Natural Language Processing with
Convolutional Neural Networks

2025-26

Ion Androutsopoulos

http://www.aueb.gr/users/ion/

http://www.aueb.gr/users/ion/

Contents

* Quick background: Convolutional Neural Networks (CNNs) in
Computer Vision.

* Image to text generation with CNN encoders and RNN decoders.
* Text processing with CNN:ss.

Convolutions on 1mages

Averaging each pixel with its neighboring values blurs an image:

From the blog post

“Understanding
Convolutional Neural = :
Networks for NLP” of i
i Denny Britz, 2015.
. http://www.wildml.com/
i 2015/11/understanding-
i convolutional-neural-

networks-for-nlp/

OTOTOTOTO] TR L TEE. i « e B rrrrrcsrrcssrreesrressrree e s
0/1(1|1(0
0/1(1|1(0
0(1|1(1|0
0/0(0|0|0

http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/
http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/
http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/
http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/
http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/
http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/
http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/
http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/
http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/
http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/
http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/
http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/

Convolutions on 1mages

Input Kernel (Filter) Feature Map
-1 1 -1 -1 -1 -1 -1 1 -1
1 1 1 -1 -1 -1 ‘ 1 1 1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 -1 1 -1 1 |
-1 -1 -1 -1 1 -1
-1 -1 -1 1 -1 1 |

* Input: black/white image with pixel values -1 or +1.

* Check if the input contains any crosses and report where.

10NS ON 1Mages

Convolut

Feature Map

Kernel (Filter)

Input

10NS ON 1mages

Convolut

Feature Map

Kernel (Filter)

Input

Convolutions on 1mages

Input Kernel (Filter) Feature Map

[N)
N L
L B N) 1
[SOSEEEN L=N

1 1 1 1
Lo) TSR
SO RS RSN

1 1 1 1
L O =

Let X be the part of the input where we apply the kernel (filter).
Let W be the kernel.

The resulting feature of the feature map is: Zi?’:l 213’21 Wi,j X ij

In practice, we would also use an activation function and bias
term: f(Z‘?:l 2?21 W; ;X;;+b)

Convolutions on 1mages

Input Kernel (Filter) Feature Map
1 1 -1 -1 1 -1 -1 1 -1
1 1 1 -1 1 -1 1 1 1 9 -1 1
1 1 -1 -1 1 -1 -1 1 -1
1 -1 -1 1 1 1
1 -1 -1 -1 1 -1
1 -1 -1 1 1 1
1 1 -1 -1 1 -1 1
1 1 1 -1 1 -1 1 1 1 9 -1 1 -1
1 1 -1 -1 1 -1 1 1 1 -1 -1 1 -5
1 -1 -1 1 1 1 1 -1 1 5
1 -1 -1 -1 1 -1 -1 -5 5 -7
1 -1 -1 1 1 1

* We can think of the resulting feature map as a new “image” that
indicates the position(s) of the cross(es) in the original image.

o No need to have the crosses at particular parts of the image.

* The new “image” 1s 4x4 instead of 6x6, because the kernel could
not slide outside the boundaries of the original image.

Wide convolutions on 1images

Input Kernel (Filter) Feature Map
0 0 0 0 0 0 0 0
0 -1 1 -1 -1 -1 -1 0 1 1
0 1 1 1 -1 -1 -1 0 1 1 1
0 -1 1 -1 -1 -1 -1 0 1 1
0 -1 -1 -1 1 -1 1 0
0 -1 -1 -1 -1 1 -1 0
0 -1 -1 -1 1 -1 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 -1 1 -1 -1 -1 -1 0 1 1 1 0
0 1 1 1 -1 -1 -1 0 1 1 1
0 -1 1 -1 -1 -1 -1 0
0 -1 -1 -1 1 -1 1 0
0 -1 -1 -1 -1 1 -1 0
0 -1 -1 -1 1 -1 1 0
0 0 0 0 0 0 0 0

* We can pad the surrounding of the image with zeros, to allow the
kernel to slide outside the image boundaries.

* We can now obtain a feature map with the same resolution as
the input image (6x6).

10NS On 1mMages

Kernel (Filter)

Wide convolut

Feature Map

Input

10

10NS On 1mMages

Kernel (Filter)

Wide convolut

Feature Map

Input

-4

-4

11

Wide convolutions on 1images

Input Kernel (Filter) Feature Map
0 0 0 0 0 0 0 0 -1 1 -
0 1 1 -1 -1 -1 -1 0 1 1 1 0 -2 0 -4 -2
0 1 1 1 -1 -1 -1 0 -1 1l -1 -2 9 -1
0 1 1 -1 -1 -1 -1 0
0 1 -1 -1 1 -1 1 0
0 1 -1 -1 -1 1 -1 0
0 1 -1 -1 1 -1 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1
0 -1 1 -1 -1 -1 -1 0 1 1 1 0 -2 0 -4 -2 -2
0 1 1 1 -1 -1 -1 0 1 1 1 -2 9 -1 1 -1 -2
0 -1 1 -1 -1 -1 -1 0 0 -1 -1 -1 -5 0
0 -1 -1 -1 1 -1 1 0 -4 1 -1 -1 5 -2
0 -1 -1 -1 -1 1 -1 0 -2 -1 -5 5 -7 4
0 -1 -1 -1 1 -1 1 0 -2 -2 0 -2 4 -2
0 0 0 0 0 0 0 0

X: entire input image. F: feature map.

