 4 -7
0 0 0 0 0 0 0 0 0 -1 1 -1 -1 -1 -1 -1 -1 0 0 1 1 1 -1 -1 -1 -1 -1 0 0 -1 1 -1 -1 -1 -1 0 0 0 -1 -1 -1 -1 1 -1 0 0 0 -1 -1 -1 -1 1 -1 1 0 0 0 0 0 0 0 0 0 0	-1 1 -1 1 1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1	0 -2 0 -4 -2 -2 -2 9 -1	-2 4 -2 2 0 0 4 -7 3
0 0 0 0 0 0 0 0 0 0 0 -1 1 -1 -1 -1 -1 -1 0 0 1 1 1 -1 -1 -1 -1 0 0 -1 1 -1 -1 1 0 0 -1 -1 -1 -1 1 0 0 -1 -1 -1 -1 1 0 0 -1 -1 -1 -1 1 0 0 -1 -1 -1 -1 1 0 0 0 0 0 0 0 0 0 0	-1 1 -1 1 1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1	0 -2 0 -4 -2 -2 -2 9 -1 1 -1 -2 0 -1 -1 -1 -5 0 -4 1 -1 -1 5 -2 -2 -1 -5 5 -7 4 -2 -2 0 -2 4 -2	-2 4 -2 2 0 0 4 -7 3 -3 -1 0 -2 3 -1 -1 3 -2 2 -3 -1 3 -7 4 0 -1 3 -7 9 -6 0 0 -2 4 -6 4

Two input channels too

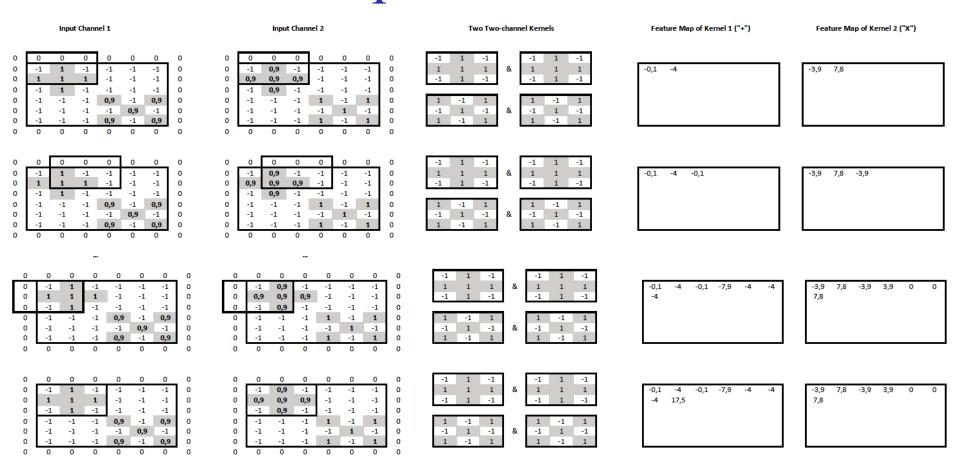


- The **input image** now also has **two channels** (e.g., from grayscale and depth cameras). **Each kernel** now operates on **both input channels**.
 - o It has **two slices**, one per input channel (c = 1, c = 2).
- We have **two kernels**, so the **output** also has **two channels**.
- At the output feature map of kernel $W^{(m)}$, the value at cell (i, j) is:

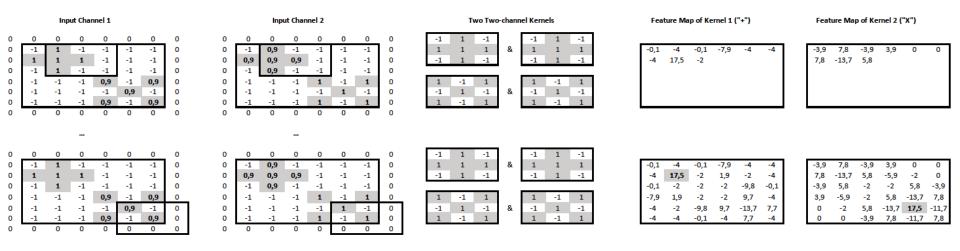
$$F_{i,j,m} = \sum_{k=-1}^{1} \sum_{l=-1}^{1} \sum_{c=1}^{2} W_{k,l,c}^{(m)} X_{i+k,j+l,c}$$

• In practice, we would also have an activation function and bias term.

Two input channels too



Two input channels too



- We now have a mechanism, a "convolutional layer", that maps an input image of any number of channels to a new output "image" of any number of channels (feature maps).
 - The kernels will have as many slices as the input channels.
 - The number of kernels will be equal to the number of output channels.
- We can stack multiple convolutional layers.
 - Each one will operate on the "image" produced by the previous layer.
 - o All kernels will be randomly initialized and learned via backpropagation.

