Text Classification with
Multi-Layer Perceptrons

2024-25

Ion Androutsopoulos

http://www.aueb.gr/users/ion/

http://www.aueb.gr/users/ion/

These slides are partly based on material from the books:

* Artificial Intelligence — A Modern Approach by S.
Russel and P. Norvig, 2" edition, Prentice Hall, 2003,

 Artificial Intelligence by 1. Vlahavas et al., 3 edition,
University of Macedonia Press, 2006 (in Greek).

* Machine Learning by T. Mitchell, McGraw-Hill, 1997.

Contents

Natural and artificial neural networks (NNs).

Perceptrons, training them with SGD, limitations.
Multi-Layer Perceptrons (MLPs) and backpropagation.

MLPs for text classification, regression, window-based token
classiffication (e.g., for POS tagging, NER).

Dropout, batch and layer normalization.
Pre-training word embeddings with Word2Vec.

Advice for training large neural networks.

Natural neural networks

AXonal arborization
O \

\ Axon from another cell

Synapse

Dendrite

Nucleus () /

Synapses

Cell body or Soma
e Neuron: cell of the brain.

— Cell body or soma: the main part, includes the nucleus.
— Dendrites receive signals from other neurons.

— Axon: transmits a single output to other neurons. Often much
longer than the diameter of the soma.

— Synapses: axon-dendrite interfaces, whose conductivities vary.
* Neural network: network of many neurons.

0Oq S .3IAION 29 [9SSY JO SAPI[S Y} WOy dFew]

Artificial neural networks

e Artificial neuron:

— Input: real variables.
— Input weights: real variables (roughly synapses).

— Soma: computes the weighted sum of the inputs, then
applies an activation function to the sum.

y

output

S = Z W;X; D(S)

\

Soma

‘[& 39 SBABUB[A JO J0OOq oY) WolJ d3ewl [eUISLIO

Activation functions

®(S5) @(S) (S
A A A)
251
+1 +1 +1 A
S
S S a2 S
~— > ~— > >
0 threshold T _1 threshold T 0
a, > a,
step function sigmoid
sign function (logistic function)
1
D(S)=——3
+H T e v l+e

' The hyperbolic tangent (tanh) 1s very
tanh . similar to the sigmoid, but with values :

i from —1 to +1. Usually better, unless
: we really want values in (O 1). :

(4
*
.
*
*
*
*
*
*
.0
0

(U TPq[/STOdURI} /510 1IN} //-SANY) 31010 " Aq ‘Sutuiva]

daa(7 Jo yoog 2111177 21] WOI} 9FewWI WONOY ‘[€ 19 SEARYER[A JO J00q ay} woly sadewr doj,

https://fleuret.org/francois/lbdl.html

Activation functions — continued

rectifier
T

Rectified Linear Unit (ReLU)

i) f if <,
relu(z) =
r otherwise

g = 1

x otherwise

leakyrelu(x) = {

“(TCO Tpq[/ST00UR1} /310 1Ma[)//-sdNY)

1RINd[] A Aq ‘Sutuiwa] doa(] Jo yooq 213317 2y] WOy suonenbd pue

oewr WS “79()LS/SUONSIND,/ 00 8 UBIXIOBIS 90USIOSEIep,//-d1Y WOJ 93wl 1Jo]

http://datascience.stackexchange.com/questions/5706/
https://fleuret.org/francois/lbdl.html

Perceptron

* A single neuron, originally with sign activation function.

— Equivalently, step activation function.

— The Perceptron can be generalized (done later), to use a sigmoid

or other activation function.

— We can use several Perceptrons (e.g., to recognize a letter each).

@(S)
+1
S
-
S~—
-1 threshold T
® .
output

\

Soma

‘[& 39 SeABUB[A JO Y0Oq 9y} wolj sogewl [euISLI()

Frank Rosenblatt

: Slide from the presentation “Multilayer Neural Networks™ of L. Bottou at the Deep
: Learning Summer School 2015 (http://videolectures.net/deeplearning2015 montreal/)

Perceptrons as logical gates

sign, with
T=0.8

true: 1, false: -1

Wl — 05
X1 —o>
sign, with
% _._> T=-03
W, = 05

» We cannot implement
every logical function with
a single Perceptron.

— E.g., we cannot implement
an XOR gate.

