
 
 

 

Exercises on Natural Language Processing with Convolutional Neural Networks  
 

Ion Androutsopoulos, 2025–26 
 
Submit as a group of 2–3 members (unless specified otherwise in the lectures) a report 
(max. 10 pages, PDF format) for exercises 2 and 3. Include in your report all the 
required information, especially experimental results. Do not include code in the report, 
but include a link to a Colab notebook with your code. Make sure to divide fairly the 
work of your group to its members and describe in your report the contribution of each 
member. The contribution of each member will also be checked during the oral 
examination of your submission. For delayed submissions, one point will be subtracted 
per day of delay.  
 
1. Write down (as on slides 37–41) the equations of the CNN of slide 36, also specifying the 
dimensions of all the matrices and vectors involved.  
 
Answer: The dimensionality of the word embeddings is 𝑑	 = 	5. We can think of the two 
bigram filters as a matrix 𝑊(") ∈ ℝ"×"% = ℝ"×&' and a bias terms vector 𝑏(") = ℝ" 
(similarly to slide 39, where we have three bigram filters). Similarly, we can think of the two 
trigram filters as a matrix 𝑊(() ∈ ℝ"×(% = ℝ"×&) and a bias terms vector 𝑏(() = ℝ"; and the 
two 4-gram filters as a matrix 𝑊(*) ∈ ℝ"×*% = ℝ"×"' and a bias terms vector 𝑏(*) = ℝ". 
 
The embeddings of each bigram of the input text can be thought of as a vector 𝑥(") ∈ ℝ"%. 
Applying the two bigram filters to the i-th bigram 𝑥+

(")of the input text produces:  
 

ℎ+
(") = ReLU /𝑊(")𝑥+

(") + 𝑏(")1 ∈ ℝ", 𝑖 = 1,… , 6 
 
where we assumed that we use ‘narrow convolutions’, i.e., that the filters do not move out of 
the words of the input text (to partially overlap with padding tokens). 
 
Max-pooling over ℎ&

("), … , ℎ,
(") produces a vector:  

 
ℎ(") = 〈max

-
ℎ+,&
(") , max

-
ℎ+,"
(")〉/ ∈ ℝ" 

  
Similarly, applying the two trigram filters to the i-th trigram 𝑥+

(() ∈ ℝ(% of the input text and 
the two 4-gram filters to the i-th 4-gram 𝑥+

(*) ∈ ℝ*% produces: 
 	

ℎ+
(() = ReLU /𝑊(()𝑥+

(() + 𝑏(()1 ∈ ℝ", 𝑖 = 1,… , 5 

ℎ+
(*) = ReLU /𝑊(*)𝑥+

(*) + 𝑏(*)1 ∈ ℝ", 𝑖 = 1,… , 4	 
 
Max-pooling over ℎ&

((), … , ℎ)
(() and over ℎ&

(*), … , ℎ*
(*) produces:  

 
ℎ(() = 〈max

-
ℎ+,&
(() , max

-
ℎ+,"
(()〉/ ∈ ℝ" 

ℎ(*) = 〈max
-
ℎ+,&
(*) , max

-
ℎ+,"
(*)〉/ ∈ ℝ" 

 
The feature vector of the input text is the concatenation ℎ = =ℎ("); 	ℎ((); 	ℎ(*)?

/
∈ ℝ,. 

 



 
 

 

We pass on ℎ to a classifier, e.g., a logistic regression layer, i.e., a dense layer 𝑊(0) ∈ ℝ|2|×, 
with a bias vector 𝑏(0) ∈ ℝ|2| and a softmax activation function, to obtain a probability 
distribution 𝑜⃗ over the classes 𝑐&, … , 𝑐|2| ∈ 𝐶: 
 

𝑜⃗ = 〈𝑃(𝑐&), … , 𝑃G𝑐|2|H〉3 = softmax(𝑊(0)ℎ + 𝑏(0)) 
 
