
Natural Language Processing with
Transformers

2024–25

Ion Androutsopoulos
http://www.aueb.gr/users/ion/

http://www.aueb.gr/users/ion/

2

Contents
• Transformer encoders and decoders.
• Pre-trained Transformers and Large Language Models (LLMs),

BERT, SMITH, BART, T5, GPT-3, InstructGPT, ChatGPT,
fine-tuning them, prompting them.

• Parameter efficient training, LoRA.
• Retrieval augmented generation (RAG), LLMs with tools.
• Data augmentation for NLP.
• Adding vision to LLMs

3

Reminder: CNNs for token classification

pad ℎ!
(#) ℎ%

(#) ℎ&
(#) ℎ#

(#) ℎ'
(#) … ℎ()!

(#) ℎ(
(#) pad

pad ℎ!
(&) ℎ%

(&) ℎ&
(&) ℎ#

(&) ℎ'
(&) … ℎ()!

(&) ℎ(
(#) pad

pad ℎ!
(%) ℎ%

(%) ℎ&
(%) ℎ#

(%) ℎ'
(%) … ℎ()!

(%) ℎ(
(%) pad

pad ℎ!
(!) ℎ%

(!) ℎ&
(!) ℎ#

(!) ℎ'
(!) … ℎ()!

(!) ℎ(
(!) pad

pad 𝑥! 𝑥% 𝑥& 𝑥# 𝑥' … 𝑥()! 𝑥(pad m-dimensional word
embeddings

1st convolution layer (𝑚 filters)

2nd convolution layer (𝑚 filters)

3rd convolution layer (𝑚 filters)

4th convolution layer (𝑚 filters)

dense +
softmax

Predicted labels of words

ℎ!
(#) = ReLU 𝑊(#) ℎ!%&

(#%&); ℎ!
(#%&); ℎ!'&

(#%&) + 𝑏(#) + ℎ!
#%& ∈ ℝ(×&

ℎ!
(&) = ReLU 𝑊(&) 𝑥!%&; 𝑥!; 𝑥!'& + 𝑏(&) + 𝑥! ∈ ℝ(×&

dense +
softmax

dense +
softmax

B-Pers I-Pers O B-Loc I-Loc I-Org O

4

Transformers for token classification

ℎ!
(#) ℎ%

(#) ℎ&
(#) ℎ#

(#) ℎ'
(#) … ℎ()!

(#) ℎ(
(#)

ℎ!
(&) ℎ%

(&) ℎ&
(&) ℎ#

(&) ℎ'
(&) … ℎ()!

(&) ℎ(
(#)

ℎ!
(%) ℎ%

(%) ℎ&
(%) ℎ#

(%) ℎ'
(%) … ℎ()!

(%) ℎ(
(%)

ℎ!
(!) ℎ%

(!) ℎ&
(!) ℎ#

(!) ℎ'
(!) … ℎ()!

(!) ℎ(
(!)

𝑥! 𝑥% 𝑥& 𝑥# 𝑥' … 𝑥()! 𝑥(Initial m-dimensional word
embeddings

ℎ!
(&) = MLP(&) 0

*+&

,

𝑎!,*
(&)𝑥* ∈ ℝ(

To produce the revised embedding for the
i-th word of a text, we sum all the

original embeddings of the words of the
text, but weighted by attention scores.

𝑎!,# 𝑎!,! 𝑎!,$

Person 0.1
Location 0.8

Organization 0.05
Other 0.05

5

Transformers for token classification

ℎ!
(#) ℎ%

(#) ℎ&
(#) ℎ#

(#) ℎ'
(#) … ℎ()!

(#) ℎ(
(#)

ℎ!
(&) ℎ%

(&) ℎ&
(&) ℎ#

(&) ℎ'
(&) … ℎ()!

(&) ℎ(
(#)

ℎ!
(%) ℎ%

(%) ℎ&
(%) ℎ#

(%) ℎ'
(%) … ℎ()!

(%) ℎ(
(%)

ℎ!
(!) ℎ%

(!) ℎ&
(!) ℎ#

(!) ℎ'
(!) … ℎ()!

(!) ℎ(
(!)

𝑥! 𝑥% 𝑥& 𝑥# 𝑥' … 𝑥()! 𝑥(Initial m-dimensional word
embeddings

ℎ!
(#) = MLP(#) 0

*+&

,

𝑎!,*
(#)ℎ*

(#%&) ∈ ℝ(

ℎ!
(&) = MLP(&) 0

*+&

,

𝑎!,*
(&)𝑥* ∈ ℝ(

dense +
softmax

Predicted labels of words

𝑊 𝑊 𝑊 𝑊 𝑊 𝑊 𝑊

Person 0.75
Location 0.05

Organization 0.1
Other 0.1

Person 0.05
Location 0.05

Organization 0.1
Other 0.8

… …

Compare to the correct
predictions and adjust the

weights of the entire neural
net, including the bottom
word (token) embeddings,

which are randomly
initialized.