‘Te 39 SeARUE[A JO 0OOq
AU} WoJJ sdFewl [BUISLIO

10

Two-level XOR implementation

w,;=0.5 true: 1, false: -1

sign, with
T=0.8

w, =—0.5
? implements: o>
X1 AND (NOT X2) . . '

sign, with
T=-0.3

sign, with
T=0.8

‘Te 39 SeARUE[A JO 0Oq
oY) WwoJJ sdgewl [BUISLI)

»> Every logical function
implements: can be implemented by a
(NOT X) AND x, two-layer network of

Perceptrons (exercise).

Wy = 0.5

11

The Perceptron 1s a linear
X2

A

- N

v

-1 1
— _1 —
AND

Like logistic regression, a single Perceptron can learn only linear separators

separator

4

X2

‘)

-1

1

+

v

XOR

(exercise). For non-linear separators, we need Multi-Layer Perceptrons.

An MLP with 1 hidden layer can compute (in principle, also learn) any
mapping between discrete spaces with finite dimensions.

For continuous spaces, very roughly speaking: with 1 hidden layer we can
compute (in principle, also learn) almost any bounded continuous function;
with 2 hidden layers we can compute almost any bounded function.

But we may need a very large, unknown number of neurons in the hidden
layers, we may end up memorizing the training dataset (exercise), and we may
not actually manage to learn (find) the target function.

12

Perceptron’s original learning algorithm

1. Start with random weights w.
2. Seti < 1ands « 0.

3. Let t™® be the correct output for the i-th training
instance and o) the current output for that instance.

4. Set s s+E (W), with: E, (W) =1/2-[t" —0"]

5. Update the weights: @(_ W+ (" —o0"). XZ(D
6. If there is a next training instance, set 7 «<— i +1 and go

to step 3.

7. If s had not converged and max number of scans
(epochs) of training data not exceeded go to step 2.

* In the simplest case, 7 1s a small positive constant.)

Perceptron with sigmoid or other @

* More generally, when using a Perceptron with activation
function @ instead of step/sign:

* For sigmoid CI)(S)=1 D'(S) = CI)(S) (1-D(S)).

—S’
e

e And since o) = (Z WX (’)j , the weights update rule
becomes:

(1) (i) (1) (i) (1)
w, <—w,+n{o -(I—D-(t —0")-x’

14

Derivation of the update rule

Squared error loss on the current training instance:

1 .

) — (i) __ (l) (l) (z)
Random initial weights. Loss on ... S .
current training instance is E;(wW). i The gradient VE iw)isa |
- Which direction to modify w? : vector showing the direction we :
! SRy . need to modify w to obtain the
// \ steepest increase of E;(W).
/ / / // \\\ At each iteration, take a step to
| / \ } “ . the direction —VE;(W):
((\ » W w-n-VE(W)
\\ A\ ms(t’;nefec Wreag;l?eg . / i Simplest case: n 1s a small.
W\ dlfgeﬁ;léél?ef ; positive constant. Stochastic :
u Co. 5
E.(w . gradient descent to minimize
N wo i the total squared error loss. :

Image source:
— http://en.wikipedia.org/wiki/Gradient descent —> 15

Derivation of the update rule

1 . .
E,(9) =~ (@ = 0) == (1 [Zw, “)j

VE () = <8El.(ﬂ/) /OE(W), OF, (w)>

Py .\2\ Qy_\{l’ '9 .9 5Wn
'a) 0 (ZWI (l)j ot" - (Z WX (l)) () _ <z))q)(z W (z)) ()

'8w,,'

Hence: VE, () = (1" - “>> @'(3w) (3o
_ _(t(i) (l)) 0 (VV f(l)) ()
Weights update rule:
1/_{/ <— ﬂ;_n VEZ(W) — 17‘}_|_ 7 - (t(i) _O(i)) . D v(ﬂ’}.)—é(i)) -)_(,:(i)

o) DY . 2Dy)
For each weight: w, <—w, +7-(£" —0")- D'(w-x"") X

16

[] g 9.
Multi-layer Perceptron (MLP) :¢

=2

{7 B — .
i Vector of a text. 7 hidden layer 2 Ui
r‘: W14 w2 8
G 25
AR =

Z : ek

: : Probabilities
i Xz O< : ofclasses. i
' W16
: W26
W3e
v
X3 y

™ W27

f W37

input layer (often only minor output layer
computation, e.g., scaling) T

3/9i

Y

17

‘Te 39 searye[A JO J0Oq
oY) woJy d3ew [euIS1LI()