W: kernel, but with rows and columns numbered —1, 0, 1.

Feature map values: F; ; =)N A Wic1 Xitk,j+i

In practice: Fy; = f(Bho—q Xieoq Wit Xiiojt + b)

Convolution or cross- correlatlon‘?

400 YO HF0 47V D I

* Cross-correlation: f; ; =),p—_, 2 Wi1 Xitk,j+i

* Convolution: F; ; = Y52 322 0 Wi Xi—gjo1 =W+ X

* We are actually computing cross-correlations, not convolutions.

@)

The cross-correlations we compute are equal to convolutions with the
kernel (or the image) flipped both vertically and horizontally.

o Convolution is like cross-correlation, but flips one of the two signals. We don’t flip the
kernel inside the cross-correlation, which is equivalent to giving the kernel already
flipped to the convolution; the convolution will flip the kernel once more, ending up
using the kernel without flipping.

So we actually compute convolutions with flipped kernels or cross-

correlations with the original kernels.
The example kernels were symmetric, so no difference.

In CNNs (Convolutional Neural Networks), the kernels are learned, so
we don’t care if they are flipped in the “convolutions” we compute.

So we usually say CNNs “compute convolutions”, though we actually use
the formulae of cross-correlations. 13

Two kernels

Input Two Kernels Feature Map of Kernel 1 ("+") Feature Map of Kernel 2 ("X")

0 0 0 0 0 0 0 0 1 -1

0 1 1 -1 -1 -1 -1 0 1 1 1

0 1 1 1 -1 -1 -1 0 -1 1 -1

0 1 1 -1 -1 -1 -1 0

0 1 -1 -1 1 -1 1 0 1 -1 1

0 1 -1 -1 -1 1 -1 0 1 1 1

0 1 -1 -1 1 -1 1 0 1 -1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 -1

0 1 1 -1 -1 -1 -1 0 1 1 1 0 2
0 1 1 1 -1 -1 -1 0 1 1 -1

0 1 1 -1 -1 -1 -1 0

0 1 -1 -1 1 -1 1 0 1 -1 1

0 1 -1 -1 -1 1 -1 0 1 1 1

0 1 -1 -1 1 -1 1 0 1 -1 1

0 0 0 0 0 0 0 0

* We now want to check the input image for crosses and “X”’s.

 We use two kernels, one for crosses, one for “X”’s.

14

Two kernels

Feature Map of Kernel 2 ("X")

Feature Map of Kernel 1 ("+")

Two Kernels

Input

-1

-1

-1

-1

-1

-1 -

-1

-1
-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

15

Two kerne

Input
0 0 0 0 0 0 0 0
0 -1 1 -1 -1 -1 -1 0
0 1 1 1 -1 -1 -1 0
0 -1 1 -1 -1 -1 -1 0
0 -1 -1 -1 1 -1 1 0
0 -1 -1 -1 -1 1 -1 0
0 -1 -1 -1 1 -1 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 -1 1 -1 -1 -1 -1 0
0 1 1 1 -1 -1 -1 0
0 -1 1 -1 -1 -1 -1 0
0 -1 -1 -1 1 -1 1 0
0 -1 -1 -1 -1 1 -1 0
0 -1 -1 -1 1 -1 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 -1 1 -1 -1 -1 -1 0
0 1 1 1 -1 -1 -1 0
0 -1 1 -1 -1 -1 -1 0
0 -1 -1 -1 1 -1 1 0
0 -1 -1 -1 -1 1 -1 0
0 -1 -1 -1 1 -1 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 -1 1 -1 -1 -1 -1 0
0 1 1 1 -1 -1 -1 0
0 -1 1 -1 -1 -1 -1 0
0 -1 -1 -1 1 -1 1 0
0 -1 -1 -1 -1 1 -1 0
0 -1 -1 -1 1 -1 1 0
0 0 0 0 0 0 0 0

S

We can think of the two feature maps as two “channels” of
the new image, one for “+” info, one for “X” info.

Two Kernels Feature Map of Kernel 1 ("+") Feature Map of Kernel 2 ("X")