To produce the revised embedding for the
i-th word of a text, we sum all the

original embeddings of the words of the
text, but weighted by attention scores.

6

Transformers for text classification

ℎ!
(#) ℎ%

(#) ℎ&
(#) ℎ#

(#) ℎ'
(#) … ℎ()!

(#) ℎ(
(#)

ℎ!
(&) ℎ%

(&) ℎ&
(&) ℎ#

(&) ℎ'
(&) … ℎ()!

(&) ℎ(
(#)

ℎ!
(%) ℎ%

(%) ℎ&
(%) ℎ#

(%) ℎ'
(%) … ℎ()!

(%) ℎ(
(%)

ℎ!
(!) ℎ%

(!) ℎ&
(!) ℎ#

(!) ℎ'
(!) … ℎ()!

(!) ℎ(
(!)

𝑥! 𝑥% 𝑥& 𝑥# 𝑥' … 𝑥()! 𝑥(

ℎ(./ = max ℎ∗,&
1 , max ℎ∗,2

1 , … ,max(ℎ∗,(
(1))

3
∈ ℝ(

global max pooling
(max of each dimension)

Vector representing the entire
text. We pass it through a dense
layer and softmax (or MLP) to
obtain a probability per class.

ℎ!
(#) = MLP(#) 0

*+&

,

𝑎!,*
(#)ℎ*

(#%&) ∈ ℝ(

ℎ!
(&) = MLP(&) 0

*+&

,

𝑎!,*
(&)𝑥* ∈ ℝ(

Initial m-dimensional word
embeddings

Compare to the correct
predictions and adjust the
weights of the entire net.

Without the MLP (or at least a dense
layer), each dimension of ℎ"

($) would
only depend on the corresponding
dimensions of the ℎ&

($'() vectors.

7

Query-Key-Value self-attention
ℎ!
(#) ℎ%

(#) ℎ&
(#) ℎ#

(#) ℎ'
(#) … ℎ()!

(#) ℎ(
(#)

ℎ!
(&) ℎ%

(&) ℎ&
(&) ℎ#

(&) ℎ'
(&) … ℎ()!

(&) ℎ(
(#)

ℎ!
(%) ℎ%

(%) ℎ&
(%) ℎ#

(%) ℎ'
(%) … ℎ()!

(%) ℎ(
(%)

ℎ!
(!) ℎ%

(!) ℎ&
(!) ℎ#

(!) ℎ'
(!) … ℎ()!

(!) ℎ(
(!)

𝑥! 𝑥% 𝑥& 𝑥# 𝑥' … 𝑥()! 𝑥(m-dimensional word
embeddings

1st attention layer

2nd attention layer

3rd attention layer

4th attention layer

ℎ!
(#) = MLP(#) 0

*+&

,

𝑎!,*
(#)𝑣*

(#) =

ℎ!
(&) = MLP(&) 0

*+&

,

𝑎!,*
(&)𝑣*

(&) = 𝑞!
(&) = 𝑊4,(&)𝑥!

𝑘*
(&) = 𝑊5,(&)𝑥*
𝑣*
(&) = 𝑊6,(&)𝑥*

𝑞!
(#) = 𝑊4,(#)ℎ!

(#%&)

𝑘*
(#) = 𝑊5,(#)ℎ*

(#%&)

𝑣*
(#) = 𝑊6,(#)ℎ*

(#%&)

= MLP(&) 0
*+&

,

softmax 𝑞!
& 7𝑘*

(&) 𝑣*
(&) ∈ ℝ(×&

= MLP(#) 0
*+&

,

softmax 𝑞!
7𝑘*

(#) 𝑣*
(#) ∈ ℝ(×&

Figures from J. Alammar’s “The Illustrated Transformer”
(https://jalammar.github.io/illustrated-transformer/). Transformers paper: Vaswani et al.,

“Attention is All You Need”, 2017 (https://arxiv.org/abs/1706.03762).

Stacking Transformer Encoders

8

What we called ℎ!
(!) What we called ℎ%

(!)

https://jalammar.github.io/illustrated-transformer/
https://arxiv.org/abs/1706.03762

Query-Key-Value attention via matrices

9

𝑑* is the dimensionality
of the K and Q vectors.

Figures from J. Alammar’s “The Illustrated Transformer”
(https://jalammar.github.io/illustrated-transformer/). Transformers paper: Vaswani et al.,

“Attention is All You Need”, 2017 (https://arxiv.org/abs/1706.03762).