19

Max-pooling

Feature Map of Kernel 1 ("+")

Feature Map of Kernel 2 ("X")

Max-Pooling (2,2) with Stride (2,2)

-0,1	-4	-0,1	-7,9	-4	-4
-4	17,5		1,9	-2	-4
-0,1	-2	-2	-2	-9,8	-0,1
-7,9	1,9	-2	-2	9,7	-4
-4	-2	-9,8	9,7	-13,7	7,7
-4	-4	-0,1	-4	7,7	-4

```
-0,1
               -0,1
       17,5
                              -2
-0.1
                             -9,8
                                     -0,1
                              9,7
                                      -4
              -9,8
                      9,7
                             -13,7
                                      7,7
              -0,1
                              7,7
                                      -4
```

17,5	1,9	

7,	8	5,8	

-0,1	-4	-0,1	-7,9	-4	-4
-4	17,5	-2	1,9	-2	-4
-0,1	-2	-2	-2	-9,8	-0,1
-7,9	1,9	-2	-2	9,7	-4
-4	-2	-9,8	9,7	-13,7	7,7
-4	-4	-0,1	-4	7,7	-4

-3,9	7,8	-3,9	3,9	0	0
7,8	-13,7	5,8	-5,9	-2	0
-3,9	5,8	-2	-2	5,8	-3,9
3,9	-5,9	-2	5,8	-13,7	7,8
0	-2	5,8	-13,7	17,5	-11,7
0	0	-3,9	7,8	-11,7	7,8
				•	

17,5	1,9	-2

7,8	5,8	0

- We keep the max value of each window, separately from each channel.
- The stride determines how much the window shifts vertically & horizontally.

Max-pooling

Feature Map of Kernel 1 ("+")

-0,1 -4 -0,1 -7,9 -4 -4 -4 17,5 -2 1,9 -2 -4 -0,1 -2 -2 -2 -9,8 -0,1 -7,9 1,9 -2 -2 9,7 -4 -4 -2 -9,8 9,7 -13,7 7,7 -4 -4 -0,1 -4 7,7 -4

Feature Map of Kernel 2 ("X")

-3,9	7,8	-3,9	3,9	0	0
7,8	-13,7	5,8	-5,9	-2	0
-3,9	5,8	-2	-2	5,8	-3,9
3,9	-5,9	-2	5,8	-13,7	7,8
0	-2	5,8	-13,7	17,5	-11,7
0	0	-3,9	7,8	-11,7	7,8

Max-Pooling (2,2) with Stride (2,2)

17,5	1,9	-2
1,9		

7,8	5,8	0
5,8		

-0,1	-4	-0,1	-7,9	-4	-4
-4	17,5	-2	1,9	-2	-4
-0,1	-2	-2	-2	-9,8	-0,1
-7,9	1,9	-2	-2	9,7	-4
-4	-2	-9,8	9,7	-13,7	7,7
-4	-4	-0,1	-4	7,7	-4

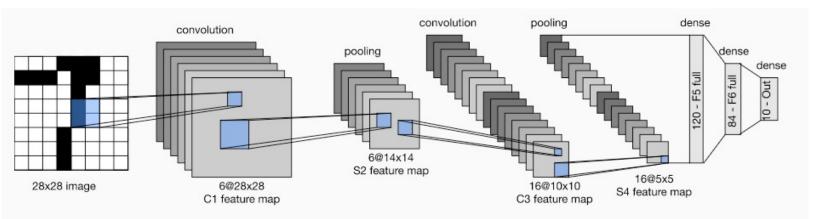
-3,9	7,8	-3,9	3,9	0	0
7,8	-13,7	5,8	-5,9	-2	0
-3,9	5,8	-2	-2	5,8	-3,9
3,9	-5,9	-2	5,8	-13,7	7,8
0	-2	5,8	-13,7	17,5	-11,7
0	0	-3,9	7,8	-11,7	7,8

17,5	1,9	-2
1,9	-2	9,7
-2	9,7	7,7

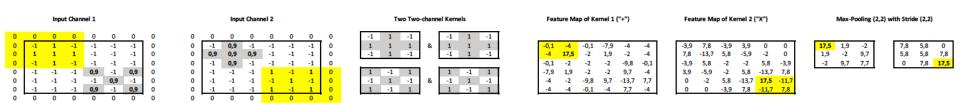
7,8	5,8	0
5,8	5,8	7,8
0	7,8	17,5

• Max-pooling layers are usually placed between stacked convolutional layers.

