
Text classification with (mostly)
linear models

2023–24

Ion Androutsopoulos
http://www.aueb.gr/users/ion/

http://www.aueb.gr/users/ion/

2

These slides are partly based on material from the books:

• Speech and Language Processing by D. Jurafsky and J.H.
Martin, 2nd edition, Pearson Education, 2009,

• Artificial Intelligence – A Modern Approach by S. Russel
and P. Norvig, 2nd edition, Prentice Hall, 2003,

• Machine Learning by T. Mitchell, McGraw-Hill, 1997,

• Neural Network Methods for Natural Language Processing
by Y. Goldberg, Morgan & Claypool, 2017.

• Foundations of Statistical Natural Language Processing by
C.D. Manning and H. Schutze, MIT Press, 1999,

and material from the Machine Learning course of A. Ng at
Stanford University.

Contents
• Representing texts as bags of words. Boolean and TF-IDF features.
• Feature selection using information gain.
• Text classification with k nearest neighbors and Naive Bayes.
• Evaluating classifiers: precision, recall, F1, AUC.
• Semi-supervised classification with Expectation Maximization.
• Obtaining word embeddings from PMI scores, using SVD-based

dimensionality reduction.
• Word and text clustering with k-means.
• Linear and logistic regression, (stochastic) gradient descent.
• Lexicon-based features. Constructing and using sentiment lexica.
• Support Vector Machines (SVMs) and kernels.
• Practical advice and diagnostics for text classification with

supervised machine learning. 3

4

Example: spam filters

• Classifying messages in two classes.
– Spam (C = 1), ham (C = 0).

• More generally, n classes.
– Financial news, politics, sports news (possibly overlapping).
– Positive, negative, neutral, conflict sentiment (e.g., of tweets).

our highly successful multi –
national company gives you an
exclusive business that
generates an extra weekly
income of up to $ 600 or more
… anyone can easily make
money … if you wish to be
removed from our list …

call for papers 9 th european
workshop on natural language
generation … is a subfield of
natural language processing
that generates texts in human
languages from non-linguistic
data or knowledge … for the
systems to be successful …

5

Spam filtering with supervised ML

learning algorithm

examples of positive and negative
messages + correct classes

classification
function

preprocessing

classifierpreprocessing

incoming message decision: positive or negative

training phase

use (or testing) phase

Text preprocessing

Ø Alternatively the features may be word (or n-gram) frequencies,
TF-IDF scores, non-textual information (e.g., attachments, colors).

our highly successful multi –
national company gives you an
exclusive business that
generates an extra weekly
income of up to $ 600 or more
… anyone can easily make
money … if you wish to be
removed from our list …

call for papers 9 th european
workshop on natural language
generation … is a subfield of
natural language processing
that generates texts in human
languages from non-linguistic
data or knowledge … for the
systems to be successful …

< money:1, language:0,
natural:0, $:1, adult:0, call:0,
exclusive:1, successful:1,
removed:1, generates:1, …>

< money:0, language:1,
natural:1, $:0, adult:0, call:1,
exclusive:0, successful:1,
removed:0, generates:1, …>

6

• Boolean vectors (contain 0, 1 values): which words of a
vocabulary occur or not in the text.

• Term frequency (TF) vectors: how frequent each
vocabulary word is in the text.
o Possibly divided by the number of tokens of the text.
o Or taking the logarithm of the frequency.

• TF-IDF vectors: for each vocabulary word wi, the
vector contains its TFi × IDFi score:

o IDFi (inverse document frequency) shows how rare wi is in
the language (not the particular text). Common words are not
informative in some tasks (e.g., information retrieval).

Representing texts as bags of words

Number of documents in a corpus.

Number of corpus documents containing wi.
𝐼𝐷𝐹! = log(

𝑁𝑑𝑜𝑐
𝐷𝐹!

)

7

8

Feature selection
• For which words (or n-grams or ...) should we include

features in the vectors that represent the texts?
– 1st step: discard words (or n-grams) that do not occur at least k

times in the training data (e.g., k = 3).
– Usually thousands of words remain (many more n-grams).
– Large feature sets à efficiency and over-fitting problems.
– Alternative 1st step: discard words (n-grams) with low TF-IDF

(computing both TF and IDF on the entire training set).
– But features (words, n-grams) with high TF-IDF may not

always help discriminate the classes we are interested in.
• How useful is each candidate feature X?

– How much information does knowing the value of X offer?
– How much is our uncertainty about the random variable C

(class) reduced if we know the value of X?

9

Information Gain (for discrete features)

• Entropy of C if we learn that X = 1:

(,) (,) () () (|)
x

IG C X IG X C H C P X x H C X x= = - = × =å

2(| 1) (| 1) log (| 1)
c

H C X P C c X P C c X= = - = = × = =å

• Information Gain (IG):
Expected decrease of H(C), if we learn the value of Χ.

• Entropy of C if we learn that X = 0:

2(| 0) (| 0) log (| 0)
c

H C X P C c X P C c X= = - = = × = =å

for every possible
value of X

expected value

10

Feature selection with IG
• Compute the information gain IG(C, X) of each

candidate feature Χ.
– For example, X may show if the word “money” occurs (Χ = 1)

in the text or not (Χ = 0).
– Probabilities are estimated from training messages (e.g., with

Laplace smoothing).
• Select the features with the m highest IG(C, X) scores.

– For spam filtering, m = 1000 works reasonably well.
• Represent the texts as BOW vectors of m dimensions.

– E.g., <X1, X2, X3, …, Xm> = <0, 1, 1, …, 0>
• Other similar feature selection measures exist (e.g., χ2).
• We can also use SVD to get fewer new features.

11

Example of IG-selected Boolean features
P(Xi =1|C = 1)P(Xi =1|C = 0)P(Xi =1)Word of Xi

0.0227740.3741930.219800university

0.5734980.1048380.309718free

0.3333330.0016120.146230remove

0.3726700.0016120.163487money

0.0020700.4403220.247956language

0.5383020.0403220.257947$

0.8281570.2161290.484105!