Dropout also applied to the attention
scores (after the softmax).

https://jalammar.github.io/illustrated-transformer/
https://arxiv.org/abs/1706.03762

Multiple attention heads

10

Figures from J. Alammar’s “The Illustrated Transformer”
(https://jalammar.github.io/illustrated-transformer/). Transformers paper: Vaswani et al.,

“Attention is All You Need”, 2017 (https://arxiv.org/abs/1706.03762).

𝑊! is useful even if the
concatenated 𝑍!, … , 𝑍" already
have the right dimensions, to

allow combinations of features
from different attention heads.

Because of the softmax, each
attention head mostly considers

only one token. So, let’s use
multiple attention heads.

https://jalammar.github.io/illustrated-transformer/
https://arxiv.org/abs/1706.03762

Positional encodings

11

Positional encodings needed to capture the word order/positions.
• Without them, Transformers are unaware of word order.
• Sinusoid functions used to produce them in the original paper.
• But can also be position embeddings learned during training.

o Embedding of position 1, embedding of position 2 etc.

• Relative position embeddings can also be used.
o They consider the distance from the current to the attended position in

the self-attention blocks. (https://paperswithcode.com/method/relative-position-encodings).

Figures from J. Alammar’s “The Illustrated Transformer”
(https://jalammar.github.io/illustrated-transformer/). Transformers paper: Vaswani et al.,

“Attention is All You Need”, 2017 (https://arxiv.org/abs/1706.03762).

https://paperswithcode.com/method/relative-position-encodings
https://jalammar.github.io/illustrated-transformer/
https://arxiv.org/abs/1706.03762

Complete Transformer encoder block

12

“Add”: residual
connections

Layer Normalization (see
Part 3). Here, we subtract
from each cell (𝑋 + 𝑍)+,-

of (X+Z) the mean 𝜇+ of its
row, divide by the std. dev
𝜎+ of the row, and multiply

by a learned column-
specific parameter 𝑔-.

“Feed Forward”: the same
MLP at all word positions

Figures from J. Alammar’s “The Illustrated Transformer”
(https://jalammar.github.io/illustrated-transformer/). Transformers paper: Vaswani et al.,

“Attention is All You Need”, 2017 (https://arxiv.org/abs/1706.03762).

Dropout applied to the output of
the self-attention and feed forward

sublayers (before adding the
residual and normalizing), inside

the feed forward net, and after
adding positional embeddings.

https://jalammar.github.io/illustrated-transformer/
https://arxiv.org/abs/1706.03762

Figures from J. Alammar’s “The Illustrated BERT, ELMo, and co.”
(http://jalammar.github.io/illustrated-bert/). BERT paper: Devlin et al., “BERT: Pre-training

of Deep Bidirectional Transformers for Language Understanding”, 2018
(https://arxiv.org/abs/1810.04805).

BERT – Pretraining to predict masked words

13

BERT uses stacked
Transformer encoders

(instead of RNNs or
CNNs) to turn each
sequence of input
embeddings to a

sequence of context
aware embeddings.

It is pre-trained on a
(huge) corpus to predict
masked input words.

http://jalammar.github.io/illustrated-bert/
https://arxiv.org/abs/1810.04805

BERT – Pretraining to predict the next sentence

14

It is also pre-trained on a (huge) corpus to
predict if a sentence is indeed the next one

or a random sentence.

In this case, we feed the
context-aware

embedding of the
[CLS] token to a binary

classifier (MLP).

Figures from J. Alammar’s “The Illustrated BERT, ELMo, and co.”
(http://jalammar.github.io/illustrated-bert/). BERT paper: Devlin et al., “BERT: Pre-training

of Deep Bidirectional Transformers for Language Understanding”, 2018
(https://arxiv.org/abs/1810.04805).

http://jalammar.github.io/illustrated-bert/
https://arxiv.org/abs/1810.04805

Figure from Devlin et al., “BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding”, 2018 (https://arxiv.org/abs/1810.04805).

BERT – Fine-tuning for sentence classification

15

We feed the context-aware
embedding of the [CLS] token

of each sentence to a task-
specific classifier (e.g., MLP)

that classifies the sentence (e.g.,
Positive, Neutral, Negative etc.)

Starting from the pre-trained
BERT, we jointly train BERT
(further) and the task-specific

classifier on (possibly few) task-
specific training examples (e.g.,

tweets + opinion labels).

https://arxiv.org/abs/1810.04805

BERT – Fine-tuning for token classification

16

We feed the context-aware
embeddings of the sentence’s

words to a classifier (e.g., MLP)
that classifies them as B-Per, I-
Per, B-Org, I-Org, …, Other.

Starting from the pre-trained
BERT, we jointly train BERT
(further) and the task-specific

classifier on (possibly few) task-
specific training examples

(manually labeled sentences).