-1 1 -1

1 1 1 0 -2 0 -4 -2 -2 -2 < -2 2 0 0

-1 1 -1 -2 4

1 -1 1

-1 1 -1

1 -1 1

-1 1 -1

1 1 1 0 -2 0 -4 -2 -2 -2 4 -2 2 0 0

-1 1 -1 -2 9 4 -7

1 -1 1

-1 1 -1

1 -1 1

-1 1 -1

1 1 1 0 -2 0 -4 -2 -2 -2 4 -2 2 0 0

-1 1 -1 -2 9 -1 4 -7 3

1 -1 1

-1 1 -1

1 -1 1

-1 1 -1

1 1 1 0 -2 0 -4 -2 -2 -2 4 -2 2 0 0

-1 1 -1 -2 9 -1 1 -1 -2 < -7 3 -3 -1 0
0 -1 -1 -1 -5 0 -2 3 -1 -1 -2

1 -1 1 -4 1 -1 -1 5 -2 2 -3 -1 3 -7 4

-1 1 -1 -2 -1 -5 5 -7 < 0 -1 3 -7 9 -6

1 -1 1 -2 -2 0 -2 < -2 0 0 -2 < -6 <

16

Two mput channels too

Oo0oo0oo0O0 o0 o

oo oo ofjo oo

Input Channel 1 Input Channel 2 Two Two-channel Kernels Feature Map of Kernel 1 ("+") Feature Map of Kernel 2 ("X")
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 1 -
-1 1 -1 -1 -1 -1) 0 1 0,9 1 -1 -1 -1 0 1 1 1 & 1 1 1
1 1 1 -1 -1 1) 0 0,9 0,9 0,9 -1 -1 -1 0 -1 1 -1 -1 1 -1
-1 1 -1 -1 -1 1 0 0 -1 0,9 -1 -1 -1 -1 0
-1 -1 -1 0,9 -1 0,9 0 0 -1 -1 =1 1 -1 1 0 1 -1 1 1 -1 1
-1 -1 -1 -1 0,9 -1 0 0 -1 -1 -1 -1 1 -1 0 1 -1 & -1 1 -
-1 -1 -1 0,9 -1 0,9 0 0 -1 -1 -1 1 -1 1 0 1 -1 1 1 -1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
-1 1 -1 -1 -1 -1 0 0 1 0,9 1 -1 -1 -1 0 1 1 1 & 1 1 1 0,1 3,9
1 1 1 -1 -1 -1) 0 0,9 0,9 0,9 -1 -1 -1 0 1 -1 1
-1 1 -1 -1 -1 -1 0 0 -1 0,9 -1 -1 -1 -1 0
-1 -1 -1 0,9 -1 0,9 0 0 -1 -1 -1 1 -1 1 0 1 1 1 1 1 1
-1 -1 -1 -1 0,9 -1 0 0 -1 -1 -1 -1 1 -1 0 1 -1 & 1
-1 -1 -1 0,9 -1 0,9) 0 -1 -1 -1 1 -1 1 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The input image now also has two channels (e.g., from grayscale and depth
cameras). Each kernel now operates on both input channels.

o It has two slices, one per input channel (c = 1,¢c = 2).
We have two kernels, so the output also has two channels.

At the output feature map of kernel W™, the value at cell (i, j) is:

1 1 2
_ (m)
Fijm = 7 7 7 Wicre Xitk j+ic

k=—11l=-1c=1

In practice, we would also have an activation function and bias term.

Two mput channels too

Feature Map of Kernel 2 ("X")

Feature Map of Kernel 1 ("+")

Input Channel 2 Two Two-channel Kernels

Input Channel 1

A

?
o 0
~ ~
a a
® ®

b §

)

7
T ¥
ha} pa
s @
- o T - oo
- - i - - il | And
. o - P - - T
o o o &
- - - - - T
- - il sl - - il - R
- o T o oo
00 0o oo 000 o000
o e o o e e e
S el TR e
e] I
Bl B AR oA o
=) RO =) RO
A AUR = R UN o
ool " T sole 7T T
BT BRI Ll S R]
=) RO e T T
©Oo0 oo oo o0 o0 oo o
00 0o oo 000 oo o
oo o e i o o i
oo o Oy oo o O
(RN~) (RO~
oo O A o et O O
DRI~ ST~ IR RO~ AR~
| R il v
o el o o el o
! "l e
oo oo oo oo o0 oo o

o o
o o
o o
L) "
o o
Lie) Lie)
. i
0 «,
~ ~
N N
o = o e
< <
i i
< <
i i
o o
~ ~
b h
1' 1'
? ?
n
< 4~
i TN
- -
¥ v
i o e ind . Tnl o e
- oo i o - oo i o
o e - Y- ind A - -
o3]]]
o el o T indl I Anl -
- - il Al - - - il | Al
i o e ind - Tnl o e
o000 o000 ocooo0o0o0o
ofv e = oft 7 7= -
ofv = ot 7 e
of % 7w of = % -
o o
Rl S I B B) Rl Sl R B B |
ofvg " v T ot g 7T T %
09:9:9H111 o2 @ At =
Se o) v coaol
o+ & 7+ v = o|# & v = =
olo o ojo o © ocoooooo
o oo o000 ocooo0oo0o0
ol = - A~ A o =« A~ A
T T e T e T T eT e
o o
ot w w ofl# w e w @
o o o o
A B | - e B | { il
ol 7 7 & Vel olt 7 v ia 7 g
ot e W oft w ™ 7
ofr w e o ofe o el oo
ofv = T oft = st 7
olo o ojo o o coooooo