à 2. Repeat Exercise 1 of Part 4 (NLP with RNNs), now using a stacked CNN with n-gram 
filters (e.g., 𝑛	 = 	2, 3, 4), residual connections, and global max-pooling at the top layer (slide 
42), all implemented (by you) in PyTorch. Tune the hyper-parameters (e.g., values of 𝑛, 
number of stacked convolutional layers) on the development subset of your dataset. Monitor 
the performance of your models on the development subset during training to decide how 
many epochs to use. You may optionally add an extra CNN layer to produce word 
embeddings from characters (slide 44), concatenating each resulting character-based word 
embedding with the corresponding pre-trained word embedding (e.g., obtained with 
Word2Vec). Include experimental results of a baseline majority classifier, as well as 
experimental results of your best classifiers from exercise 11 of Part 2, exercise 4 of Part 3, 
and exercise 1 of Part 4. Otherwise, the contents of your report should be as in exercise 1 of 
Part 4, but now with information and results for the experiments of this exercise. You may 
optionally wish to try ensembles (e.g., majority voting of the best checkpoints, temporal 
averaging of the weights of the best checkpoints, combining RNN and CNN classifiers).  
 
à 3. Repeat Exercise 2 of Part 4 (NLP with RNNs), now using a stacked CNN with n-gram 
filters (e.g., 𝑛	 = 	2, 3, 4), residual connections, and a dense layer (the same at all word 
positions) with softmax at the top layer (slide 43), implemented (by you) in PyTorch. Tune 
the hyper-parameters (e.g., values of 𝑛, number of stacked convolutional layers) on the 
development subset of your dataset. Monitor the performance of your models on the 
development subset during training to decide how many epochs to use. You may optionally 
add a character-level CNN to produce word embeddings from characters, concatenating each 
resulting character-based word embedding with the corresponding pre-trained word 
embedding (e.g., obtained with Word2Vec). Include experimental results of a baseline that 
tags each word with the most frequent tag it had in the training data; for words that were not 
encountered in the training data, the baseline should return the most frequent tag (over all 
words) of the training data. Also include experimental results of your best method from 
exercise 5 of Part 3 and exercise 2 of Part 4. Otherwise, the contents of your report should be 
as in exercise 2 of Part 4, but now with information and results for the experiments of this 
exercise. You may optionally wish to try ensembles. 
 
4. Consider the following LSTM-based machine translation model (see also exercise 5 of Part 
4 – NLP with RNNs). 
 

 Image from Stephen Merity’s http://smerity.com/articles/2016/google_nmt_arch.html



 
 

 

We wish to replace the BiLSTM encoder of the model above by the stacked CNN-based 
encoder with trigram filters illustrated below, retaining the encoder-decoder attention and the 
LSTM decoder of the original model.  
 

 
 
Let 𝑉, 𝑉4 be the vocabularies of the source language (English) and target language (German), 
respectively. Each training instance is a pair consisting of (i) a sequence of one-hot vectors: 
 

𝑥&, 𝑥", 𝑥(, … , 𝑥5 ∈ {0, 1}|6| 
 
corresponding to an English sentence (each vector shows the position of the corresponding 
word in 𝑉) and (ii) a sequence of one-hot vectors: 
 

𝑦&, 𝑦", 𝑦(, … , 𝑦7 ∈ {0, 1}|6!| 
 
corresponding to a German sentence that is the correct (gold) translation of the English one 
(each vector shows the position of the corresponding word in 𝑉4). For simplicity, we assume 
all the English sentences are 𝑛 words long, and all the German sentences are 𝑚 words long. 
 
Let 𝐸 ∈ ℝ%(#)×|6| and 𝐸4 ∈ ℝ%(#)×|6!| contain the word embeddings of the source and target 
language, respectively. Notice that word embeddings have 𝑑(8) dimensions in both languages, 
and that all the convolution layers of the CNN encoder also use 𝑑(8) filters. 
 
The following formulae describe how the new model works and how the loss (𝐿) is computed, 
given a training instance. Fill in the blanks (for the solution, they have been filled in in red).  
The notation [. . . ; . . . ] denotes concatenation and 𝑓, 𝑔 denote activation functions.    