Figure from Devlin et al., “BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding”, 2018 (https://arxiv.org/abs/1810.04805).

https://arxiv.org/abs/1810.04805

BERT – Fine-tuning for textual entailment

17

We feed the context-aware
embedding of the [CLS] token of

each sentence pair to a task-
specific classifier (e.g., MLP) that
classifies the pair as Entailment,

Contradiction, Neutral. E.g.,
“Mary plays in the garden” entails

“Mary is in the garden” but
contradicts “Mary is asleep”.

Starting from the pre-trained
BERT, we jointly train BERT
(further) and the task-specific

classifier on (possibly few) task-
specific training examples
(annotated sentence pairs).

Figure from Devlin et al., “BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding”, 2018 (https://arxiv.org/abs/1810.04805).

https://arxiv.org/abs/1810.04805

Figure from P. Rajpurkar et al., “SQuAD: 100,000+ Questions for Machine Comprehension
of Text.”, EMNLP 2016 (https://aclweb.org/anthology/D16-1264).

Machine Reading Comprehension (MRC)

18

Paragraph

Question

https://aclweb.org/anthology/D16-1264

BERT – Fine-tuning for MRC

19

We feed the context-aware
embeddings of the paragraph’s

words to a classifier (e.g., MLP)
that classifies them as Start-

Answer, End-Answer, Other.

Starting from the pre-trained
BERT, we jointly train BERT
(further) and the task-specific

classifier on (possibly few) task-
specific training examples
(paragraph-question pairs).

Figure from Devlin et al., “BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding”, 2018 (https://arxiv.org/abs/1810.04805).

https://arxiv.org/abs/1810.04805

SMITH (hierarchical BERT)

20

Figure from Yang et al., “Beyond 512 Tokens: Siamese Multi-depth Transformer-based
Hierarchical Encoder for Long-Form Document Matching”, CIKM 2020

(https://dl.acm.org/doi/10.1145/3340531.3411908).

BERT variants for long documents include, for example, also Longformer
(https://arxiv.org/abs/2004.05150) and Big Bird (https://arxiv.org/abs/2007.14062), which are
not hierarchical, but use sparse attention to avoid quadratic complexity (to the input length).

See also, e.g., FlashAttention (https://arxiv.org/abs/2205.14135).

https://dl.acm.org/doi/10.1145/3340531.3411908
https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2007.14062
https://arxiv.org/abs/2205.14135

21

Reminder: RNN-based MT system
Google’s paper:

https://arxiv.org/abs/1609.08144

Images from Stephen Merity’s
http://smerity.com/articles/2016/

google_nmt_arch.html

Attention over the states
of the encoder.

Stacked Transformer encoders-decoders

22

Stacked encoders.
In BERT we use
only encoders.

Stacked decoders.
Apart from self-

attention, decoders
also use attention
over the vectors
produced by the

encoder.

Figure from J. Alammar’s “The Illustrated Transformer”
(https://jalammar.github.io/illustrated-transformer/). Transformers paper: Vaswani et al.,

“Attention is All You Need”, 2017 (https://arxiv.org/abs/1706.03762).

Attention over the vectors produced by the
encoder. Keys (K) and Values (V) come from
the vectors produced by the encoders. Queries

(Q) come from the vectors of the decoder.

Using an
encoder/decoder

allows us to generate
a translation with a
different number

and order of tokens
than the input
(source) text.

Translation generated so far.

“I am a”

https://jalammar.github.io/illustrated-transformer/
https://arxiv.org/abs/1706.03762

𝑑!
(&) 𝑑%

(&) 𝑑&
(&) 𝑑#

(&) 𝑑'
(&)

𝑑!
(%) 𝑑%

(%) 𝑑&
(%) 𝑑#

(%) 𝑑'
(%)

𝑑!
(!) 𝑑%

(!) 𝑑&
(!) 𝑑#

(!) 𝑑'
(!)

𝑒!
(%) 𝑒%

(%) 𝑒&
(%) 𝑒#

(%)

𝑒!
(!) 𝑒%

(!) 𝑒&
(!) 𝑒#

(!)

23

QKV self-attention and cross-attention

𝑒!
(2) = MLP(8,2) 0

*+&

1

𝑎!,*
(8,2)𝑣*

(8,2) = 𝑞!
(8,2) = 𝑊4,(8,2)𝑒!