Stacking convolution, pooling, dense layers

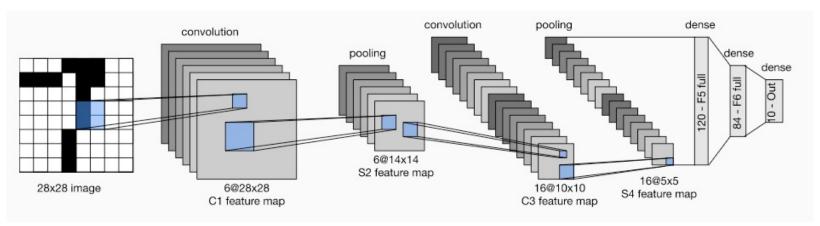


- Max-pooling gradually reduces the resolution at higher layers, allowing us to use more channels (for the same total number of trainable parameters/layer).
- It also helps increase more quickly the receptive field.



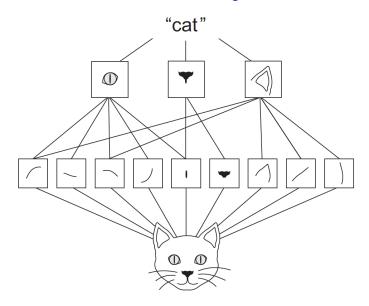
- Each feature of the max-pooled feature maps is derived from (is "looking at") 4 features of the pre-pooled feature maps, and 16 features of the input.
- By stacking convolution and pooling layers, we can get features that are increasingly aware of larger parts of the input (larger "receptive field").

Stacking convolution, pooling, dense layers



- The features of the top feature maps are concatenated to a single vector and passed to a dense (fully connected) layer or an MLP (with hidden layers).
 - o To **recognize the digit** (0-9) in an image, the dense layer (or output layer of the MLP) would have **10 neurons with softmax**, and we would use **cross-entropy** loss.
 - O To output the **coordinates of the eyes** in images (or video frames) of faces, the **dense layer** (or output layer of the MLP) could have **4 neurons** (x1, y1, x2, y2) with no activation function, and we could use the **mean squared error** as loss. (But better, more advanced models can be used...)
 - o The training examples would be digit or face images (or video frames) annotated with the correct responses (digits or coordinates of the eyes).
- In practice we would also include **dropout** layers and **residuals**.

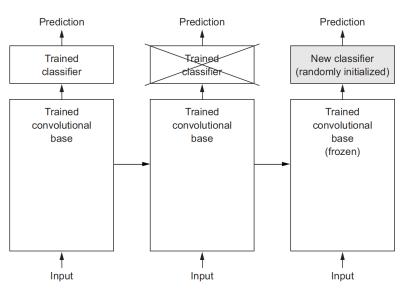
What do the layers learn?



- The kernels of lower layers tend to detect low-level features (e.g., edges of different directions). The kernels of higher layers tend to detect higher-level features (e.g., eyes, ears).
- Pre-trained kernels of lower levels can be useful in many different tasks.

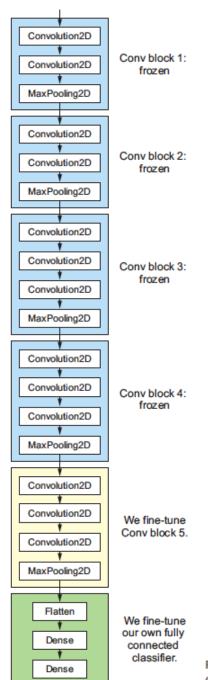
Figure from the recommended book "Deep Learning with Python" by F. Chollet, Manning Publications, 1st edition. Also covers Keras. Optionally consult Chapter 5 (Deep Learning for Computer Vision) for ways to visualize what CNN layers learn. https://www.manning.com/books/deep-learning-with-python-second-edition

Re-using pretrained layers



- In practice, we start with a CNN pre-trained on a very large dataset.
 - o Often **ImageNet**, 1.4 million images, 1,000 classes (e.g., dogs, cats).
- We replace the top layers with a task-specific classification/regression layer.
 - We train the task-specific layer on task-specific data, keeping the pre-trained convolutional layers frozen (no weight updates in the frozen layers).
 - o We may then **gradually unfreeze some of the convolutional layers too** (weight updates in both the task-specific layers and the unfrozen convolutional layers).

Figure from the recommended book "Deep Learning with Python" by F. Chollet, Manning Publications, 1st edition. Also covers Keras. https://www.manning.com/books/deep-learning-with-python-second-edition



Re-using pretrained layers

Figure from the recommended book "Deep Learning with Python" by F. Chollet,
Manning Publications, 1st edition. Also covers
Keras. https://www.manning.com/books/deep-learning-with-python-second-edition

Figure 5.19 Fine-tuning the last convolutional block of the VGG16 network

Data augmentation

Figure 5.11 Generation of cat pictures via random data augmentation

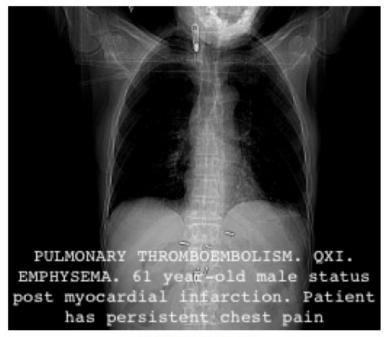
- We can increase the number of task-specific training examples by adding artificial training examples.
 - o For example, we can **rotate**, **squeeze**, **flip** etc. the task-specific **training images**.
 - Big improvements usually.
- How do we do data augmentation for NLP?