 
Encoder: (𝑖	 ∈ 	 {1, 2, 3, . . . , n}, 𝑙	 ∈ 	 {2, 3, 4}	) 
 
𝑒+ = 	𝐸 𝑥+ ∈ 	ℝ%

(#) 	  (The embedding of the English word at position i.) 
 
(Assume that 𝑒' = 𝑒59& is always an all-zeros embedding of the padding token.)  
 
ℎ+
(&) = ReLUG𝑊(&)[𝑒+:&; 𝑒+; 𝑒+9&] + 𝑏(&)H + 𝑒+ ∈ ℝ%

(#)    
        𝑊(&) ∈ ℝ%(#)×(∙%(#) 
        𝑏(&) ∈ ℝ%(#) 
 
ℎ+
(<) = ReLU/𝑊(=) aℎ+:&

(<:&); ℎ+
(<:&); ℎ+9&

(<:&)b + 𝑏(<)1 + ℎ+
(<:&) ∈ ℝ%(#) 

        𝑊(=) ∈ ℝ%(#)×(∙%(#) 
        𝑏(=) ∈ ℝ%(#) 

 
  

Stacked CNN encoder
pad ℎ!(#) ℎ%(#) ℎ&(#) ℎ#(#) ℎ'

(#) … ℎ()!(#) ℎ((#) pad

pad ℎ!(&) ℎ%(&) ℎ&(&) ℎ#(&) ℎ'
(&) … ℎ()!(&) ℎ((#) pad

pad ℎ!(%) ℎ%(%) ℎ&(%) ℎ#(%) ℎ'(%) … ℎ()!(%) ℎ((%) pad

pad ℎ!(!) ℎ%(!) ℎ&(!) ℎ#(!) ℎ'
(!) … ℎ()!(!) ℎ((!) pad

pad "! "% "& "# " … "()! "( pad !(")-dim. word embeddings

1st conv. layer (!(")filters)

2nd conv. layer (!(")filters)

3rd conv. layer (!(")filters)

4th conv. layer (!(") filters)



 
 

 

Decoder: (𝑖	 ∈ 	 {1, 2, 3, . . . , n}	,  𝑗	 ∈ 	 {1, 2, 3, . . . , 𝑚}) 
 

𝑡= = 𝐸4𝑦= ∈ ℝ%
(#)  (The embedding of the correct German word at position j.) 

 
𝑧= = LSTMG𝑧=:&,  =𝑡=:&; 𝑐=?H ∈ 	ℝ%

(#)      𝑧' ∈ ℝ%
(#), 𝑡' ∈ ℝ%

(#) 
 

(We assume we are in training mode and that we use teacher 
 forcing, hence we use the correct previous German word as the  
 previous word, which has embedding 𝑡=:&. )   

 
𝑎	j +,= = 𝑣/ ⋅ 𝑓(𝑊(>) aℎ+

(*); 𝑧=:&b + 𝑏(>)) ∈ ℝ      𝑊(>) ∈ ℝ%(%)×"∙%(#)  

  𝑏(>) ∈ ℝ%(%) , 𝑣 ∈ ℝ%(%)  

𝑎+,= =
exp(𝑎	j +,=)

∑ exp(𝑎	j +!,=)5
+!?&

 

 
𝑐= = 𝑔(∑ 𝑎+,=ℎ+

(*)
+ ) ∈ ℝ%(#)  

 
𝑜o= = 𝑊(@)𝑧= + 𝑏(@) ∈ ℝ|6

!|    𝑊(@) ∈ ℝ|6!|×%(#) 
       𝑏(@) ∈ ℝ|6!| 
𝑜=,A =

BCD(@E&,()

∑ BCD(@E&,()
|*!|
(+,

    (How probable the model believes it is for the k-th word of the 

     German vocabulary to be the correct word for the j-th position of 
     the translation.) 
 
𝑟= = argmax<	 𝑦=,< 	 (According to the 1-hot 𝑦=, the correct word for the j-the position of 
      the translation is the 𝑟=-th word of the German vocabulary.) 
 
𝐿 = −∑ log 𝑜=,H&

7
=?&   (By minimizing L, we maximize the likelihood of the correct German 

     word, at every position of the German translation.) 
 