Backpropagation
P g o

input layer output layer

Backpropagation

 Initialize all the weights to small random values.
o E.g., sample from a zero-centered Gaussian with small o.

o Better imnitializations exist (see DL course).

o Normalize the features too (see “Important tricks™ of Part 2).

e In each epoch, for each training example (or mini-batch):

O

O

Compute the output <o,, 0,, ...> for the training example.
For each weight w;;, compute %, where E the loss on the
training example. We compute derivatives right to left.
Update each weight as: w;j < w;; — 1 - % , 1.e., for all the
weights together: W « W —n - Vi E]

Hence, we use SGD (or variants). No guarantee SGD will

find the best solution, but 1t (often) works 1n practice!

19

Example of computation graph
X 2 f,y,z)=x+y)z=qz

: Example and figure from Stanford’s :
: “CNNis for Visual Recognition” (2016,
i F.-F. Li, A. Karpathy, J. Johnson)

: http://cs23 1n.github.io/optimization-2/

e Forward pass: (x,vy,z) = (—2,5,—4),q =3,f = —12
* Imagine we wish to minimize f using SGD.

o In a more realistic scenario, f would be a loss function, and
(x’ y’ Z) the Weights vector.] fross s :

3
.,
‘e

ox| § or ar or

T * X of Y. X0y s
< (Y| —nvfy.2) =y —n|5-];
z Z oy |

af |

L0 7 20

Backpropagation in the graph

X -2 f(x,y,z)=(x+y)z=qz

: Example and figure from Stanford’s :
: “CNNis for Visual Recognition” (2016,
i F.-F. Li, A. Karpathy, J. Johnson)

: http://cs23 1n.github.io/optimization- 2/

of _
0 57 = 1: by definition.
O Z—g = z. And for this (x, y, z) input, z = —4.

o During the forward pass, we need to save the outputs of all
the nodes (e.g., here we need the value of z).

21

Backpropagation in the graph

X -2 f(x,y,z)=(x+y)z=qz

: Example and figure from Stanford’s :
: “CNNis for Visual Recognition” (2016,
: F.-F. Li, A. Karpathy, J. Johnson)

: http://cs231n.github.io/optimization- 2/

. Backpropagatlon We compute derivatives right to left.

e Y =1 by definition.

af

O Z—g = Z. Arld for this (x, y, z) input, z = —4.

e af —‘q And f@r this (x, y, z) input, g = 3.
O af =994 _ af - 1. Andhere—fls —4.,

dy 0qody dq aq
of _0fodq _ Of of .
o "‘,aq ax‘% 3 - 1. And here — 3 1s —4.

: incoming gradient : ; : local gradient 22

Plug-and-play gates

af 0dfadq Of
0x _“aqax_aq

1

of _0foq _of
dy dqdy 0q

class PlusGate:
forward(x, y):

return x+y
af\.
backward(a).

af of
<_ _>
return 249’ 9q

Jaf odf ow of
dq _,“(’)W(')q ~ ow z

6f_6f0w_6f
0z oOw 0z ow 1

class StarGate:

forward(q, z):

return q * z
af ..
backward(ﬁ).
of ., 91,
return <aW Z, 5> q>

23

More compact notation of NNs

Input instance (e.g., TF-IDF
feature vector of a text) m

24

More compact notation of NNs

'W1,1x1 + Wzlle + -+ Wm’lxm'
Wl,le + Wzlzxz + -+ Wm’zxm
W1,3x1 + W2,3XZ + -+ Wm’gxm

| W1 kX1 ~+ Wy kX2 + -+ Wi kXm.

W11 Wa1 oo Wpir X
Wiz W22 o Wna|] X2
Wiz Wz3 . Wpys|| X3

--

s=Wx i We learn W with
] _ i backpropagation. :
-01 - q5(51) A=A :

P (s2)
D(s3)|=P() =W

L0kd LD (s,)] 25

More compact notation of NNs

— cp(g(l)) = p(WwDg)

26

More compact notation of NNs

O W v
@)\'{{%}\x'
CXTRS

S S
R

D
@%@ XX DT
%‘Wo‘ e eamon.
/ with back propagation.
('EH!!I) /4“’i’b<‘i=§§§g <zlllil» };““'}<‘.-~?\ <z!!ll!’ 102 k.