Word embeddings
(produced by a method that produces dense, sense-specific word

embeddings, then projected to 2 dimensions)

Image source: http://www.socher.org/uploads/Main/MultipleVectorWordEmbedding.png
Huan et al. 2012, “Improving Word Representations via Global Context and Multiple Word Prototypes”.

12

Word embeddings from PMI scores
• Represent each word as a vector (“word embedding”).

o Here the vector shows how often the word co-occurs with
every other word of a vocabulary.

𝑝𝑖𝑙𝑜𝑡 = 𝑃𝑀𝐼 𝑝𝑖𝑙𝑜𝑡, 𝑎𝑖𝑟 , 𝑃𝑀𝐼 𝑝𝑖𝑙𝑜𝑡, 𝑡𝑟𝑒𝑒 , 𝑃𝑀𝐼(𝑝𝑖𝑙𝑜𝑡, 𝑑𝑜𝑜𝑟)…

o The co-occurrence scores in the vector are often Pointwise
Mutual Information (PMI) scores:

o To “co-occur” may mean in the same sentence, or in a window
of n words, or connected with dependencies (produced by a
dependency parser) etc.

• We can use SVD to obtain embeddings of fewer dimensions.
• Word similarity = similarity of word embeddings (e.g., cosine).

𝑃𝑀𝐼(𝑤,𝑤!) = log
𝑃(𝑤,𝑤!)

𝑃(𝑤) 2 𝑃(𝑤!)Improved, normalized PMI
definitions also exist.

13

How likely is it for w to
co-occur with the i-th

vocabulary word?

Dimensionality reduction with SVD

𝑋 =

𝑥"," ⋯ 𝑥",$
𝑥%," ⋯ 𝑥%,$
⋮ ⋯ ⋮

𝑥&," ⋯ 𝑥&,$

𝑍 =

𝑧"," ⋯ 𝑧",'
𝑧%," ⋯ 𝑧%,'
⋮ ⋯ ⋮

𝑧&," ⋯ 𝑧&,'
Each instance (row) is initially a

vector of 𝑛 original features.
New form of the instances. Each instance (row)

is now a vector of 𝑘 < 𝑛 new features.

• Diagonalization with SVD: 𝑋 = 𝑈𝐷𝑉
o 𝐷 rect. diagonal. Values on diagonal: singular values in decreasing order.
o 𝑈 (𝑚×𝑚), 𝑉 (𝑛×𝑛) orthonormal (rows/columns unit-length & orthogonal).

• Approximation of 𝑋: ;𝑋 = <𝑈<𝐷 ;𝑉
o)𝐷 diagonal (𝑘×𝑘). Values on the diagonal: 𝒌 largest singular values of 𝐷.
o)𝑈 (𝑚×𝑘) and ,𝑉(𝑘×𝑛). Hence ,𝑋 is still 𝑚×𝑛.

• Approximation of ;𝑋: 𝑍 = <𝑈<𝐷
o 𝑍 is 𝑚×𝑘 with 𝑘 < 𝑛. Dot-products between rows of ,𝑋 preserved.

o In practice, we use 𝑍 =)𝑈)𝐷 or 𝑍 =)𝑈. See Goldberg for more details.
14

Embeddings of biomedical terms

See http://bioasq.org/news/bioasq-releases-continuous-space-word-vectors-
obtained-applying-word2vec-pubmed-abstracts 15

Word embeddings of business terms
(produced with word2vec, then projected to 2D using UMAP)

Image from Lukas et al., “EDGAR-CORPUS: Billions of Tokens Make The World Go Round”,
EcoNLP workshop, EMLP 2021. https://arxiv.org/abs/2109.14394

For a quick intro to UMAP (and t-SNE) check: https://www.youtube.com/watch?v=6BPl81wGGP8
16

https://arxiv.org/abs/2109.14394
https://www.youtube.com/watch?v=6BPl81wGGP8

Centroids of word embeddings
• We can represent each text 𝑻 (word sequence) 𝑤!, 𝑤", …𝑤# as

the centroid of its word embeddings:

𝑇 =
1
𝑑)
$%!

#

𝑤$ =
∑&%!
|(| 𝑤& + 𝑇𝐹 𝑤& , 𝑇

∑&%!
|(| 𝑇𝐹 𝑤& , 𝑇

• Or (better) taking into account the IDF scores of the words:

𝑇 =
∑&%!
|(| 𝑤& + 𝑇𝐹 𝑤& , 𝑇 + 𝐼𝐷𝐹 𝑤&
∑&%!
|(| 𝑇𝐹 𝑤& , 𝑇 + 𝐼𝐷𝐹 𝑤&

• We can classify texts by classifying their centroids.
• Better (but more complex) methods to encode each text as a

dense vector exist (e.g., using deep neural nets).
17

18

k nearest neighbors (k-NN)
• During training, simply store the

vectors of the training examples.
• To classify an unseen instance,

find the closest k training
instances (e.g., k = 5) and classify
in their majority class.

• Distance weighting (better): each
neighbor has a vote whose weight
decreases (e.g., ∝ "

+
or "

+!
) as the

distance (𝑑) from the instance
being classified increases.

• In regression problems (real-
valued responses), return the
(weighted) average value of the k
neighbors.

+

+

+

+

+
-

-

-

-

-

?

new
instance

20

Examples of distance measures
• Euclidian distance:

𝑑 �⃗�!, �⃗�, = 𝑥!" − 𝑥,"
% +⋯+ 𝑥!& − 𝑥,&

%

• Cosine similarity:

• For Boolean feature vectors, how many of the features of
the two vectors are different:

1
(,) 1{ }

m

i j ir jr
r

d x x x x
=

= ¹å

l Feature (attribute) weighting: the differences are
weighted depending on the importance of the features:

1
(,) (,) 1{ }

m

i j r ir jr
r

d x x IG C X x x
=

= × ¹å

𝑠𝑖𝑚-./(�⃗�, �⃗�) =
�⃗� 2 �⃗�
�⃗� 2 �⃗�

21

Pros and cons of k-NN
• Computationally cheap during training.

– We simply store the training instances (lazy).
• But expensive in terms of memory.