18

OO0 000000

O0O0 00000

Two mput channels too

Input Channel 1 Input Channel 2 Two Two-channel Kernels Feature Map of Kernel 1 ("+") Feature Map of Kernel 2 ("X")
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 -1 -1 1 -1
-1 1 -1 -1 -1 -1 0 0 -1 0,9 -1 -1 1 -1 0 i 1 1 & 1 1 1 -0,1 -4 -01 -79 -4 -4 -39 78 -39 39 0 0
1 1 1 -1 -1 -1 0 0 0,9 0,9 0,9 -1 1 -1 0 -1 1 -1 -1 1 -1 -4 175 -2 78 -13,7 58
-1 1 -1 -1 -1 -1 0 0 -1 0,9 -1 -1 1 -1 0
-1 -1 -1 0,9 -1 0,9 0 0 -1 -1 -1 1 1 1 0 1 -1 1 1 -1 1
-1 -1 -1 -1 0,9 -1 0 0 -1 -1 -1 -1 1 -1 0 -1 1 -1 & -1 1 -1
-1 -1 -1 0*9 -1 0,9 0 0 -1 -1 -1 1 1 1 0 1 -1 1 1 -1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 -1 -1 1 -1
-1 1 -1 -1 -1 -1 0 0 -1 0,9 -1 -1 -1 -1 0 1 1 1 & 1 1 1 -0,1 -4 -01 -79 -4 -4 -39 78 -39 39 0 0
1 1 1 -1 -1 -1 0 0 0,9 0,9 0,9 -1 -1 -1 0 -1 1 -1 -1 1 -1 -4 17,5 -2 19 -2 -4 78 -13,7 58 59 -2 0
-1 1 4 -1 a1 -1 0 0 1 09 -1 -1 -1 -1 0 01 -2 -2 -2 -98 -01 39 58 -2 -2 58 -39
14 1 -1 09 -1 09| o ol 1 a1 1 1 a1 1 0 1 1 1 1 1 1 79 19 -2 -2 97 -4 39 59 -2 58 -137 78
-1 -1 -1 -1 0,9 -1 0 0 -1 -1 -1 -1 £l -1 0 -1 1 -1 & -1 1 -1 -4 -2 -98 97 -137 77 0 -2 58 -13,7 17,5 -117
-1 -1 -1 0,9 -1 0,9 0 0 -1 -1 -1 1 -1 1 0 il -1 1 1 -1 1 -4 -4 -0,1 -4 7,7 -4 0 0 -39 78 -11,7 78
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

* We now have a mechanism, a “convolutional layer”, that maps an
input image of any number of channels to a new output “image”
of any number of channels (feature maps).

o The kernels will have as many slices as the input channels.

o The number of kernels will be equal to the number of output channels.
* We can stack multiple convolutional layers.

o Each one will operate on the “image” produced by the previous layer.

o All kernels will be randomly initialized and learned via backpropagation.1 ;

Feature Map of Kernel 1 ("+")

Max-pooling

Feature Map of Kernel 2 ("X")

Max-Pooling (2,2) with Stride (2,2)

-0,1 -4 -01 -79 -4 -4 -39 781]-39 39 0 0 17,5

-4 17,5 -2 1,9 -2 -4 7,8 -13,7) 58 -59 -2 0
-0,1 -2 -2 -2 -98 -01 -3,9 5,8 -2 -2 58 -39
-7,9 1,9 -2 -2 9,7 -4 39 -59 -2 58 -13,7 7.8

-4 -2 -98 9,7 -13,7 7,7 0 -2 58 -13,7 17,5 -11,7

-4 -4 -0,1 -4 7,7 -4 0 0 -39 78 -11,7 7,8
-0,1 -4 -01 -79] 4 -4 -39 781 -39 39 0 0 17,5 1,9
-4 17,5 -2 1,9 -2 -4 7,8 -13,7) 58 -59] -2 0
-0,1 -2 -2 -2 -98 -0,1 -3,9 58 -2 -2 58 -39

-7,9 1,9 -2 -2 9,7 -4 39 -59 -2 58 -13,7 7,8

-4 -2 -98 9,7 -13,7 7,7 0 -2 58 -13,7 17,5 -11,7

-4 -4 -0,1 -4 7,7 -4 0 0 -39 78 -11,7 7,8

-0,1 -4 -01 -79] -4 -4 -39 78 -39 39 0 0 175 19 -2
-4 17,5 -2 1,9 -2 -4 78 -13,7 58 -59] -2 0

-0,1 -2 -2 -2 -98 -01 -3,9 5,8 -2 -2 58 -39

-7,9 1,9 -2 -2 9,7 -4 39 -59 -2 58 -13,7 7.8

-4 -2 -98 9,7 -13,7 7,7 0 -2 58 -13,7 17,5 -11,7

-4 -4 -0,1 -4 7,7 -4 0 0 -39 78 -11,7 7,8

7,8
7,8 58
7,8 58

We keep the max value of each window, separately from each channel.

The stride determines how much the window shifts vertically & horizontally.

20

Max-pooling

Feature Map of Kernel 1 ("+") Feature Map of Kernel 2 ("X") Max-Pooling (2,2) with Stride (2,2)
-0,1 -4 -0,1 -79 -4 -4 -39 78 -39 39 0 0 175 19 -2 7,8 58 0
-4 175 -2 1,9 -2 -4 78 -13,7 58 -59 -2 0 1,9 5,8
-0,1 -2 -2 -2 -9,8 -0,1 -39 58 -2 -2 58 -39
-79 19 -2 -2 9,7 -4 39 -59 -2 58 -13,7 7.8

-4 -2 -98 9,7 -13,7 7,7 0 -2 58 -13,7 17,5 -11,7

-4 -4 -0,1 -4 7,7 -4 0 0 -39 78 -11,7 7,8
-0,1 -4 -0,1 -79 -4 -4 -39 78 -39 39 0 0 175 1,9 -2 7,8 58 0
-4 17,5 -2 1,9 -2 -4 78 -13,7 58 -59 -2 0 1,9 -2 9,7 58 58 78
-0,1 -2 -2 -2 -9,8 -0,1 -39 538 -2 -2 58 -39 -2 9,7 7,7 0 7,8 17,5
-7,9 19 -2 -2 9,7 -4 39 -59 -2 58 -13,7 7.8

-4 -2 -98 9,7 -13,7 7,7 0 -2 58 -13,7 17,5 -11,7

-4 -4 -0,1 -4 7,7 -4 0 0 -39 78 -11,7 7,8

* Max-pooling layers are usually placed between stacked convolutional layers.