Figure from the recommended book "Deep Learning with Python" by F. Chollet, Manning Publications, 1st edition. Also covers data augmentation in Keras.

https://www.manning.com/books/deep-learning-with-python-thm-
https://www.manning.com/books/deep-learning-with-python-second-edition

A blue and yellow train traveling down train tracks.

(a) General



(b) Biomedical

Image captioning

Optional study

Possible applications:

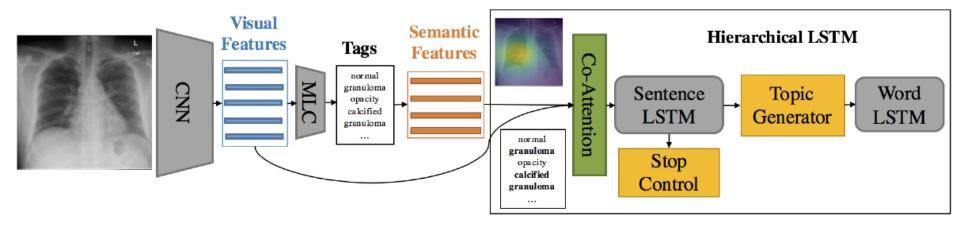
- Image retrieval via captions.
- Eyesight problems.
- Drafting medical reports.

Figure 1: Example of a caption produced by the model of Vinyals et al. (2017) for a non-biomedical image (1a) and an example of a PEIR Radiology image with its associated caption (1b).

From I. Pavlopoulos, V. Kougia, I. Androutsopoulos, "A Survey on Biomedical Image Captioning".

https://www.aclweb.org/anthology/W19-1803/

Hierarchical image to text generation



- The CNN encoder produces "visual features" (one vector per "pixel" of the last max-pooling layer, channels are dimensions).
- An MLP ("MLC") predicts tags given the visual features.
- The word embeddings of the tags are "semantic features".
- A sentence-level LSTM produces sentence embeddings ("topics").
 - A stop control (classifier) decides when to stop producing sentences.
 - At each time-step, attention over visual and semantic features.
- For each sentence embedding, a word-level LSTM produces words.
 - B. Jing, P. Xie, E.P. Xing, "On the Automatic Generation of Medical Imaging Reports", ACL 2018 (http://www.aclweb.org/anthology/P18-1240).

Words
I
like
this
movie
very
much

Embeddings			
Subject	Positive	Stress	Quantity
1	0	0	0
0	1	0	0
0	0	0	0
0	0	0	0
0	0	1	0
0	0	0	1
0	0	1	0

Let's **pretend** that we know what the **dimensions** of the word **embeddings represent**, and that the dimensions are **binary**.

 \mathcal{L}

Filter for "I like", "we admire"			
1	0	0	0
0	1	0	0

Filter for "very much", "so much"				
0	0	1	0	
0	0	0	1	

Words
I
like
this
movie
very
much

Embeddings				
Subject	Positive	Stress	Quantity	
1	0	0	0	
0	1	0	0	
0	0	0	0	
0	0	0	0	
0	0	1	0	
0	0	0	1	
0	0	1	0	

Let's **pretend** that we know what the **dimensions** of the word **embeddings represent**, and that the dimensions are **binary**.

0

Filter for "I like", "we admire"				
1	0	0	0	
0	1	0	0	

Filter for "very much", "so much"				
0	0	1	0	
0	0	0	1	

Words
I
like
this
movie
very
much

	Embeddings			
Subject	Positive	Stress	Quantity	
1	0	0	0	
0	1	0	0	
0	0	0	0	
0	0	0	0	
0	0	1	0	
0	0	0	1	
0	0	1	0	

2)
C)
C)
C)
C)
\mathbf{C})

Filter for "I like", "we admire"				
1	0	0	0	
0	1	0	0	

Filter for "very much", "so much"			
0	0	1	0
0	0	0	1

Words
I
like
this
movie
very
much

Embeddings				
Subject	Positive	Stress	Quantity	
1	0	0	0	
0	1	0	0	
0	0	0	0	
0	0	0	0	
0	0	1	0	
0	0	0	1	
0	0	1	0	

2	0
0	0
0	0
0	0
0	
0	

Filter for "I like", "we admire"			
1	0	0	0
0	1	0	0

Filter for "very much", "so much"			
0	0	1	0
0	0	0	1

Words
I
like
this
movie
very
much
!