– We store all the training instances.
• Computationally expensive when classifying.

– In the simplest form of k-NN, we need to compute the
distance of each unseen instance to every training instance.

– There are approximations that reduce this cost considerably.
– See http://erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part-2-

how-to-search-in-high-dimensional-spaces/ and https://github.com/spotify/annoy.

• It can approximate any separating hyperplane.
− Some other algorithms can only learn linear separators.

• Non parametric learning method:
− We do not learn the values of a fixed number of parameters.

22

Naive Bayes
• Example: incoming message represented as:

1 2, ,..., 0,1,...,1mX X X X= =

• Classification function:

() 1 , iff (1|) (0|)h X P C X P C X= = > =

• Using Bayes’ rule (for c = 0 or c = 1):

() (|)(|)
()

P C c P X C cP C c X
P X

= × =
= =

We need to estimate the probabilities of all the combinations x1, x2, ...,
xm | c. Too many and many will not occur in the training data.

23

Conditional independence assumption
• Naive Bayes classifiers assume that X1, …, Xm are

conditionally independent given the value of C.
– Usually not true, but NB text classifiers often work well!

– This is the multivariate Naive Bayes. For text classification,
the multinomial Naive Bayes works better (see references).

1 2(, ,..., |)mP X x x x C c= = =

1 1 2 2(... |)m mP X x X x X x C c= Ù = Ù Ù = = »

1 1(|) ... (|)m mP X x C c P X x C c= = × × = = =

1

(|)
m

i i
i

P X x C c
=

= =Õ

1

(1) (| 1)
(1|)

()

m

i i
i

P C P X x C
P C X

P X
=

= × = =
= =

Õ

24

Naive Bayes classifiers – continued
• Then:

1

(0) (| 0)
(0 |)

()

m

i i
i

P C P X x C
P C X

P X
=

= × = =
= =

Õ

• We discard the denominators, because they are the same.
• Now all the probabilities are easy to estimate from the

training messages (e.g., using Laplace smoothing).

25

Pros and cons of Naive Bayes
• Computationally cheap:

– For Ν training examples, m features,
– Ο(mN) steps during training to estimate the P(Xi|C)

probabilities,
– Ο(m) steps at classification time to compute the product

of P(Xi|C) probabilities.
• Low memory requirements:

– O(m) counters needed for the P(Xi|C) estimates.
• Also very easy to implement.
• Often works well, but may not be a top-performer.

− Often used in spam filters. Very good results in
sentiment detection with bigram features.

Evaluating classifiers
• Accuracy (correct decisions/total decisions) is not always a

good evaluation measure!
o If we have two classes and one is much more frequent (e.g.,

80% of instances), a majority classifier that always classifies
in the most frequent class will have an accuracy of 80%!

• Precision of a class:
o How many of the instances classified in the class (true

positives + false positives) are true members of the class
(true positives).

• Recall of a class:
o How many of the true members of a class (true positives +

false negatives) are classified in the class (true positives).

Precision TP
TP FP

=
+

Recall TP
TP FN

=
+

26

Evaluating classifiers – continued
• F-measure:

o Combination of precision and recall (weighted harmonic mean).
o For β = 1, equal importance to precision and recall. (But the

harmonic mean is closer to the min of the two values than the arithmetic mean.)

• Averaging precision or recall over n classes:
o Macro-averaging (equal weight assigned to all classes):

o Micro-averaging (frequent classes treated as more important):

2

2

(1) Precision Recall
Precision Recall

Fb
b
b
+ × ×

=
× +

1

1MacroPrecision Precision
n

i
in =

= å
1

1MacroRecall Recall
n

i
in =

= å

1

1

MicroPrecision

n

i
i

n

i i
i

TP

TP FP

=

=

=
+

å

å
1

1

MicroRecall

n

i
i

n

i i
i

TP

TP FN

=

=

=
+

å

å
27

Image source: http://ivrgwww.epfl.ch/supplementary_material/RK_CVPR09/Images/prcurve_1000.jpg

Precision-recall diagrams
• In many algorithms, we can opt for higher precision at the expense

of lower recall, or vice versa by tuning a threshold.
o In Naive Bayes: ℎ �⃗� = 1 iff 𝑃 𝐶 = 1|�⃗� > 𝒕
o For different values of the threshold 𝒕, we obtain different pairs of

precision-recall scores (on test data).
o The larger the area under the curve (AUC of Precision-Recall curve, a.k.a.

Average Precision) the better the system. (AP can be slightly different in IR.)

o For multiple classes, we can average AP over classes, obtaining Mean
Average Precision (MAP).

28

Image source: https://en.wikipedia.org/wiki/Receiver_operating_characteristic#/media/File:Roccurves.png

ROC curves
• Instead of Precision-Recall curves, it is also common to

plot Receiver Operating Characteristic (ROC) curves.
o True Positive Rate = 01

01234 = Sensitivity = Recall of
positive class

o False Positive Rate = 31
31204 = 1 – 04

04231 = 1 – Specificity
= 1 – Recall of negative class

o The larger the AUC (of ROC curve) the better the system.

29

https://en.wikipedia.org/wiki/Receiver_operating_characteristic

Clustering with k-means
Im

ages from
: http://en.w

ikipedia.org/w
iki/K

-m
eans_clustering

step 1 step 2 step 3 step 4

• Start with k random centroids (one per desired cluster).
• Place each instance into the cluster with the closest centroid.
• Re-compute the centroids. Repeat until convergence.
Ø Unsupervised learning. Can be made semi-supervised (how?).

Ø Produces hard clusters, unlike EM’s 𝑃(𝐶 = 𝑖|𝑋).
Ø Tries to minimize the sum of the distances of the instances to the

centroids of their clusters.
Ø May find a local minimum. Sensitive to the initial random centroids.

Restart several times with different initial random centroids.
30

Clustering documents and/or words

31

• We can cluster documents (e.g., their TF-IDF vectors).
o For example, hoping to get a view of their topics.
o More elaborate topic modeling methods (e.g., LDA) exist.

• We can cluster word embeddings.
o For example, to replace words by their clusters in BOW

representations of documents (fewer features).