21

Stacking convolution, pooling, dense layers

cEsk
- convolution pooling dense E: = C Z
convolution = ZE RS
LI>=®
pooling dense Sleas 8
— l\.)hB <)
| dense <[~ ~E
1 =R E SlE.a g
-~ = — o
0 = o S &
i L A==l
| I o |3 55 o
——] . I 3 S |09
- 2@ o8
I " E SR ge
L 50 NE
I L 6@14x14 [5 g :_a
o S2 feature map =< 8 =
16@5x5 gl SP=
28x28 image 6@28x28 16@10x10 S4 feature ma c»—(m =
C1 feature map C3 feature map P g. Qa
A
T 9
. . . . <’
* Max-pooling gradually reduces the resolution at higher layers, allowing us to =

use more channels (for the same total number of trainable parameters/layer).

* It also helps increase more quickly the receptive field.

Input Channel 1 Input Channel 2 Two Two-channel Kernels Feature Map of Kernel 1 ("+") Feature Map of Kernel 2 ("X") Max-Pooling (2,2) with Stride (2,2)
0 0 0 0 0 0 -1 -1
-1 - 1 09 1 & 01 -4 01 -79 -4 -4 -39 78 -39 39 0 o 175 19 -2 78 58 0
1 1 09 03 09 -4 175 -2 19 -2 -4 78 -137 58 59 -2) 19 -2 9,7 58 58 78

01 -2 -2 2 98 -01 -39 58 -2 -2 58 -39 -2 9,7 77 0 78 115

79 19 -2 -2 97 -4 39 59 -2 58 -137 78
-4 -2 98 97 -137 77 0 -2 58 -137 175 -117
-4 4 01 -4 77 -4 0 0 -39 78 -117 78

el |me -
[SRRN I KRS
KRN I (e
(KNI I KRR

-1
1 1
-1 -1
1 1
-1 -1 &
1 1

cooocoo0oo0oo0 O
] N i]
ocooooo0oo0oo0 O

coooo0ooo0o0

ocoo0oo0oo0oo0oo0oo0 oo
Cl R E
ols» L 4 L Ale
o= L = L Lile

ofs & s .
olh & A A g
ofu b ou ok

ol & &

* Each feature of the max-pooled feature maps is derived from (is “looking
at”) 4 features of the pre-pooled feature maps, and 16 features of the input.

* By stacking convolution and pooling layers, we can get features that are
increasingly aware of larger parts of the input (larger “receptive field”).

https://d2l.ai/chapter_convolutional-neural-networks/lenet.html
https://d2l.ai/chapter_convolutional-neural-networks/lenet.html
https://d2l.ai/chapter_convolutional-neural-networks/lenet.html
https://d2l.ai/chapter_convolutional-neural-networks/lenet.html
https://d2l.ai/chapter_convolutional-neural-networks/lenet.html

Stacking convolution, pooling, dense layers

: convolution pooling dense
convolution

pooling dense

‘[e 12 Sueyy Aq Sutuiva] doao(ojul
241(7 Ul Pajensn[I Se dINIONIYIIL JONO]

o= R
=
E
D |n
Y SS
2[5
- i dense g I~
= % = = '_\‘
e N = 7_‘ ()
O qOE &
I == O. <'r o g 2
== O] I %
| L =Zlg
| | 6@14x14 L = =3 =
= S2 feature map 1685x6 ~ S
28x28 image 6@28x28 16@10x10 sS4 featur: map E
C1 feature map C3 feature map o
3
1

* The features of the top feature maps are concatenated to a single vector and
passed to a dense (fully connected) layer or an MLP (with hidden layers).

o To recognize the digit (0-9) in an image, the dense layer (or output layer of the
MLP) would have 10 neurons with softmax, and we would use cross-entropy loss.

o To output the coordinates of the eyes in images (or video frames) of faces, the
dense layer (or output layer of the MLP) could have 4 neurons (x1, yl, x2, y2) with
no activation function, and we could use the mean squared error as loss. (But
better, more advanced models can be used...)

o The training examples would be digit or face images (or video frames) annotated
with the correct responses (digits or coordinates of the eyes).

* In practice we would also include dropout layers and residuals.

https://d2l.ai/chapter_convolutional-neural-networks/lenet.html
https://d2l.ai/chapter_convolutional-neural-networks/lenet.html
https://d2l.ai/chapter_convolutional-neural-networks/lenet.html
https://d2l.ai/chapter_convolutional-neural-networks/lenet.html
https://d2l.ai/chapter_convolutional-neural-networks/lenet.html

What do the layers learn?

cat
|
@ v@
A~ =)
(M
© O
X

The kernels of lower layers tend to detect low-level features (e.g., edges of
different directions). The kernels of higher layers tend to detect higher-level
features (e.g., eyes, ears).

Pre-trained kernels of lower levels can be useful in many different tasks.

P F igure from the recommended book “Deep Learning with Python” by F. Chollet,
Manning Publications, 15 edition. Also covers Keras. Optionally consult Chapter 5
: (Deep Learning for Computer Vision) for ways to visualize what CNN layers learn.
: https://www.manning.com/books/deep-learning-with-python :
https://www.manning.com/books/deep-learning-with-python-second-edition

https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition

Re-using pretrained layers

Prediction Prediction Prediction
Trained in New classifier
classifier assifi (randomly initialized)
Trained Trained Trained
convolutional convolutional convolutional
base base base
(frozen)
Input Input Input

* In practice, we start with a CNN pre-trained on a very large dataset.

o Often ImageNet, 1.4 million images, 1,000 classes (e.g., dogs, cats).