Embeddings				
Subject	Positive	Stress	Quantity	
1	0	0	0	
0	1	0	0	
0	0	0	0	
0	0	0	0	
0	0	1	0	
0	0	0	1	
0	0	1	0	

2	0
0	0
0	0
0	0
0	2
0	

Filter for "I like", "we admire"			
1	0	0	0
0	1	0	0

Filter for "very much", "so much"			
0	0	1	0
0	0	0	1

Words
I
like
this
movie
very
much

Embeddings				
Subject	Positive	Stress	Quantity	
1	0	0	0	
0	1	0	0	
0	0	0	0	
0	0	0	0	
0	0	1	0	
0	0	0	1	
0	0	1	0	

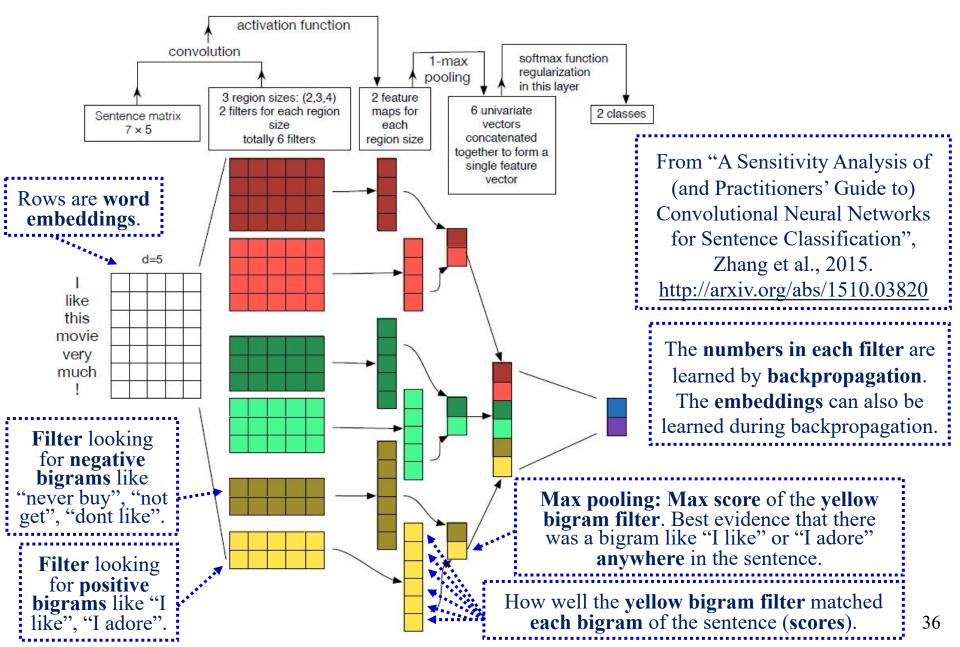
Best scores of the two filters: to what extent they match anywhere in the sentence.

pooling

Filter for "I like", "we admire"				
1	0	0	0	
0	1	0	0	

Filter for "very much", "so much"				
0	0	1	0	
0	0	0	1	

Convolutional Neural Networks



Convolutions on text – closer to reality

Words
I
like
this
movie
very
much

Embeddings				
d_1	d_1 d_2 d_3 d_4			
<i>x</i> _{1,1}	<i>x</i> _{1,2}	<i>x</i> _{1,3}	<i>x</i> _{1,4}	
<i>x</i> _{2,1}	$x_{2,2}$	<i>x</i> _{2,3}	$x_{2,4}$	
<i>x</i> _{3,1}	<i>x</i> _{3,2}	<i>x</i> _{3,3}	<i>x</i> _{3,4}	
<i>x</i> _{4,1}	$x_{4,2}$	<i>x</i> _{4,3}	$x_{4,4}$	
<i>x</i> _{5,1}	$x_{5,2}$	$x_{5,3}$	$x_{5,4}$	
<i>x</i> _{6,1}	<i>x</i> _{6,2}	<i>x</i> _{6,3}	<i>x</i> _{6,4}	
<i>x</i> _{7,1}	<i>x</i> _{7,2}	<i>x</i> _{7,3}	<i>x</i> _{7,4}	

ReLU(
$$wx + b$$
)
 $x^T = \langle x_{1,1}, x_{1,2}, x_{1,3}, ..., x_{2,3}, x_{2,4} \rangle$