Linear regression

• We try to learn f(x) from a sample (dots).
o Example: f(x) may show how fluent a sentence, which has been

assigned a fluency score x by a language model, will actually
be considered by native speakers of the language.

• We only consider linear hypotheses (functions):

• Hence, we search for the best 𝒘𝟏, 𝒘𝟎.

Im
age source: http://en.w

ikipedia.org/w
iki/

Linear_regression

y

x

1 0, 1 0()w wy f x w x w= = +

For points above
the line of f(x):
y > w1 x + w0.

For points below
the line of f(x):
y < w1 x + w0.

32

Linear regression – continued
• If we have two features 𝑥<, 𝑥=, our linear hypotheses are

planes in the 3D space:

• If we have 𝒏 features 𝑥<, … , 𝑥>, our linear hypotheses
are hyper-planes in a space of 𝑛 + 1 dimensions:

• We search for the best 𝑤.

2 1 0, , 1 2 2 2 1 1 0(,)w w wy f x x w x w x w= = + +

0, , 1 1 1 0(, ,)
nw w n n ny f x x w x w x w= = + +

0 1 0 1
0

, , , , ,
n

l l n n
l
w x w w w x x x

=

= = ×å

() T
wf x w x W X= × =

Treating each
vector as a
single-column
matrix.

For simplicity, always: x0 = 1.

33

Squared error loss
• The search space contains all the possible 𝒘.
• To assess each 𝒘, we may use the squared error loss:

�⃗�(?) is the 𝒊-th the training example,
𝑦(?) is the correct (desired) output for �⃗�(?),
𝑚 is the number of training examples.

• “Least squares linear regression”:
− Regression (not classification), with linear hypotheses.
− Minimizing the squared error loss.

() () 2

1

1() [()]
2

m
i i

w
i

E w f x y
=

= -å

34

35

The curve of 𝐸 𝑤 is
convex, hence it has

no local minima.

The search space
() () 2

1

1() [()]
2

m
i i

w
i

E w f x y
=

= -å

Image source:
http://en.wikipedia.org/wiki/
Gradient_descent

w1

w0

w w
w
w

We search for the
weights 𝒘 for which
𝑬 𝒘 , i.e., the total

squared error on the
training data, is

minimum.

The gradient 𝜵𝑬 𝒘 is a vector
showing the direction we need to
modify 𝒘 to obtain the steepest

increase of 𝑬 𝒘 . Hence,
− 𝜵𝑬 𝒘 is the direction that leads
to the steepest decrease of 𝑬 𝒘 .

36

Start with random weights 𝒘.
Compute 𝑬 𝒘 on the training
data. Which way to modify 𝒘?

Gradient descent

At each iteration, modify 𝒘 by
taking a step to the direction

− 𝜵𝑬 𝒘 :

In the simplest case, 𝜼 is a
small positive constant.

() () 2

1

1() [()]
2

m
i i

w
i

E w f x y
=

= -å

()w w E wh¬ - ×Ñ

w1

w0
()E w
()E w
()E w
()E w

Weights update rule

0 1

() () () ()() , ,..., , ,
l n

E w E w E w E wE w
w w w w

¶ ¶ ¶ ¶
Ñ =

¶ ¶ ¶ ¶

() ()
() ()

1

(())() [()]
i im

i i w
w

il l

f x yE w f x y
w w=

¶ -¶
= - ×

¶ ¶å

() () 2

1

1() [()]
2

m
i i

w
i

E w f x y
=

= -å

() ()

0() ()

1

()
[()]

n
i i

j jm
ji i

w
i l

w x y
f x y

w
=

=

¶ -
= - ×

¶

å
å

37

Weights update rule – continued

() () ()

1

() [()]
m

i i i
w l

il

E w f x y x
w =

¶
= = - ×

¶ å

() () 2

1

1() [()]
2

m
i i

w
i

E w f x y
=

= -å

Hence:
() () () () ()

1
1

() [()] , , ,
m

i i i i i
w l n

i
E w f x y x x x

=

Ñ = -å

() () ()

1
[()]

m
i i i

w
i
f x y x

=

= - ×å

0 1

() () () ()() , ,..., , ,
l n

E w E w E w E wE w
w w w w

¶ ¶ ¶ ¶
Ñ =

¶ ¶ ¶ ¶

38

39

Weights update rule – continued
Hence, the weights update rule:

()w w E wh¬ - ×Ñ

and each individual weight is updated as follows:

() () ()

1
[()]

m
i i i

w
i

w w f x y xh
=

¬ - × - ×å

becomes:

() () ()

1
[()]

m
i i i

l l w l
i

w w f x y xh
=

¬ - × - ×å

Batch gradient descent
(not used in practice)

1. Start with random weights 𝑤.
2. While 𝐸 𝑤 has not converged:
3. Update the weights:

4. Go to step 2.

In the simplest case, η is a small positive constant. In
more elaborate versions, η is adjusted (e.g., decreased) at
each iteration.

() () ()

1
[()]

m
i i i

l l w l
i

w w f x y xh
=

¬ - × - ×å

40

Stochastic gradient descent (SGD)
1. Start with random weights 𝑤.
2. Shuffle the training instances. Set 𝑖 ← 1 and 𝑠 ← 0.
3. Compute
 only for the current (i-th) training example.
4.
5. Update the weights:
 i.e.,
6. If a (i+1)-th training example exists, set

and go to step 3.
7. If s has not converged and max number of scans

(“epochs”) of training data not exceeded, go to step 2.

() () 21() [()]
2

i i
i wE w f x y= -

()is s E w¬ +

() () ()[()]i i i
l l w lw w f x y xh¬ - × - ×

()iw w E wh¬ - ×Ñ

1i i¬ +

Obtained by computing
the partial derivatives...

41

Stochastic gradient descent – continued
• Much smaller computational cost.

− Loss computed on a single training example per step. In
practice (esp. with GPUs) on a mini-batch of training examples.