* We replace the top layers with a task-specific classification/regression layer.

o We train the task-specific layer on task-specific data, keeping the pre-trained
convolutional layers frozen (no weight updates in the frozen layers).

o We may then gradually unfreeze some of the convolutional layers too (weight
updates in both the task-specific layers and the unfrozen convolutional layers).

Figure from the recommended book “Deep Learning with Python” by F. Chollet, Manning
: Publications, 1% edition. Also covers Keras. https://www.manning.com/books/deep-learning-
with-python https://www.manning.com/books/deep-learning-with-python-second-edition

25

https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition

Convolution2D

Convolution2D

MaxPooling2D

Convolution2D

Convolution2D

g
g

ling2D

Convolution2D

Convolution2D

Convolution2D

MaxPooling2D

DOT00 D

Convolution2D

Convolution2D

Convolution2D

MaxPooling2D

Convolution2D

Convolution2D

Convolution2D

MaxPooling2D

Ea

Se

IE

Conv block 1:

frozen

Conv block 2:
frozen

Conv block 3:
frozen

Conv block 4:
frazen

We fine-tune

Conv block 5.

We fine-tune
our own fully
connected
classifier.

Re-using pretrained layers

Figure 5.19 Fine-tuning the last
convolutional block of the VGG16 network

N NN NN E NN NN NN NN ENIEIEEEEEEEEENENIEEEEEEEEEEEEEREREREEE u

Figure from the recommended book “Deep
Learning with Python” by F. Chollet,
Manning Publications, 1% edition. Also covers
Keras. https://www.manning.com/books/deep-

learning-with-python
https://www.manning.com/books/deep-
learning-with-python-second-edition

26

https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition

Data augmentation

...... 0 B

Figure 5.11 Generation of cat pictures via random data augmentation

We can increase the number of task-specific training examples by adding
artificial training examples.

o For example, we can rotate, squeeze, flip etc. the task-specific training images.

o Big improvements usually.

How do we do data augmentation for NLP?

Figure from the recommended book “Deep Learning with Python” by F. Chollet,
Manning Publications, 1%t edition. Also covers data augmentation in Keras.
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python-second-edition

https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition

A blue and yellow train
traveling down train tracks.

. ﬁi.le status
poaf my DLardial'j‘ -uction Patient
has perSiSEERERSHESE pain

(b) Biomedical

Image captioning

Possible applications:
* Image retrieval via captions.
* Eyesight problems.

* Drafting medical reports.

Figure 1: Example of a caption produced by the model
of Vinyals et al. (2017) for a non-biomedical image (1a)
and an example of a PEIR Radiology image with its
associated caption (1b).

From I. Pavlopoulos, V. Kougia, I.
Androutsopoulos, “A Survey on Biomedical
Image Captioning”.
https://www.aclweb.org/anthology/W19-1803/

28

https://www.aclweb.org/anthology/W19-1803/
https://www.aclweb.org/anthology/W19-1803/
https://www.aclweb.org/anthology/W19-1803/

Hierarchical image to text generation

Visual

' Semantic Hierarchical LSTM
L eatu res‘ Tags Features
— mormal 1
a I — g:)a:cl? :;n ’ — Topic Word
% e gC:; i’,ﬂ — Generator LSTM
/ k—/

* The CNN encoder produces “visual features” (one vector per “pixel” of
the last max-pooling layer, channels are dimensions).

 An MLP (“MLC”) predicts tags given the visual features.

* The word embeddings of the tags arc “semantic features”.

* A sentence-level LSTM produces sentence embeddings (“topics™).
o A stop control (classifier) decides when to stop producing sentences.
o At each time-step, attention over visual and semantic features.

* For each sentence embedding, a word-level LSTM produces words.

B. Jing, P. Xie, E.P. Xing, “On the Automatic Generation of Medical Imaging Reports”,
ACL 2018 (http://www.aclweb.org/anthology/P18-1240). 29

http://www.aclweb.org/anthology/P18-1240
http://www.aclweb.org/anthology/P18-1240
http://www.aclweb.org/anthology/P18-1240

Words

like
this
movie

very
much

Convolutlons on text

Embeddings
Subject | Positive | Stress | Quantity
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1
0 0 1 0

: | Let’s pretend that we know what :
the dimensions of the word i
embeddings represent, and that

the dimensions are binary.

Filter for “I like”, “we admire”...

Filter for “very much”, “so much”...

1

0

0

0

0

1

0

0

1

0

0

0

0

1

30

Words

like
this
movie

very
much

Convolutlons on text

Embeddings
Subject | Positive | Stress | Quantity
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1
0 0 1 0

: | Let’s pretend that we know what :
the dimensions of the word i
embeddings represent, and that

the dimensions are binary.

Filter for “I like”, “we admire”...

Filter for “very much”, “so much”...

1

0

0

0

0

1

0

0

1

0

0

0

0

1

31

Words

like
this
movie

very
much

Convolutions on text

Embeddings
Subject | Positive | Stress | Quantity
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1
0 0 1 0

oSO O O O

Filter for “I like”, “we admire”...

Filter for “very much”, “so much”...