A bigram filter				
<i>w</i> _{1,1}	<i>w</i> _{1,2}	<i>w</i> _{1,3}	$W_{1,4}$	
<i>w</i> _{2,1}	$W_{2,2}$	$W_{2,3}$	$w_{2,4}$	

$$w = \langle w_{1,1}, w_{1,2}, w_{1,3}, \dots, w_{2,3}, w_{2,4} \rangle$$

Convolutions on text – closer to reality

Words
I
like
this
movie

very

much

Embeddings				
d_1	d_2	d_3	d_4	
<i>x</i> _{1,1}	<i>x</i> _{1,2}	<i>x</i> _{1,3}	<i>x</i> _{1,4}	
$x_{2,1}$	$x_{2,2}$	<i>x</i> _{2,3}	<i>x</i> _{2,4}	
<i>x</i> _{3,1}	$x_{3,2}$	$x_{3,3}$	$x_{3,4}$	
<i>x</i> _{4,1}	$x_{4,2}$	<i>x</i> _{4,3}	<i>x</i> _{4,4}	
<i>x</i> _{5,1}	$x_{5,2}$	$x_{5,3}$	$x_{5,4}$	
<i>x</i> _{6,1}	<i>x</i> _{6,2}	<i>x</i> _{6,3}	<i>x</i> _{6,4}	
<i>x</i> _{7,1}	$x_{7,2}$	<i>x</i> _{7,3}	<i>x</i> _{7,4}	

ReLU(
$$wx + b$$
)
 $x^T = \langle x_{2,1}, x_{2,2}, x_{2,3}, ..., x_{3,3}, x_{3,4} \rangle$

A bigram filter				
<i>w</i> _{1,1}	$w_{1,2}$	<i>w</i> _{1,3}	<i>w</i> _{1,4}	
<i>w</i> _{2,1}	$W_{2,2}$	$W_{2,3}$	$W_{2,4}$	

$$w = \langle w_{1,1}, w_{1,2}, w_{1,3}, \dots, w_{2,3}, w_{2,4} \rangle$$
b

Now applying three bigram filters

	Embeddings			
Words	d_1	d_2	d_3	d_4
I	<i>x</i> _{1,1}	<i>x</i> _{1,2}	<i>x</i> _{1,3}	<i>x</i> _{1,4}
like	x _{2,1}	$x_{2,2}$	x _{2,3}	$x_{2,4}$
this	$x_{3,1}$	$x_{3,2}$	$x_{3,3}$	$x_{3,4}$
movie	<i>x</i> _{4,1}	$x_{4,2}$	<i>x</i> _{4,3}	$x_{4,4}$
very	<i>x</i> _{5,1}	$x_{5,2}$	$x_{5,3}$	$x_{5,4}$
much	<i>x</i> _{6,1}	<i>x</i> _{6,2}	$x_{6,3}$	<i>x</i> _{6,4}
!	<i>x</i> _{7,1}	<i>x</i> _{7,2}	<i>x</i> _{7,3}	<i>x</i> _{7,4}

$$h_{2} = \text{ReLU}(Wx + b) \in \mathbb{R}^{3 \times 1}$$

$$x^{T} = \langle x_{2,1}, x_{2,2}, ..., x_{3,3}, x_{3,4} \rangle \in \mathbb{R}^{1 \times 8}$$

$$W = \begin{bmatrix} w_{1,1,1} & w_{1,1,2} & w_{1,1,3} & \dots & w_{1,2,3} & w_{1,2,4} \\ w_{2,1,1} & w_{2,1,2} & w_{2,1,3} & \dots & w_{2,2,3} & w_{2,2,4} \\ w_{3,1,1} & w_{3,1,2} & w_{3,1,3} & \dots & w_{3,2,3} & w_{3,2,4} \end{bmatrix} \in \mathbb{R}^{3 \times 8} \qquad b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \in \mathbb{R}^{3 \times 1}$$

Applying 3 bigram filters

	Embeddings			
Words	d_1	d_2	d_3	d_4
Ι	<i>x</i> _{1,1}	<i>x</i> _{1,2}	<i>x</i> _{1,3}	<i>x</i> _{1,4}
like	x _{2,1}	$x_{2,2}$	<i>x</i> _{2,3}	$x_{2,4}$
this	<i>x</i> _{3,1}	$x_{3,2}$	$x_{3,3}$	$x_{3,4}$
movie	<i>x</i> _{4,1}	<i>x</i> _{4,2}	$x_{4,3}$	$x_{4,4}$
very	<i>x</i> _{5,1}	$x_{5,2}$	$x_{5,3}$	$x_{5,4}$
much	<i>x</i> _{6,1}	<i>x</i> _{6,2}	$x_{6,3}$	$x_{6,4}$
!	<i>x</i> _{7,1}	$x_{7,2}$	<i>x</i> _{7,3}	<i>x</i> _{7,4}

$$h_2 = \langle h_{2,1}, h_{2,2}, h_{2,3} \rangle^T \in \mathbb{R}^{3 \times 1}$$