:(72,1

02,k
w1 = w@ i ~—" |
01,1] (02,1
60 = [| = 0(50) =o(WmR) 5@ = | % | = 9(30) = G(WDFW)
01k _02,k

27

: Input instance (e.g., TF-IDF Correct output (e.g.,
: feature vector of a text) : : personality traits) !
l:.ll.lIII=I= ------- R ——— -----------------------------------::‘;i-'
:'-.' 1 02;1 tl w .:':.-::

o~
w
A

‘ LE NI Tagy -
sieny Ajpeuosiod oAL]

31g/myim /310 erpadiyim ud//:sdny

6

<

~

A

= /5

<

~

N/

I S
N
k)
(5'.
E

oW = tanh(W(l)x) : Squared error loss at l: 1 2 — 1 (0 o t-)z
5@ — w@g@ icurrentiraningexample: © /2,7 2 2J
Jj=1 Jj=1 28

Regression example more compact

: Input instance (e.g., TF-IDF : E O(s) =5 Correctoutput(eg,
feature vector of a text) i (1dent1ty) i personality tralts)

.,
.
G
G
G
&
5
.,
e

X
N ~ . v | Squared errorloss :
6 = tanh(WD2) 6@ =w@5® | “Flie current .
- OF 1 ;. fraining instance. -
- 2 -
op [00?| [o7 -t @)
->(2 e
— | = = =0® —¢
Or as a computation graph: 95 0E 0@ _ ¢,
\“ L kz 2

29

Classification example

Input instance (e.%., TF-IDF : How probable the system believes it is that
feature vector of a 1

text) : the input belongs in each one of k; classes. :

"""""""""
......
*

.
*
.
.
.
.
.
.
.
.
.
* o
. 0
* * .
. *
.
.
.
.
.
.
.
.
R
-

Q
N
>
*,,

o) = tanh(W(l)f)
6 = softmax(W@¢M) 30

S i Output of the last layer, without an
w®@g = 32 = 2,2 | e : activation function. Confidence scores, :
B - : one for each class. We want to convert :

[S21]

S : them to probabilities summing to 1. :
52,1
> , 52,2
softmax(W P ¢W)) = softmax(5()) = softmax
Szykz
[exp(szl) |
;'(il exp(SZ,j) e EEEEEERAA e EEEEERRASEEAEEEEEERRRAEERArEErennRnEaaarrres :
ex (S) i Softmax also moves the largest of its :
P(52,2 inputsdtowards 1 aIlld the other inputs
= | wk- : towards 0. Intuitively a soft argmax!
jzlexp(szj) e yasounar S ...
exp(sz,kz)
ko
;2 exp(s2,).

31

: Input instance (e.%., TF-IDF : Correct output (t; = 1 means the
i feature vector of a text) | : single correct class is the j-th one) :

'q:in:::.-- '...............---:::‘-1‘-'
B * @ @ 02,1 o by o
N \‘#@ ,&# D]
X o NX K7

% LS

(2

O X @ -
w® w®

ko
oD = tanh(W(l)EE) : Cross entropyloss :; — _) ¢
. . : atthe current
6 = SoftmaX(W(z)o(l)) } training instance % j=1 32

Classification example — more compact

: Input instance (e.g., TF-IDF Correct output (correct class
: feature vector of a text) prediction, 1-hot vector)
.......... r =130 T~ 132 o

A I 10 I 10
1) | '
w1 N P ow® L N !
5(1) — tanh(W(l)f) lensnnnannnnnnnnnanns :

Cross-entropy loss

0(2) = softmax(W(z)B(l)) i during training

Or as a computation graph:

33

Extracting contract elements

THIS AGREEMENT is made the 15th day of October 2009 ARTICLE III - PAYMENT - FEES
(The “Effective Date”) BETWEEN:
During the service period monthly payments should occur. The
(1) Sugar 13 Inc., a corporation whose office is at James House, estimated fees for the Initial Term are £154,800.

42-50 Bond Street, London, EW2H TL (“Sugar”);
ARTICLE IV - GOVERNING LAW
(2) E2 UK Limited, a limited company whose registered office is . . .
at 260 Bathurst Road, Yorkshire, SL3 4SA (“Provider”). This agreement shall be governed and construed in accordance with
the Laws of England & Wales. Each party hereby irrevocably
submits to the exclusive jurisdiction of the courts sitting in Northern

RECITALS: BN
A. The Parties wish to enter into a framework agreement which
will enable Sugar, from time to time, to [...] IN WITNESS WHEREOF, the parties have caused their
B.[..] respective duly authorized officers to execute this Agreement.