(&)

𝑘*
(8,2) = 𝑊5,(8,2)𝑒*

(&)

𝑣*
(8,2) = 𝑊6,(8,2)𝑒*

(&)= MLP(8,2) 0
*+&

1

softmax 𝑞!
8,2 7𝑘*

(8,2) 𝑣*
(8,2) ∈ ℝ(×&

self-attention

stacked encoder layers
stacked decoder layers

embeddings
of input
tokens

𝑑!
(&) 𝑑%

(&) 𝑑&
(&) 𝑑#

(&) 𝑑'
(&)

𝑑!
(%) 𝑑%

(%) 𝑑&
(%) 𝑑#

(%) 𝑑'
(%)

𝑑!
(!) 𝑑%

(!) 𝑑&
(!) 𝑑#

(!) 𝑑'
(!)

𝑒!
(%) 𝑒%

(%) 𝑒&
(%) 𝑒#

(%)

𝑒!
(!) 𝑒%

(!) 𝑒&
(!) 𝑒#

(!)

24

QKV self-attention and cross-attention

𝑑!
(9) = MLP(:,9) 0

*+&

1

𝑎!,*
(:,9)𝑣*

(:,9) =

𝑑!
(2) = MLP(:,2) 0

*+&

!

𝑎!,*
(:,2)𝑣*

(:,2) = 𝑞!
(:,2) = 𝑊4,(:,2)𝑑!

(&)

𝑘*
(:,2) = 𝑊5,(:,2)𝑑*

(&)

𝑣*
(:,2) = 𝑊6,(:,2)𝑑*

(&)

𝑞!
(:,9) = 𝑊4,(:,9)𝑑!

(2)

𝑘*
(:,9) = 𝑊5,(:,9)𝑒*

(2)

𝑣*
(:,9) = 𝑊6,(:,9)𝑒*

(2)

= MLP(:,2) 0
*+&

!

softmax 𝑞!
:,2 7𝑘*

(:,2) 𝑣*
(:,2) ∈ ℝ(×&

= MLP(:,9) 0
*+&

1

softmax 𝑞!
:,9 7𝑘*

(:,9) 𝑣*
(:,9) ∈ ℝ(×&

cross-attention

masked self-
attention

self-attention

stacked encoder layers
stacked decoder layers

embeddings
of input
tokens

embeddings
of previously

generated
tokens

Figure from Vaswani et al., “Attention is All You Need”, 2017.
https://arxiv.org/abs/1706.03762

Transformer-based Encoder-Decoder

25

N stacked encoders.
In BERT we use
only encoders.

N stacked decoders.
Apart from self-

attention, decoders
also use cross-

attention over the
vectors produced by

the encoder.

Cross-attention over the vectors produced by
the encoder. Keys (K) and Values (V) come from

the vectors produced by the encoders. Queries
(Q) come from the vectors of the decoder.

Masked self-
attention: At each
word position, the
decoder sees only
the preceding gold

(at training) or
generated (at test)

words of the
translation.

https://arxiv.org/abs/1706.03762

BART – Using encoders & decoders

26

Top figure from J. Alammar’s “The Illustrated Transformer” (https://jalammar.github.io/illustrated-
transformer/). Bottom figures from M. Lewis et al., “BART: Denoising Sequence-to-Sequence Pre-training

for Natural Language Generation, Translation, and Comprehension”, ACL 2020
(https://www.aclweb.org/anthology/2020.acl-main.703/).

BART uses both
stacked encoder and

stacked decoder
Transformer layers.

During pre-training,
BART is trained to
“translate” noised
text to the original
(without noise) text.

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://www.aclweb.org/anthology/2020.acl-main.703/

BART – Fine-tuning for summarization

27

M. Lewis et al., “BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation,
Translation, and Comprehension”, ACL 2020 (https://www.aclweb.org/anthology/2020.acl-main.703/).

“hallucination” of
journal source

https://www.aclweb.org/anthology/2020.acl-main.703/

T5 – Using encoders & decoders

28

Top figure from J. Alammar’s “The Illustrated Transformer” (https://jalammar.github.io/illustrated-
transformer/). Bottom figure from the T5 paper: C. Raffel et al., “Exploring the Limits of Transfer Learning

with a Unified Text-to-Text Transformer”, JMLR 2020 (https://jmlr.org/papers/v21/20-074.html/).

T5 also uses both
stacked encoder and

stacked decoder
Transformer layers.

In pre-training, T5
is trained to recover

missing/noised
parts of the input,
here masked spans.

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jmlr.org/papers/v21/20-074.html/

T5 – Multi-task fine-tuning

29

Figure from C. Raffel et al., “Exploring the Limits of Transfer Learning with a Unified Text-to-
Text Transformer”, JMLR 2020 (https://jmlr.org/papers/v21/20-074.html/).

A prefix is added to each input to indicate
the task. This allows fine-tuning for

multiple end-tasks.

One of the first works to show that
all NLP tasks can be treated as

text-to-text generation.

https://jmlr.org/papers/v21/20-074.html/

Parameter efficient training with LoRA

https://huggingface.co/models

Hu e tal., “LoRA: Low-Rank Adaptation of Large Language Models” (https://arxiv.org/pdf/2106.09685). Figure from
https://huggingface.co/docs/peft/main/conceptual_guides/lora, based on figure from the original LoRA paper.