• The update steps do not always go towards the
minimum of the total error 𝐸 𝑤 . Each step goes
towards the minimum of the local error 𝐸? 𝑤 .
− With larger mini-batches the gradient of 𝐸! 𝑤 is closer to

that of 𝑬 𝒘 , which often allows using a larger learning rate.

• SGD may not reach the exact minimum of 𝐸 𝑤 .
− It may start wandering around the minimum, but in practice, it

arrives close enough, much faster than batch GD.
− Optionally see https://en.wikipedia.org/wiki/Stochastic_gradient_descent for

improvements (e.g., momentum, AdaGrad, Adam).

42

https://en.wikipedia.org/wiki/Stochastic_gradient_descent

Closed-form solution
• A closed-form solution to obtain directly the weights

that minimize the squared error loss also exists.

• Set and solve for 𝑤.
• The solution is:
 where:

* 1()T TW X X X Y-=

() () 2

1

1() [()]
2

m
i i

w
i

E w f x y
=

= -å

() 0E wÑ =

(1) (1) (1)
1 2
(2) (2) (2)
1 2

() () ()
1 2

n

n

m m m
n

x x x
x x x

X

x x x

é ù
ê ú
ê ú=
ê ú
ê ú
ê úë û

(1)

(2)

()m

y
y

Y

y

é ù
ê ú
ê ú=
ê ú
ê ú
ë û

43

Closed-form solution – continued

• The closed-form solution requires inverting .
− May be time-consuming if we have a very large number

of training examples and features.
• Gradient descent (or SGD) can also be used in

problems where there is no closed-form solution.
− We will encounter such problems shortly.

()TX X

44

• For more features x1, x2, …, xn, we search for a hyper-
plane that separates the two classes.

• Classification decision:

1 1 0
0

0
n

n n l l
l

w x w x w w x w x
=

+ + + = = × =å

Linear separators
• For two features x1, x2,

we search for a straight
line that separates the
two classes.

2 2 1 1 0 0w x w x w+ + =

Setting again x0 = 1.

For points
above the line:

0w x× >

0w x× <

For points
below the line:

sign()C w x= ×

45

Linear separators– continued
• We often want the classifier to also return a probability-

like certainty score.
− How probable is it for a document with vector 𝒙 to belong in

the positive or negative class?

• The signed distance from the separating hyper-
plane is not a good certainty score.

− Not confined to [0, 1].
− For large (positive or negative) distances, we want the

certainty to approach 1.
− For small distances, we want the certainty to approach 0.

()w
w xd x
w
×

=

()wd x

Without 𝑤!.

46

Sigmoid (logistic) function
• In our case, t will be the

unsigned (and usually
unnormalized) distance from
the separating hyper-plane:

• Probability for �⃗� to belong
in the positive class:

• Probability to belong in the
negative class:

Im
age source: http://en.w

ikipedia.org/w
iki/

Logistic_function

1()
1 tg t
e-

=
+

g(t)

t

t w x= ×

1(|)
1 w xP c x
e+ - ×=

+

(|) 1 (|)P c x P c x- += -

47

Logistic regression classifiers

• During training, they select the 𝒘 that makes the
classifier more confident that the training examples
belong in their correct classes.
− They maximize the (conditional) likelihood of the examples.

(1) () (1) ()() (, , | , , ;)m mL w P y y x x w=

The correct classes of the
training examples.

The feature vectors of the
training examples.

1(|) ,
1 w xP c x
e+ - ×=

+

(|) 1 (|)

1

w x

w x

eP c x P c x
e

- ×

- + - ×= - =
+

48

Maximizing the likelihood
• Assuming that the training examples are independent

and sampled from the same population:

• Instead of maximizing , easier to maximize the
(conditional) log-likelihood:

(1) () (1) ()() (, , | , , ;)m mL w P y y x x w=

() ()

1

(| ;)
m

i i

i

P y x w
=

=Õ

()L w

() ()

1
() log () log (| ;)

m
i i

i
l w L w P y x w

=

= =å

49

Maximizing the likelihood – continued
• If we represent the classes as y = 1 (positive class) and

y = 0 (negative class), then:

− For y = 1 (positive): 𝑃 𝑦 = 1|�⃗�; 𝑤 = 𝑃 𝑐2|�⃗�; 𝑤 = "
"25"#$%

− For y = 0 (negative): 𝑃 𝑦 = 0|�⃗�; 𝑤 = 𝑃 𝑐6|�⃗�; 𝑤 = 5"#$%

"25"#$%

• Hence:

(1)(| ;) (| ;) (| ;)y yP y x w P c x w P c x w -
+ -= ×

() ()() () (1)

1
() log (| ;) log (| ;)

i i
m

i y i y

i
l w P c x w P c x w -

+ -
=

= +å

() () () ()

1
log (| ;) (1) log (| ;)

m
i i i i

i
y P c x w y P c x w+ -

=

= + -å

For each training example, we minimize the cross-entropy… 50

Maximizing the likelihood – continued

• With batch gradient ascent:

 we obtain the weights update rule:

• In practice, we use stochastic gradient ascent.
o Or stochastic gradient descent (SGD, or variant), if we

minimize the cross-entropy of each training example.

• No closed-form solution.

()w w l wh¬ + ×Ñ

() () ()

1
[(|)]

m
i i i

l l l
i

w w y P c x xh +
=

¬ + × - ×å

We now maximize
𝒍(𝒘), instead of

minimizing 𝐸(𝑤).

51

Regularization (very important)
• Instead of maximizing the log-likelihood alone:

 we usually add a regularization term:

 to reward 𝒘 vectors with many small weights.
• Lower risk of over-fitting the training data:

– Intuitively, if many weights are small (or zero), we do not rely
much on the corresponding features. With fewer features, less
likely to over-fit the training data.

– λ > 0. Value usually tuned on held-out/development data.

2 2

0
() ()

n

l
l

l w w l w wl l
=

- × = - ×å

() ()

1
() log (| ;)

m
i i

i
l w P y x w

=

=å

L2 regularization (“ridge regression”)

52

L1
regularization

(“lasso
regression”)
uses the L1

norm, adding
−λ∑"#!$ 𝑤"
instead. It
leads to

sparser 𝑤.