1

0

0

0

0

0

1

0

0

1

0

0

0

0

0

1

32

Words

like
this
movie

very
much

Convolutions on text

Embeddings
Subject | Positive | Stress | Quantity
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1
0 0 1 0

oSO O O O
o O O O

Filter for “I like”, “we admire”...

Filter for “very much”, “so much”...

1

0

0

0

0

0

1

0

0

1

0

0

0

0

0

1

33

Words

like
this
movie

very
much

Convolutions on text

Embeddings
Subject | Positive | Stress | Quantity
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1
0 0 1 0

oSO O O O
o OO OO

Filter for “I like”, “we admire”...

Filter for “very much”, “so much”...

1

0

0

0

0

0

1

0

0

1

0

0

0

0

0

1

34

Convolutions on text

Embeddings
Words | Subrect | Posic ” o : Best scores of the two filters: :
ords | Subject | Positive ress | Quantity o what extent they match

I 1 0 0 0 » 0 : anywhere in the sentence.

like 0 ” 0 0 | 20 e eereennannnennns
thi 0 0 0 0 Voo ¥
is
0 O ‘ 2 2
movie 0 0 0 0
0 O global
very 0 0 1 0
h 0 0 0 1 V2 mTX
muc 1
0 0 pooling
! 0 0 1 0

Filter for “I like”, “we admire”...

Filter for “very much”, “so much”...

1

0

0

0

0

0

1

0

0

1

0

0

0

0

0

1

35

Convolutional Neural Networks

+ activation function

convolution

\

Sentence matrix
T3¢:5h

Rows are word
: embeddings.

3
«
5
‘e

“ren d=5

ﬂ\

3 region sizes: (2,3,4)
2 filters for each region
size
totally 6 filters

Filter looking
for negative
bigrams like

29 ¢¢

: “never buy”, “not i

i get”, “dont like”.

Filter looking

for positive i .

: bigrams like “I +*
: like™, “I adore”.

1-max softma?(fu_nction
1 _Aooang | | e

ey gy [Eickasees |
roobmelic e N
A From “A Sensitivity Analysis of :
i (and Practitioners’ Guide to)
Convolutional Neural Networks i
for Sentence Classification”, i
Zhang et al., 2015.
http://arxiv.org/abs/1510.03820
feeeeemsaeemssrsmsseessseesssresssresssrenserensss

The numbers in each filter are

\ : learned by backpropagation.

The embeddings can also be
I : learned during backpropagation. :

Max pooling: Max score of the yellow

bigram filter. Best evidence that there

was a bigram like “I like” or “I adore”
anywhere in the sentence.

% How well the yellow bigram filter matched :
<= T each bigram of the sentence (scores). : 36

http://arxiv.org/abs/1510.03820

Convolutions on text — closer to reality

Words

like
this
movie

very

much

Embeddings
dq d, ds dy
X1,1 X1,2 X1,3 X1,4
X2,1 X2 2 X23 X2 4
X31 X3 2 X33 X3 4
X41 X4,2 X4,3 X4,4
X511 Xs5,2 Xs5,3 Xs5,4
X6,1 X6,2 X6,3 X6,4
X71 X7.2 X7.3 X7 4
A bigram filter
W11 Wi2 Wi3 W14
W31 W32 W3 3 W3 4

ReLU(wx + b)

T _
X = (x1,1;x1,2;x1,3; ---»x2,3:x2,4>

W = <W1,1: W12, W13, .., W23, W2,4>

37

Convolutions on text — closer to reality

Words

like
this
movie

very

much

Embeddings
dy d; d3 dy
X1,1 X1,2 X1,3 X1,4
X2,1 X2,2 X2,3 X2,4
X3,1 X3,2 X3,3 X3,4
X4,1 X4,2 X4,3 X4,4
X5,1 X5,2 X5,3 X5,4
X6,1 X6,2 X6,3 X6,4
X7,1 X7,2 X7,3 X7,4
A bigram filter
W11 Wi,2 W1,3 W1,4
W21 W22 W23 W2 4

ReLU(wx + b)

T _
X = (Xz,l;xz,z»xz,s: ---;x3,3;x3,4>

W = <W1,1: W12, W13, .., W23, W2,4>

38

Now applying three bigram filters

Embeddings
WOl‘dS dl dz d3 d4
I X1,1 X1,2 X1,3 X1,4
like X X X X
2,1 2,2 2,3 24 h, = ReLU(Wx + b) e R3*1
this X31 X3 2 X33 X3 4 T 1x8
. ‘ ‘ - - X = (lel, Xle, cen X3’3, X3’4_> e R
movie x4,1 x4,2 x4,3 x4’4
very X5 1 Xs5,2 Xs5,3 X5,4
much X6,1 X6,2 X6,3 X6,4
! X71 X7.2 X7.3 X7.4
Wi11 Wi1i12 W113 -« Wi23 Wi24 b4
_ 3x1
W= |[W211 Wz12 W13 ... W23 Wi4| € R3*8 b=|b,]ER
Wsz11 W312 W313 ... W333 W34 b3