BY: George Fake
NO THEREFORE IT IS AGREED AS FOLLOWS: Authorized Officer
Sugar 13 Inc.

BY: Olivier Giroux
CEO
“Sugar” shall mean: Sugar 13 Inc. E2 UK LIMITED

ARTICLE I - DEFINITIONS

“Provider” shall mean: E2 UK Limited

1933 Act” shall mean: Securities Act of 1933

Identify start/end dates,
duration, contractors, amount,
legislations refs, jurisdiction
etc. Similar to Named Entity
Recognition (NER).

ARTICLE II - TERMINATION

The Service Period will be for five (5) years from the Effective Date
(The “Initial Term”). The agreement is considered to be terminated
in October 16, 2014.

I. Chalkidis, I. Androutsopoulos, A. Michos, “Extracting Contract Elements”, ICAIL 2017,
http://nlp.cs.aueb.gr/pubs/icail2017.pdf. 34

Wmdow-based NER example

i i-th word of the text bemg clasmﬁed P 3 -word window (often larger)
yesterdayl language announced lthat
<---------------""":::::::::::::::====-----" 1-hot vectors (|V|X1) of the
"1 01 ¢ -01+" { words in the window. (|V] is :
0 0 ol i the vocabulary size). :
F =2 &=t 2y ="
LT ol TP T o] M T 0|00 s, :
: Embeddlnl%s (dx1) of the :
0 0 1 : words in the window. (d
ezt s the dimensionality of
1.8 1 2y w7, #"1 the word embeddings). |
23 _3 38 , ..
. _|-14] 5 193]l - | 12]:i LetE beamatrix(dx|V])that
“-17 1 37| ST 51| Cit1 T |64 i contains all the embeddings of
: the vocabulary as columns. Then: :
-1.1 3.9 7.1 €1 = EX;_,, & = EX,,

Window-based NER example

NN NN NN NN EENEEEEEEEEEEEEEEEEEEEEEEEEER N EEEEEEE NN NN NN NN EEENEEEENEEENEEEEEEEEEEEEEEE
[

1-hot vectors of the i i

: Embeddings of the ii Sum or concatenation ;

i words of the window { :{ words of the window i of the embeddings

g ‘;.{;.. ' ‘:“:' ...

R E . » S e : Correct output (e.g., correct
X1 . S i B-1-O tag, 1-hot vector)
4 52 .

S :

¢ 3 5D Dg 52 2)3(1
Xi+1 €i+1 o\ = tanh(W e) (2 = softmax(W()5))

: We learn WD W@ with backpropagation. We can also learn (or modify)

: the word embeddings E during backpropagation! But when we don’t have

: large training datasets (e.g., corpus manually annotated with B-I-O tags), it
may be better to use pre-trained embeddings, which can be obtained from
large non-annotated corpora (e.g., via Word2Vec, GloVe, to be discussed).

36

Cross-entropy loss

i Word being class1ﬁed 3-word window (often larger).
yesterdayl language announced Ethat

P(C=c)l 10057 . Probability estimates produced :

"1 by the classifier for the class of :
Pn(C=cp)| [0.12]* the word “tech”. :
5 — Pm(C — C3) — O 08 --
" 7ol i The correct “probabilities” for
B (C=c)l 10.14 : the class of “tech”. A 1-hot :
P(C=c))1 10- Vector
P(C — Cz) 1 Of BN RN AR EE
t=|pc=c)|=]0]" i The log-likelihood of the
-3 i correct class according to the :

: classifier (with a minus sign).

P(C — Ck) -O— PesmEEEsEEEEE R R Ry ‘.“......................................:

Hp,, () = =) P(C = c)10gy P(C = i) = — logy Pn(C = ¢;)

=1 37

Dropout

R

SR
SRS
@@ \

Dropout at the input layer. : Dropout at the output of a hidden
; E.g. Parop = 0.2. layer. E.g., parop = 0.5.

021

Dropout

* For each training instance (or mini-batch), we drop
(remove) each neuron of the layer where dropout is applied
with probability pg,.op = 1 — Preep-

o Helps the neural net avoid relying too much on particular
neurons (or inputs). A form of regularization. Works well!

o Gradients also do not flow through dropped neurons.

o Alternative explanation: we train an ensemble of networks,
containing all the pruned networks that dropout creates.