• For each attribute 𝑋!, assuming normal distribution:

𝑋! ←
𝑋! − 𝜇!
𝜎!

• Also important: start with random small weights.
o E.g., sample them from a zero-centered Gaussian with small σ.
o See the material of the Deep Learning course for alternative/better weight

initialization schemes.

Important tricks

53

Mean and standard
deviation of Xi in
the training data.

Multinomial Logistic Regression
• Extension for multiple (non-overlapping) classes c1, …, cΚ.

− Intuitively, we learn a separate linear separator for each class
𝑐,, with its own weights vector 𝑤,.

• Alternative view: we compute a score 𝒛𝒋 = 𝒘𝒋 + 𝒙 for each

class 𝒄𝒋, and we apply the softmax function
*+,(.!)

∑!" *+,(.!")
 to the

scores to turn them into probabilities that sum up to 1.
• We train by maximizing the conditional log-likelihood.

– Same as minimizing the cross-entropy of the training examples.

'

' 1

(|)
j

j

w x

j K
w x

j

eP c x
e

×

×

=

=

å

normalization factor

probability
that �⃗�

belongs in 𝑐,

different weights
vector per class

54

Multinomial Logistic Regression

From Stanford’s course “Convolutional Neural Networks for Visual Recognition”, F.F. Li, J.
Johnson, S. Yeung, 2017. http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture2.pdf

Advice for using supervised learning
(based on lectures of Andrew Ng)

• With most supervised learning algorithms, the loss on the
training data is lower than the loss on the development (or
test) data.
− Training loss: Performance on the same data we used for

training.
− Dev loss: Performance on different data than the data used

for training (but from the same population).
• The training loss is roughly a lower bound of the dev loss.
• Comparing the training loss to the dev loss we can also see

how much we overfit the training data.

56

Diagnostics: overfitting
dev loss

number of training examples

training loss

57

desirable loss

Diagnostics: overfitting
• If we observe that:

− The training loss increases (becomes worse) rapidly as we add
more training examples.

− The dev loss decreases (becomes better) rapidly as we add
more training examples.

− Most importantly: there is a big difference between the two.
• The system is probably overfitting the training data:

− It performs much better on the training data than on the dev
data, because it learns peculiarities of the training data.

− Easier to happen with few training examples (and large
numbers of features).

− The more the training examples, the more difficult it becomes
for the system to overfit them. The system generalizes better
and, hence, performs better on dev data.

58

Diagnostics: overfitting
• What may help reduce the overfitting:

C More training data.
C Fewer (and better) features (e.g., feature selection).
C Simpler models (e.g., linear classifiers instead of k-NN,

linear instead of non-liner SVM, simpler neural nets).
C Stronger regularization (e.g., larger λ in logistic regression).

May be better than using simpler models.
• What may not be worth doing, especially if the

training loss is below the desirable performance level:
D Spending time to think of (or collect data for) more features.
D Repeating the experiments with more complex models .

59

Diagnostics: underfitting

dev loss

number of training examples

training loss

desirable loss

• If we observe that:
− The training loss increases (becomes worse) very slowly as we

add new training examples.
− The dev loss decreases (becomes better) very slowly as we

add more training examples.
− Most importantly: very small difference between the two, but

we are still above the desired level of performance.
• It may be that the search space is too narrow:

− The function we need to learn is not in the family of
functions we are searching in.

− The search space does not contain functions that can
generalize well enough.

Diagnostics: underfitting

61

Diagnostics: underfitting

• What may help:
C More (and better) features (additional information, feature

combinations, like ANDs of features in logistic regression).
C More complex models (e.g., non-linear rather than linear SVM,

more complex neural net) or ensembles of classifiers (e.g.,
trained with different learning algorithms, or using different
kinds of features, or trained on different training subsets).

C Weaker regularization (e.g., smaller λ in logistic regression).
• What will probably not help:

D More training data (on its own).
D Fewer features (e.g., feature selection).

62

From the presentation «Introduction to Machine Learning» of P. Vincent at the Deep
Learning Summer School 2015 (http://videolectures.net/deeplearning2015_montreal/).

63

Overfitting is often a sign of
high variance. Underfitting is

often a sign of high bias.

64

Additional optional reading slides.

65

Lexicon features for sentiment analysis

“Εξορί
α στο βρωµό twitter και κα

ταστρο
φή !!! :@”

Qualia
Sentiment

-2 0 0
0 0 -4

0 0

“This is a tweet :) showing I am euphoric n happy !”

AFINN
0 0 0 0 0 0 0 0 4 0 3 0

Images and feature examples (next slide) from the MSc thesis and presentation of M.
Karampatsis “Social media sentiment analysis”, AUEB, 2014 (http://nlp.cs.aueb.gr/theses.html).

Optional
reading

66

Lexicon features for sentiment analysis
• A simplistic approach to use them for entire messages:

– Max, min, avg score of the lexicon’s words in the message.
– Sum of positive (negative) scores of words in the message.

• How to construct our own sentiment lexicons?
– Collect frequent words from a corpus (e.g., tweets, reviews).
– Treat each word as a mini-classifier.
– Scores per word: its precision, recall, F1 per class (e.g.,

positive, negative), computed on manually classified reviews.
– Also works with n-grams (bigrams are good for sentiment).
– See J&M for other approaches (e.g., label propagation).

• Another trick for sentiment analysis: prepend NOT_ to
words after a negation (up to next punctuation).
• “didn’t like it, but…” à “didn’t NOT_like NOT_it, but…”

Searching for feature subsets
• So far we evaluated each feature separately.

− With IG or similar measures (e.g., χ2).
• But two features may convey almost the same information.

− It may be the case that “money” and “rich” always co-occur.
− They may both have high IG scores, but one is redundant.

• Or two (or more) features may be bad on their own (low IG
scores), but their combination may be a good predictor.

• We can treat the problem as a state space search:
o E.g., initial state: use all (or none of) the candidate features.
o Transition operator: remove (or add) a candidate feature.
o Loss function: error rate (on held out/development data) when

the feature subset of the particular state is used.
• We can use heuristic search algorithms:

o E.g., hill climbing, beam search, simulated annealing, GAs, …

Optional
reading

67

68

Semi-supervised classification
• We often have training examples that are labeled with

the correct answers, and others that are unlabeled.
– E.g., manually separated spam/ham messages or positive/

negative/neutral tweets and many more unlabeled.