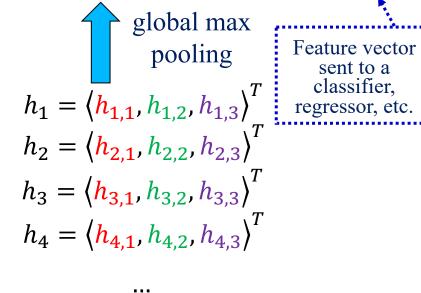
$$W = \begin{bmatrix} w_{1,1,1} & w_{1,1,2} & w_{1,1,3} & \dots & w_{1,2,3} & w_{1,2,4} \\ w_{2,1,1} & w_{2,1,2} & w_{2,1,3} & \dots & w_{2,2,3} & w_{2,2,4} \\ w_{3,1,1} & w_{3,1,2} & w_{3,1,3} & \dots & w_{3,2,3} & w_{3,2,4} \end{bmatrix} \in \mathbb{R}^{3 \times 8} \qquad b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \in \mathbb{R}^{3 \times 1}$$

Applying 3 bigram filters

1 may		· \	T
$h^{max} = 0$	$ig(max(h_{*,1})$, $maxig($	$(h_{st,2})$, max	$(h_{*,3})$

Words
I
like
this
movie
very
much

Embeddings				
d_1	d_2	d_3	d_4	
<i>x</i> _{1,1}	<i>x</i> _{1,2}	<i>x</i> _{1,3}	<i>x</i> _{1,4}	
<i>x</i> _{2,1}	<i>x</i> _{2,2}	<i>x</i> _{2,3}	<i>x</i> _{2,4}	
<i>x</i> _{3,1}	<i>x</i> _{3,2}	$x_{3,3}$	<i>x</i> _{3,4}	
<i>x</i> _{4,1}	<i>x</i> _{4,2}	<i>x</i> _{4,3}	<i>x</i> _{4,4}	
<i>x</i> _{5,1}	$x_{5,2}$	$x_{5,3}$	$x_{5,4}$	
<i>x</i> _{6,1}	<i>x</i> _{6,2}	<i>x</i> _{6,3}	<i>x</i> _{6,4}	
<i>x</i> _{7,1}	<i>x</i> _{7,2}	<i>x</i> _{7,3}	<i>x</i> _{7,4}	



$$h_7 = \langle h_{7,1}, h_{7,2}, h_{7,3} \rangle^T$$

$$W = \begin{bmatrix} w_{1,1,1} & w_{1,1,2} & w_{1,1,3} & \dots & w_{1,2,3} & w_{1,2,4} \\ w_{2,1,1} & w_{2,1,2} & w_{2,1,3} & \dots & w_{2,2,3} & w_{2,2,4} \\ w_{3,1,1} & w_{3,1,2} & w_{3,1,3} & \dots & w_{3,2,3} & w_{3,2,4} \end{bmatrix} \in \mathbb{R}^{3 \times 8} \qquad b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \in \mathbb{R}^{3 \times 1}$$

Stacked CNNs for classification/regression

$$h^{max} = \left\langle \max\left(h_{*,1}^{(4)}\right), \max\left(h_{*,2}^{(4)}\right), \dots, \max(h_{*,m}^{(4)}) \right\rangle_{\bullet, \dots, \bullet}^{T} \in \mathbb{R}^{1 \times m}$$

global max pooling

Feature vector sent to a document classifier or regressor (e.g., MLP).

pad
$$h_1^{(4)}$$
 $h_2^{(4)}$ $h_3^{(4)}$ $h_4^{(4)}$ $h_5^{(4)}$ \cdots $h_{n-1}^{(4)}$ $h_n^{(4)}$ pad pad $h_1^{(3)}$ $h_2^{(3)}$ $h_3^{(3)}$ $h_4^{(3)}$ $h_5^{(3)}$ \cdots $h_{n-1}^{(3)}$ $h_n^{(4)}$ pad pad $h_1^{(2)}$ $h_2^{(2)}$ $h_3^{(2)}$ $h_4^{(2)}$ $h_5^{(2)}$ \cdots $h_{n-1}^{(2)}$ $h_n^{(2)}$ pad pad $h_1^{(1)}$ $h_2^{(1)}$ $h_3^{(1)}$ $h_4^{(1)}$ $h_5^{(1)}$ $h_5^{(1)}$ \cdots $h_{n-1}^{(1)}$ $h_n^{(1)}$ pad pad x_1 x_2 x_3 x_4 x_5 \cdots x_{n-1} x_n pad

$$4^{th}$$
 convolution layer (m filters)

$$3^{\rm rd}$$
 convolution layer (*m* filters)

$$2^{\text{nd}}$$
 convolution layer (m filters)

$$1^{st}$$
 convolution layer (m filters)