* During testing, we multiply the output of each neuron (of
the layer where dropout was applied) by peep, SO that the
neuron’s expected output value will be as in training.

o Or we divide the output by pgeep during training instead.

o We don’t drop neurons during testing (only during training).39

Batch normalization

At each layer, instead of:
m
Sj = 2 Wi,j Xi
i=1
Wwe use:

_;
Sj :;]]_(Sj —) + b;

* Wj,o; are the mean and std.
dev. of s; in the mini-batch.

* gj, bj are learned parameters
(constant after training).

* @ now applied to §;.

https://arxiv.org/pdf/1607.06450.pdf

Layer normalization

At each layer, instead of:
m
Sj = 2 Wi,j Xi
i=1

g
§=—(s— 1) +b

@ ®(s3) 0 are the mean and std.

* gj,bj arc learned parameters
(constant after training).

* @ applied to §;.

: With dropout, batch/layer normalization, residuals (to be discussed) and other :
: additions, strictly speaking we no longer have an “MLP”. Some people prefer “Feed :
Forward Neural Network” (FFNN), but “MLP” still often used as synonym. '

dev. of s4, ..., S 1n the layer.

Pretraining word embeddings with Word2Vec

(skip-gram version)

* Every word w of the vocabulary has two vectors:
V—‘;(in), V—‘;(out)

o The vectors are randomly initialized. We learn them.

o For every token w; at position ¢t of a corpus and every
position t + i (i # 0) within a window [t — ¢, t + C]

around position t:

w, = "film"
| |

Wi = o2
Wiy = 'starring”?
Wey; = directed"?

Wiy = famous”?
| |

| |
t—c t

| |
t+ i L+c

o We want to be able to predict which vocabulary word

occurs at position t + i by multiplying w;

(in) — .(out)

42

Word2Vec (skip-gram version)

: In the skip-gram version of Word2Vec, the

i central word of each window “predicts”
the other words of the window. In the _ .9
CBOW version, the context (sum of the : Wesi =

embeddings of the other words of the

Wey; = 'starring”?
.. vindow) “predicts” the central word. : | = "directed"?

wy = "film" wgy; = "famous™?

P(w;,;|w;) = softmax (Wt+i(0ut) W (in))

exp (Wt+i(0ut) . Wt(in))

Ywey €XP (W(Out) y Wt(in))

43

Word2Vec (skip-gram version)

 We learn the W™ w(°%) by maximizing the probability

assigned to the w,,; that actually occurs at each position t + i, 1.¢.,

we maximize the likelihood of the correct predictions:

] . |
(E(W, ECUD) = argmax | z z In P(We;|wy)
|

(m) out
E E() —1+c —C<Ii=<c,i#0

.-

o Matrices E("), Elout) contam in their columns all the in and out
vectors (word embeddings) of all vocabulary words.

o T is the corpus size, t is the center of the sliding window.

o For each t value, we get 2c¢ training examples.

o For batch gradient ascent, we would do steps:
(E(in))E(out)) — <E'(in)’E(out)> 4+ UVL

o In practice, we use SGD (or variants), 1.e., we use the likelihood
L; of a mini-batch of training examples (e.g., all 2c¢ of a window):

<E(in)’E(out)> — <Ev(in)’E(out)> 4+ nVLi

44

Word2Vec (skip-gram) as a shallow NN

Weyi =
Wiy = "starring"?
wy = "film" wgy; = "famous™?
l l l |
| | | |
t—c t t+1 t+c
.................. . IEYTETT TS . prediction sEsssssssssssEssEEEEEEEn,
AiStribution | ieeereseesessessssesaseasaet : 1-hot vector
over V — out) — (in of w
........ P(Wt+l|Wt) — softmax (Wt+1() Wt()) i otwg
g

. activation
““““ “assmssssssssssssssmsssssEmas " functlon Ofthe
* t,i : smgle dense layer : g7, .

Xt Le i 45

Word2Vec (skip-gram with negative sampling)

i When the vocabulary V is i We construct positive (+) and negative (—)

: large, computing the softmax : examples, using the word w,; that actually :
i is very time-consuming. A i occurs at position t + i, and random words 73,;
: more efficient alternativeis i i that do not actually occur at position t + i. :
 negative sampling, a kind of § -

: contrastive learning. 74; = 'medical” (random, negative)
Wt _ ORI e — “Famous” (true, positive)
| | | I
| | | l
t—c t t+1 t+c
{_ prediction #1

max z 2 1nP<+|wt+l,wt>+1nP< [Tesi We)

(E(in)’E(out)
t=14+c -—c=<i=<c,i#0

--.----------------------------J ---------------------------------

We try to learn to assign high probabilities to the correct classes. In
practice, we use multiple random words 7, ; at each position t + i.