39

Applying 3 bigram filters

Embeddings
WOl‘dS dl dz d3 d4
I X1,1 X1,2 X1,3 X1,4 .
. — 3X1
like X211 X22 X23 X2 4 h, = (hz,l» h2,2»h2,3> €ER
this X31 X3 X33 X3 4
movie x4,1 x4,2 x4,3 x4’4
very Xs5,1 X5 2 X5 3 Xs5,4
mU.Ch x6,1 x6,2 x6,3 x6’4
! X71 X7.2 X7.3 X7.4
Wi11 Wi1i12 W113 -« Wi23 Wi24 b4 ;
_ X1
W= |[W211 Wz12 W13 ... W23 Wi4| € R3*8 b=|b,]ER
Wsz11 W312 W313 ... W333 W34 b3

40

Words

like
this
movie

very

much

W =

Applying 3 bigram filters

pmax — (maX(h*,1) , max(h*lz)) max(h*,3)>T
>,

Embeddings global max F KN :
. : Peature vector :
dl dz d3 d4 pOOIIHg - sent _tO a :
T & classifier,
| xp | oms | x| =gl hyg) freeressor e
X2,1 X2,2 X2,3 X2.4 h, = (hz,l» h2,2» h2,3>
T
x3,1 x3,2 x3,3 x3,4 h3 - <h3,1, h312, h3’3>
T
X X X X _
4,1 4,2 4,3 4,4 h4 = <h4’1, h4’2, h4’3>
Xs5,1 X5 2 X5 3 X5 4
X6,1 X6,2 X6,3 X6,4 .
X71 X7.2 X7.3 X7.4 h7 — <h7 1 h7 21 h7 3)
Wi11 Wi1i12 W113 -« Wi23 Wi24 b4 ;
_ x1
Wy11 Wa12 W13 ... W23 Wioa|l e R3%8 b=|b]€R
Wsz11 W312 W313 ... W333 W34 b3

41

Stacked CNNs for classification/regression

hMmax = <max (h()) max (hgz)) max(h() > e RIxm

'.
G
e,
L]
L]
L]

global max Feature vector sent to a
: : document classifier or regressor :
pooling ; (e.g., MLP). '

pad p® p®D p® & @ @ @ pad | 4" convolution layer (m filters) £

h(4) pad i 3 convolution layer (m filters) :
n cnnnnnnnnnn

pad h§2) hgz) h(Z) hf) hz(SZ) h(Z) hng) pad i 2nd convolution layer (m filters)

pad D KT R D D D, A pad f Dconalution layer (n fler)

pad x; X, X3 X4 Xg oo Xp_q X, pad i m-dimensional word
: embeddings

h(l) ReLU(W(l) Xi_1; Xi Xiv1] + b(l)) + xl e R"™*1

h(]) Rel.U (W(]) [h(f 1), h(] 1), h(] 1)] _I_b(]))_l_h(l 1) e RmMmx1

+1

Stacked CNNs for token classification

B-Pers I-Pers O B-Loc I-Loc [-Org QO <eeeeeeeee Predicted labels of words _
dense + dense + dense +
softmax softmax softmax
@ “ “ W " “ 4th1 t N f 1
pad hY Y hg hy” hg he hy pad convolution layer (m filters)

pad h§3) hES) h§3) hz(Lg) hz(sg) hS—)1 hg}) pad 3rdconvolut10nlayer(mﬁlters)

pad p® @ p@ @ @ @ @ pad § 2 convolution layer (m filters) :

pad D KT R D D D, A pad f Dconalution layer (n fler)

pad x; X, X3 X4 Xg oo Xp_q X, pad i m-dimensional word
: embeddings

h(l) ReLU(W(l) Xi_1; Xi Xiv1] + b(l)) + x; € RM*1

+1

h(]) Rel.U (W(]) [h(f 1), h(] 1), h(] 1)] _I_b(]))_l_h(] 1) e RmMmx1

43

CNNs/RNNs that produce word embeddings
from character embeddings

Character-level J e . Character-level
representation representation -
----- 0
Max-pooling = = k== I — L et | R -E
' BiLSTM —

— 7 7 iy encoder BiLSTM |4» BiLSTM |«4» BiLSTM |4» BiLSTM
Convolution { y \ y

O R it i i e i WS S =

Character <
Embeddings

Character -

B n Embeddings
) K)) >) ~))
Padding | M a r Padding M a 3 k
T e - L. \) % J \ J e

(CNN-based character-level word representation) (LSTM-based character-level word representation)

Figure 2: Character-level word representations. This figure is also adapted from Reimers and Gurevych (2017a).

Z. Zhai, D.Q. Nguyen and K. Verspoor, “Comparing CNN and LSTM Character-
Level Embeddings in BILSTM-CRF Models for Chemical and Disease Named
Entity Eecognition”. 9th Int. Workshop on Health Text Mining and Information

Analysis, Brussels, Belgium, 2018. http://aclweb.org/anthology/W18-5605

44

http://aclweb.org/anthology/W18-5605
http://aclweb.org/anthology/W18-5605
http://aclweb.org/anthology/W18-5605

Recommended reading

* Y. Goldberg, Neural Network Models for Natural Language
Processing, Morgan & Claypool Publishers, 2017. |

o Mostly Chapter 13.

* Jurafsky and Martin’s, Speech and Language Processing 1s
being revised (3™ edition) to include DL methods.

o http://web.stanford.edu/~jurafsky/slp3/ (free draft)

* A.Zhang et al., Dive into Deep Learning.
o Freely available at: https://d21.a1/
o See Chapters 7 and 8 for CNN:gs.

45

http://web.stanford.edu/~jurafsky/slp3/
http://web.stanford.edu/~jurafsky/slp3/
https://d2l.ai/