• 𝑊 contains the pre-trained weights, more generally 𝑑	×	𝑘.
• 𝑥 is the input to the block, h is the output of the block.
• We add 𝐵𝐴𝑥	to the output of the block.
• 𝐵 is 𝑑	×	𝑟, initialized to all zeros. Hence initially 𝐵𝐴𝑥 is zeros.
• A is 𝑟	×	𝑘, initialized from a Gaussian to near-zero values.
• r ≪ min(𝑑, 𝑘), hence 𝐴, 𝐵	are much smaller than 𝑊.

30

https://arxiv.org/pdf/2106.09685
https://huggingface.co/docs/peft/main/conceptual_guides/lora

Parameter efficient training with LoRA

https://huggingface.co/models

Hu e tal., “LoRA: Low-Rank Adaptation of Large Language Models” (https://arxiv.org/pdf/2106.09685). Figure from
https://huggingface.co/docs/peft/main/conceptual_guides/lora, based on figure from the original LoRA paper.

• During fine-tuning, we only update the (fewer) weights of 𝐴, 𝐵.
• After fine-tuning, we add (merge) 𝐵𝐴 to 𝑊.
• LoRA usually applied to 𝑊-,𝑊.,𝑊/matrices only.
• Allows fine-tuning very large models by training much fewer

weights. No extra cost at inference, because of the merging.
o By contrast, “adapters” add extra (fine-tuned) layers between the

(frozen) layers of the original model, hence extra inference cost.

31

https://arxiv.org/pdf/2106.09685
https://huggingface.co/docs/peft/main/conceptual_guides/lora

Decoder only Transformers

32

Figure from Vaswani et al., “Attention is All You Need”, 2017 (https://arxiv.org/abs/1706.03762),
modified by C.R. Wolfe (https://twitter.com/cwolferesearch/status/1640446111348555776).

• The encoder and the cross-attention
part of the decoder are removed.

• The decoder is given the previous
(sub-)words, predicts the next one.
o Similarly to how BERT predicts

masked tokens, but we always
predict the next token, looking at
(attending) previous tokens only.

o It is trained on huge plain-text
collections from the Web as a
language model.

• This is how, e.g., GPT-2 and GPT-3
were pre-trained.

https://arxiv.org/abs/1706.03762
https://twitter.com/cwolferesearch/status/1640446111348555776

Prompt engineering in BERT

https://huggingface.co/models

Figure from
 T. G

ao, A
. Fisch, D

. C
hen, “M

aking Pre-trained Language M
odels B

etter
Few

-shot Learners”, A
C

L-IJC
N

LP 2021 (https://aclanthology.org/2021.acl-long.295/).

• “Traditional”: pre-train (e.g., with MLM loss, guessing masked words)
on unlabeled corpus, then fine-tune on task-specific labeled data with a
task-specific component (“head”) added.

• Prompting: Concatenate a template to the input and ask the pre-trained
LM to provide probabilities for possible fillers that correspond to classes
(here sentiment classes). No fine-tuning! No labeled task-specific dataset!
o Possibly provide a few demonstrations too in the input.
o Which prompts (templates, fillers) work best? Prompt engineering…

33

https://aclanthology.org/2021.acl-long.295/

Prompt engineering in GPT-3

https://huggingface.co/models

GPT-3 paper:
https://papers.nips.cc/paper/2020/file/1457c0d6bfcb496

7418bfb8ac142f64a-Paper.pdf
GPT-3 examples from:

https://beta.openai.com/examples/default-qa

For more ideas on how to write prompts, see
https://arxiv.org/abs/2406.06608.

34

• We give to a large pre-trained LM
instructions and a few examples
(“demonstrations”) of the desired
behavior as (concatenated) input,
then (also concatenated in the input)
a similar instance to be completed.
o We can also say what kind of agent

(e.g., intelligent, polite) the system is,
how to format the answer etc.

• No fine-tuning involved!
o A single frozen pre-trained model can

serve multiple tasks, with few examples.

https://papers.nips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://papers.nips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://beta.openai.com/examples/default-qa
https://arxiv.org/abs/2406.06608

Supervised fine-tuning on human responses

https://huggingface.co/models

Figure from Ouyang et al. (2022), “Training language models to follow instructions with human feedback”
(https://arxiv.org/abs/2203.02155).

• Just with prompting, without any fine-tuning, large LMs
(LLMs, e.g., GPT-3) often fail to provide useful responses, fail
to follow instructions, may generate toxic responses…
o Q: What is the capital of Greece? A: Why the %%$$ do you care?