• We can train a classifier on the labeled examples (L).
– E.g., train a Naive Bayes classifier.

• We can then (try to) improve the classifier using the
unlabeled examples (U) with labels generated by the
previously trained form of the classifier.
− This is a form of Expectation Maximization (EM).
− It does not always work well in practice. We may end up

learning different classes than the ones we intended to.

Optional
reading

69

Semi-supervised learning with NB
• Initial training of a Naive Bayes classifier, with Boolean

features and |C| classes, on the labeled examples (L).

,
1

1
()

| |

L

i j
j
p

P C i
C L

=

+
= »

+

å
Number of labeled
examples.

1 if the j-th labeled example
belongs in class i; otherwise 0.

| |

, ,
1

| |

,
1

1 1{ }
(|)

2

L

i j j l l
j

l l L

i j
j

p X x
P X x C i

p

=

=

+ × =
= = »

+

å

å
How many labeled
examples of class i
do we have?

How many labeled examples
of class i have Xl = xl ?Laplace smoothing.

Optional
reading

Semi-supervised learning with NB
• E-step: Predict the classes of the unlabeled examples,

using the previously trained classifier (its previously
learned parameters P(C = i) and P(Xl = xl | C = i)).
– Each unlabeled example is assigned a probabilistic label (a

probability distribution over the classes).

Predicted probability that
the unlabeled example
belongs in class i. We get a
prediction for every class.

We have previously learned these parameters from
the labeled training examples.

The pi,j values of the labeled
examples do not change.

They remain 0 or 1.

),,(

)|()(
),,|(

1

1
1,

m

m

l
ll

mji xxXP

iCxXPiCP
xxXiCPp

=

==×=
====

Õ
=

' 1 1

(| ')
mk

l l
i l

P X x C i
= =

= =åÕS
!&7"

'

𝑃(𝐶 = 𝑖8)U
97"

&

𝑃(𝑋9 = 𝑥9|𝐶 = 𝑖8)
70

Optional
reading

71

Semi-supervised learning with NB
• M-step: Re-train the classifier (re-learn its parameters),

now using both the labeled and the unlabeled examples.
– Re-learn the P(C = i) and P(Xl = xl | C = i) parameters.

• Repeat E, M until convergence.
– It’s a form of hill climbing to maximize the likelihood of the data…

| |

,
1

1
()

| | | |

L U

i j
j
p

P C i
C L U

+

=

+
= »

+ +

å
Count both the labeled and
unlabeled examples.

Count the j-th example to the extent that we
believe it belongs in class i.

| | | |

, ,
1

| | | |

,
1

1 1{ }
(|)

2

L U

i j j l l
j

l l L U

i j
j

p X x
P X x C i

p

+

=
+

=

+ × =
= = »

+

å

å How many examples of class i
are there? Count each example
to the extent we believe it
belongs in class i.

How many examples of
class i have Xl = xl? Count
each example to the extent
we believe it belongs in
class i.

Optional
reading

The Newton-Raphson method
• Finds the roots (zeroes) of

differentiable functions.
• Find x such that:

• At each iteration:

• Hence, the update rule is:
• Works well and fast, if we start

near a root…

() 0g x =

1

() 0'() n
n

n n

g xyg x
x x x +

-D
= =
D -

Δx

Δy

g(x)

1
()
'()
n

n n
n

g xx x
g x+ ¬ -

Im
age source: http://en.w

ikipedia.org/w
iki/

N
ew

ton

’s_m
ethod

Optional
reading

72

The Newton-Raphson method – continued
• In our case, we want:

• The update rule becomes:

 where the matrix HE (Hessian matrix) contains as
elements hi,j all the partial second derivatives:

• Works well, if we start near the minimum.
• Impractical for neural nets, where the weights are

billions (billions x billions 2nd derivatives)

() () 0g w E w=Ñ =

1
1 () ()n n E nw w H w E w-
+ ¬ - Ñ

2 ()

i j

E w
w w
¶
¶ ¶

Optional
reading

73

74

Support Vector Machines (SVMs)

• With an appropriate transformation, an originally non-linearly
separable dataset may become linearly separable.

– In general, this is always possible, provided that we move to a vector space
with sufficiently large dimensionality.

– In the example above: 2 2
1 2 1 2() , , 2F x x x x x=

)(xF

Optional
reading

75

• SVMs search in the new vector
space for a hyperplane that
separates the examples, with
the maximum margin.
– The separating hyperplane

(bold line) is in the middle of
the margin (space between the
two tangential hyperplanes).

– Maximizing the margin leads
to better generalization over
the entire population.

– Support vectors (definition to
be revised): the vectors of the
examples lying on the two
tangential hyperplanes.

Support Vector Machines
support
vectors

margin
Two parallel hyperplanes

achieving perfect
separation, tangential to
at least a training example
(of a different class) each.

Optional
reading

76

• Equation of the separating
hyperplane:

• For simplicity, we require the
tangential hyperplanes to have
the following equations:

(Easy to rescale 𝑤, 𝑏 to obtain ±1.)
• Then the margin is:
• Minimization problem:

 such that:

Support Vector Machines

() 0w F x b× + =

() 1w F x b× + = ±

2 w

2

,

1min
2w b
w

(()) 1j jw F x b y× + × ³

a training example
its correct class (here +/-1)

We require all the training
examples to be on the correct
sides and outside the margin.

Optional
reading

77

Relaxed problem
• We allow an error (slack) ξj

at each training example 𝒙𝒋.
• Relaxed problem:

 s.t:

• We optimize the sum of the
margin and the total slack.
– The constant C is tuned on

held-out data. It controls the
trade-off between large
margin and low total slack.

2

, ,

1min
2 jw b j
w C

x
x+ ×å

(()) 1j j jw F x b y x× + × ³ -

By allowing an error (slack) per training
example, we may obtain a larger
margin, and we may also find a

separating hyperplane even when the
training data are not linearly separable

(e.g., when using a linear SVM).