Word2Vec (skip-gram with negative sampling)

rr+; = 'medical” (random, negative)
we = "film" Wit = "famous” (true, positive)

| | | |
| | | l
t—c t t+1 t+c

prediction **

max 2 2 In P(+|Wigi, we) + In[1 — P(+|1e4i, we)]

(E(in) E(out)
t 14c —c<i<c,i¥0

2 2 lna —>t+l(0ut) _, (m))_l_ln [1 (->t+l(out) .Wt(in))]

t=14+c -—c<i<c,i¥0

L

: We no longer try to produce a probablllty We are given w; and a particular
i distribution over the vocabulary for the : Wt_H or 1+4; and we need to decide 1f

words w4 ; that may occur at t + 1. i 1t 1s a positive or negative case.

Loss as a function of epochs

Figure 5.1. Canonical overfitting behavior

------ Training curve
A - == == \alidation curve
A it

Loss \ Underfitting
value .

\

\

\ Overfitting _
-
\ _ - -
\ -
> Robust fit ——
N -
~ ~———— s
Training time

Figure from the recommended book “Deep Learning with Python” by F. Chollet,
Manning Publications, 2nd edition. The 15 edition is freely available.
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python-second-edition

https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python-second-edition

Practical advice for training deep NNs

Check simple baselines: (¢.g., majority, random, ...)

o If you can’t beat them, you may have bugs, data problems, ...
o Look at how data are tokenized, pre-processed, ...
o Examine misclassification errors (e.g., extreme/frequent cases).

Get the training and validation loss to start falling:

o Tune the learning rate and the mini-batch size.
o Use appropriate models (e.g., for sequences, images, ...).

Reach the overfitting behavior of the previous slide.

o The training and validation loss (or metric) both fall up to a
point, then the training loss continues to improve ideally
reaching near zero, the validation loss deteriorates.

o Increase capacity (c¢.g., layers, neurons per layer), ...
Then dropout, early stopping, batch/layer norm, ...
Check Chollet’s Chapter S for more advice...

50

Regularizing a high-capacity model

Figure 5.21 Effect of dropout on validation loss

-== Validation loss of original model ’
0.7 4 — Validation loss of dropout-regularized model /

Figure from the recommended book “Deep Learning with Python” by F. Chollet,
Manning Publications, 2nd edition. The 15 edition is freely available.
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python-second-edition

https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python-second-edition

Recommended reading

M. Surdeanu and M.A. Valenzuela-Escarcega, Deep
Learning for Natural Language Processing: A Gentle
Introduction, Cambridge Univ. Press, 2024.

e Chapters 5-9.
 https://clulab.org/gentlenlp/text.html
« Also available at AUEB’s library.

* Y. Goldberg, Neural Network Models for Natural Language

Processing, Morgan & Claypool Publishers, 2017. '
o Mostly chapters 3—5 and 10. Available at AUEB’s library.

* Jurafsky & Martin’s, Speech and Language Processing 1s
being revised (3 ed.) to include Deep Learning methods.

o http://web.stanford.edu/~jurafsky/slp3/

52

https://clulab.org/gentlenlp/text.html
http://web.stanford.edu/~jurafsky/slp3/

Other recommended resources

For an introduction to Keras/Tensorflow and practical DL for
NLP and vision, see F. Chollet’s Deep Learning in Python,
Manning Publications, 1st edition, 2017.

* The 1% edition 1s freely available and sufficient for this course.
https://www.manning.com/books/deep-learning-with-python

« 2nd edition (2022) now available, requires payment. Highly recommended.

Useful maths background: T. Parr kot J. Howard, The Matrix
Calculus You Need for Deep Learning.

o https://explained.ai/matrix-calculus

PyTorch tutorials: https://pytorch.org/tutorials/

C. Manning’s (Stanford) NLP with Deep Learning course.
o http://web.stanford.edu/class/cs224n/. Videos on YouTube.

See also the recommended books of Part O (Introduction).

53

https://www.manning.com/books/deep-learning-with-python
https://explained.ai/matrix-calculus
https://pytorch.org/tutorials/
http://web.stanford.edu/class/cs224n/