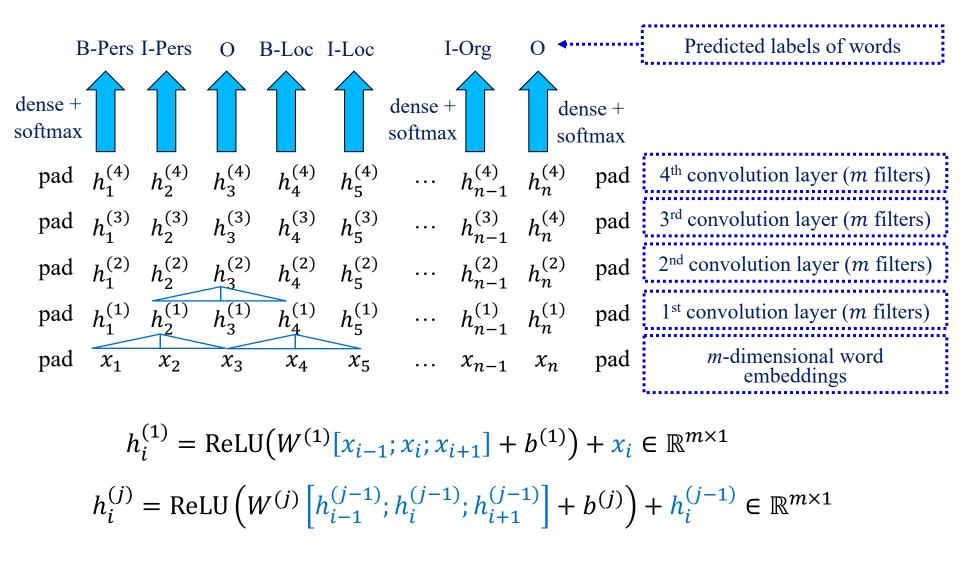
m-dimensional word embeddings

$$h_i^{(1)} = \text{ReLU}\big(W^{(1)}[x_{i-1}; x_i; x_{i+1}] + b^{(1)}\big) + x_i \in \mathbb{R}^{m \times 1}$$

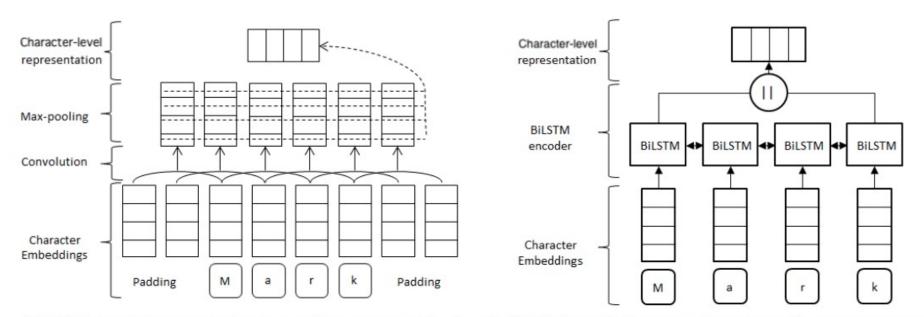
$$h_i^{(j)} = \text{ReLU}\left(W^{(j)}\left[h_{i-1}^{(j-1)}; h_i^{(j-1)}; h_{i+1}^{(j-1)}\right] + b^{(j)}\right) + h_i^{(j-1)} \in \mathbb{R}^{m \times 1}$$

Residual (shortcut) connection, needed when stacking many CNNs (or RNNs).

Stacked CNNs for token classification



CNNs/RNNs that produce word embeddings from character embeddings



(CNN-based character-level word representation) (LSTM-based character-level word representation)

Figure 2: Character-level word representations. This figure is also adapted from Reimers and Gurevych (2017a).

Z. Zhai, D.Q. Nguyen and K. Verspoor, "Comparing CNN and LSTM Character-Level Embeddings in BiLSTM-CRF Models for Chemical and Disease Named Entity Eecognition". 9th Int. Workshop on Health Text Mining and Information Analysis, Brussels, Belgium, 2018. http://aclweb.org/anthology/W18-5605

Recommended reading

- Y. Goldberg, Neural Network Models for Natural Language Processing, Morgan & Claypool Publishers, 2017.
 - o Mostly Chapter 13.
- Jurafsky and Martin's, *Speech and Language Processing* is being revised (3rd edition) to include DL methods.
 - o http://web.stanford.edu/~jurafsky/slp3/ (free draft)
- A. Zhang et al., Dive into Deep Learning.
 - o Freely available at: https://d21.ai/
 - See Chapters 7 and 8 for CNNs.