0jx ³

Optional
reading

78

Support Vectors
• Solving the optimization

problem leads to:

where αj ¹ 0 only if (⇒) 𝒙𝒋
is a support vector.

• Hence, the separating
hyperplane is:

or:

()j j j
j

w a y F x=å

These are also
support vectors.

() 0w F x b× + =

() () 0j j j
j
a y F x F x b× + =å

Training instances that are
not support vectors are
ignored at classification

time (unlike k-NN) because
they have αj = 0.

Optional
reading

79

Using kernels in SVMs
• It turns out that the transformation function 𝑭 is used

only in inner products in the new vector space.

• For some functions 𝑭 we can compute the inner
products without first computing the transformed
vectors , .
– In the initial example:

– No need to compute the transformed feature vectors (xi,12,
xi,22, √2xi,1xi,2, xj,12, xj,22, √2xj,1xj,2). We only need the values of
the original vectors.

– The new vector space usually has many more (possibly
infinite) features (dimensions) than the original space.

() ()i jF x F x×

()jF x

2() () ()i j i jF x F x x x× = = ×

()iF x

2 2
1 2 1 2() , , 2F x x x x x=

Optional
reading

Other kernel example
• Let:

• Then:

,1 ,() (, ,)i i i nF x F x x= =

,1 ,1 ,1 ,2 ,1 ,, , , ,i i i i i i nx x x x x x<

,2 ,1 ,2 ,2 ,2 , , ,, , ,i i i i i i n i n i nx x x x x x x x >

() ()i jF x F x× =

,1 ,1 ,1 ,2 ,1 ,, , , ,i i i i i i nx x x x x x<

,2 ,1 ,2 ,2 ,2 , , ,, , ,i i i i i i n i n i nx x x x x x x x > ×

,1 ,1 ,1 ,2 ,1 ,, , , ,j j j j j j nx x x x x x<

,2 ,1 ,2 ,2 ,2 , , ,, , ,j j j j j j n j n j nx x x x x x x x >

2()i jx x= = ×

We need Ο(n2) time to construct each
transformed feature vector.

We only need O(n) time to
compute this!

If we have Boolean initial features (0 or 1), in effect the
transformation constructs all the ANDs of the initial features.

80

Optional
reading

Another kernel example

• If:

• Then:

,1 ,() (, ,)i i i nF x F x x= =

,1 ,1 ,1 ,2 ,1 ,, , , ,i i i i i i nx x x x x x<

,2 ,1 ,2 ,2 ,2 , , ,, , , ,i i i i i i n i n i nx x x x x x x x

2() () ()i j i jF x F x c x x× = = + ×

We need only O(n) time to
compute this!

Now we also use both the initial features
and their ANDs.

,1 ,2 ,2 , 2 , , 2 ,i i i nc x c x c x c× × × >

81

Optional
reading

82

Using kernels in SVMs
• Kernel:

– A function that computes the inner product
 in some new vector space, where a

transformation F takes us. No need to actually know F!
– E.g., (generalized polynomial kernel)
– Mercer’s theorem specifies when a function (in effect, a similarity measure)

 is indeed a kernel (see references).

– There are also kernels that compute the similarity between two
texts by considering their parse trees, instead of BOW vectors.

• The equation of the separating hyperplane becomes:

(,)i jK x x

(,) ()di j i jK x x c x x= + ×

Training examples that are not support
vectors are ignored, because their αj = 0.

Saving memory and time during
classification, unlike k-NN. But SVMs

are much slower to train.

(,) 0j j j
j
a y K x x b+ =å

() ((,))j j j
j

h x sign a y K x x b= +å

(,)i jK x x

() ()i jF x F x×

Optional
reading

83

Recommended reading
• J&M (2nd ed.): Sections 6.6, 6.7, 20.2.2 (about NB only).

o MaxEnt classifiers are a variant of multinomial logistic
regression with Boolean class-sensitive features.

o See also the free draft of the 3rd edition:
http://web.stanford.edu/~jurafsky/slp3/ (chapters 4, 5, 6,
25 – we’ll discuss word2vec later in the course)

• Goldberg: Chapter 2.
• Consult also the notes “Linear regression, classification

and logistic regression, generalized linear models” of
Andrew Ng at Stanford (pp. 1–7 and 16–21).
o http://see.stanford.edu/materials/aimlcs229/cs229-

notes1.pdf

http://web.stanford.edu/~jurafsky/slp3/
http://see.stanford.edu/materials/aimlcs229/cs229-notes1.pdf
http://see.stanford.edu/materials/aimlcs229/cs229-notes1.pdf

84

Recommended reading – continued
• There are many versions of Naive Bayes classifiers.

o The version we considered uses Boolean features and is known
as multivariate Bernoulli Naive Bayes.

o The multinomial Naive Bayes version can also consider the
term frequencies of the words in each text, and often performs
better in text classification.

o See: http://www.aueb.gr/users/ion/docs/ceas2006_paper.pdf
• For more information about Information Gain (also called

Mutual Information, not to be confused with PMI), Naive
Bayes, and SVMs consult “An introduction to Information
Retrieval” by C.D. Manning, P. Raghavan and H. Schütze,
Cambridge University Press, 2008.
o Chapters 13 and 15.
o Book freely available from: http://nlp.stanford.edu/IR-

book/information-retrieval-book.html

http://www.aueb.gr/users/ion/docs/ceas2006_paper.pdf
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html

85

Recommended reading – continued
• For an introduction to Machine Learning, see also “A Course

in Machine Learning” by Hal Daumé III.
o Freely available at http://ciml.info/.

• For more information about PCA (and SVD) see section 12.2
of K.P. Murphy’s book “Machine Learning – A Probabilistic
Perspective”, MIT Press, 2012.
o Available at AUEB’s library.
o Free draft of 2021 edition: https://probml.github.io/pml-

book/book1.html

http://ciml.info/
https://probml.github.io/pml-book/book1.html
https://probml.github.io/pml-book/book1.html