• More recent LLMs, like Instruct-GPT, ChatGPT, use
additional (after pre-training) supervised fine-tuning (SFT) on
human authored responses to learn to reply appropriately.
o Having pre-trained the model to predict the next words (auto-

complete), now further train it to respond to requests as humans did.
o Back to pre-train then fine-tune, but without task-specific fine-tuning…

35

https://arxiv.org/abs/2203.02155

Supervised fine-tuning on human responses

https://huggingface.co/models

Figure from Ouyang et al. (2022), “Training language models to follow instructions with human feedback”
(https://arxiv.org/abs/2203.02155). 36

https://arxiv.org/abs/2203.02155

Supervised fine-tuning on human responses

https://huggingface.co/models

Figure from Ouyang et al. (2022), “Training language models to follow instructions with human feedback”
(https://arxiv.org/abs/2203.02155). 37

https://arxiv.org/abs/2203.02155

Reinforcement learning from human feedback

https://huggingface.co/models

Figure from Ouyang et al. (2022), “Training language models to follow instructions with human feedback”
(https://arxiv.org/abs/2203.02155).

• Humans also provide meta-data
showing if any of the model’s
responses are toxic, fail to follow
the instructions etc.

• Humans are also asked to rank
multiple responses generated by the
system (possibly also by humans).

• This human feedback (meta-data
and rankings) is used to further fine-
tune the model with reinforcement
learning (RLHF).

• SFT and RLHF both help generate
more useful responses.

38

Direct Preference Optimization
(DPO) is a popular alternative to

conventional RLHF.

 https://arxiv.org/abs/2305.18290

https://huggingface.co/blog/pref-
tuning

https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2305.18290
https://huggingface.co/blog/pref-tuning
https://huggingface.co/blog/pref-tuning

Chain-of-thought prompting

Figure from Wei et al. (2022), “Chain-of-thought prompting elicits reasoning in large language models”,
NeurIPS 2022 (https://arxiv.org/abs/2201.11903). 39

• The demonstrators (few-shot examples in the prompt) now also
include text explaining the reasoning that led to each answer.
o We prompt the model to generate both the answer and its reasoning.
o Performance often improved and we also get some explanation (?).

https://arxiv.org/abs/2201.11903

Retrieval Augmented Generation (RAG)

Figure from G. Right’s blog post, “What is Retrieval Augmented Generation?”, September 2023
(https://www.linkedin.com/pulse/what-retrieval-augmented-generation-grow-right/). 40

• Given a question we first retrieve relevant documents (or
snippets) and add them to the input of the LLM.
o We can use conventional IR (e.g., TF-IDF, BM25) or dense retrieval

(documents and questions encoded, compared via a similarity function).
o Input (prompt) to the LLM: question, retrieved documents (or

snippets), instructions telling the LLM to base its answer on the retrieved
documents, possibly few-shot examples (demonstrators).

o The LLM may also be used to convert the question to a retrieval query.
o The LLM may be instructed to say which snippet(s) it used to answer.

https://www.linkedin.com/pulse/what-retrieval-augmented-generation-grow-right/

RAG – continued

41

• Knowledge in the parameters of the model:
o May include common sense, encyclopedic, language knowledge/skills,

which may be difficult to obtain from retrieved documents.
o Difficult to update (requires retraining), not reliable (e.g.,

hallucinations), no sources (e.g., references)

• Knowledge in retrieved documents:
o Easily updated (e.g., new news articles), can be restricted to trusted

sources (e.g., scientific articles from respected journals).
o But needs to be understood, filtered (e.g., keep only parts relevant to the

question), combined (e.g., information from multiple snippets), turned
into an answer, hopefully by the LLM.

Figure from G. Right’s blog post, “What is Retrieval Augmented Generation?”, September 2023
(https://www.linkedin.com/pulse/what-retrieval-augmented-generation-grow-right/).

https://www.linkedin.com/pulse/what-retrieval-augmented-generation-grow-right/

Generating code completions

https://huggingface.co/models

Figure from https://github.com/features/copilot. 42

We can also ask models of this kind
to debug, improve, explain code

etc. But the responses may be
wrong, may introduce bugs etc.

https://github.com/features/copilot

LLMs with tools

https://huggingface.co/models

Figure from https://huggingface.co/docs/transformers/transformers_agents. 43

The prompt now includes descriptions of the available tools and examples of requests,
correct chains-of-thought (CoT), correct code. The model responds similarly.

https://huggingface.co/docs/transformers/transformers_agents

LLMs with tools

https://huggingface.co/models

Example from https://huggingface.co/docs/transformers/transformers_agents.
44

https://huggingface.co/docs/transformers/transformers_agents

Data Augmentation for NLP

https://huggingface.co/models

Examples from D. Pappas et al., “Data Augmentation for Biomedical Question Answering”, BioNLP 2022
(https://aclanthology.org/2022.bionlp-1.6/).

• Backtranslation:
o Machine-translate to other language(s) and back.

• Replacing words with near-synonyms:
o Using thesauri (e.g., WordNet). But most words have several

senses, so word-sense disambiguation may be necessary.
o Replacing by words with very similar word embeddings. But,

e.g., antonyms often have similar embeddings.

45

https://aclanthology.org/2022.bionlp-1.6/

Data Augmentation for NLP (cont’ed)

https://huggingface.co/models

Examples from D. Pappas et al., “Data Augmentation for Biomedical Question Answering”, BioNLP 2022
(https://aclanthology.org/2022.bionlp-1.6/).

• Replacing words using a pre-trained language model:
o Mask words and replace them by words BERT (or other model)

considers very likely, given the context.

o May generate texts that look fluent, but have very different
meanings (e.g., their gold labels may be different).

• Train encoder-decoder models to generate examples.
o E.g., generate questions from a text and a selected span-answer:

46

https://aclanthology.org/2022.bionlp-1.6/

Data Augmentation for NLP (cont’ed)

https://huggingface.co/models

Examples from D. Pappas et al., “Data Augmentation for Biomedical Question Answering”, BioNLP 2022
(https://aclanthology.org/2022.bionlp-1.6/).

• Adding context (if it doesn’t change the ground truth):
o E.g., expanding the given snippet in which an answer needs to be found, by

adding surrounding sentences from the document the snippet comes from.

• Summarizing or clipping texts, if the gold labels don’t change.
o E.g., if the overall sentiment of a product review does not change.

47

https://aclanthology.org/2022.bionlp-1.6/

Data Augmentation for NLP (cont’ed)

https://huggingface.co/models

• Asking LLMs to generate examples:
o For example, positive/negative restaurant reviews, given some few-shot

examples (demonstrators).

o Or paraphrases of given examples, preserving the labels, or making a
positive review negative, or…

o Or ask LLMs to generate chain-of-thought (CoT) explanations from given
questions and gold answers to enhance datasets that do not include CoT.

48

Adding vision to LLMs: LLaVA-1.5

Figure from Liu et al. (2024), “Improved Baselines with Visual Instruction Tuning”, CVPR 2024
(https://arxiv.org/abs/2310.03744). 49

• An image encoder (here ViT) produces image embeddings.
o One embedding from the channels of each image patch.

• An MLP projects them to the space of the token embeddings.
• The LLM is fed with both image and token embeddings (user

question), autoregressively generates a textual response.

https://arxiv.org/abs/2310.03744

Adding vision to LLMs: InstructBLIP

Figure from Dai et al. (2023), “InstructBLIP: Towards General-purpose Vision-Language Models with
Instruction Tuning”, NeurIPS 2023 (https://arxiv.org/abs/2305.06500). 50

• An extra decoder block (“Q-Former”) combines the image
embeddings with the token embeddings of the instruction.
o “Queries”: task-specific trainable vectors concatenated with the token

embeddings of the instruction.
o Self-attention on queries+instruction, cross-attention on image

embeddings. Then fully connected projection.

https://arxiv.org/abs/2305.06500

51

Recommended reading
• M. Surdeanu and M.A. Valenzuela-Escarcega, Deep

Learning for Natural Language Processing: A Gentle
Introduction, Cambridge Univ. Press, 2024.
• Chapters 12–15. See https://clulab.org/gentlenlp/text.html
• Also available at AUEB’s library.

• Jurafsky and Martin’s, Speech and Language Processing is
being revised (3rd edition) to include DL methods.
o http://web.stanford.edu/~jurafsky/slp3/

• F. Chollet, Deep Learning in Python, 1st edition, Manning
Publications, 2017.
o 1st edition freely available (but no Transformers):

https://www.manning.com/books/deep-learning-with-python
o 2nd edition (2022) now available, requires payment. Highly

recommended. Includes Transformers (in Chapter 11).

https://clulab.org/gentlenlp/text.html
http://web.stanford.edu/~jurafsky/slp3/
https://www.manning.com/books/deep-learning-with-python

52

Recommended reading – continued
• For a detailed discussion of Transformers and a step-by-step

PyTorch implementation, see “The Annotated Transformer”,
originally by S. Rush, updated by A. Huang et al. (2022).
o http://nlp.seas.harvard.edu/annotated-transformer/

• This video of Andrej Karpathy is an excellent practical
introduction to LLMs:
o https://youtu.be/zjkBMFhNj_g?feature=shared

http://nlp.seas.harvard.edu/annotated-transformer/
https://youtu.be/zjkBMFhNj_g?feature=shared

