Exercises on Natural Language Processing with Recurrent Neural Networks
Ion Androutsopoulos, 2025-26

Submit as a group of 2-3 members (unless specified otherwise in the lectures) a report
(max. 10 pages, PDF format) for exercises 1 and 2. Include in your report all the
required information, especially experimental results. Do not include code in the report,
but include a link to a Colab notebook with your code. Make sure to divide fairly the
work of your group to its members and describe in your report the contribution of each
member. The contribution of each member will also be checked during the oral
examination of your submission. For delayed submissions, one point will be subtracted
per day of delay.

-> 1. Repeat exercise 4 of Part 3 (text classification with MLPs), now using a bi-directional
stacked RNN (with GRU or LSTM cells) with self-attention, all implemented (by you) in
PyTorch. You can use a self-attention MLP (slides 16—18) or a single dense layer to obtain
attention scores. Tune the hyper-parameters (e.g., number of stacked RNNs, number of
hidden layers in the self-attention MLP, dropout probability) on the development subset of
your dataset. Monitor the performance of the RNN on the development subset during training
to decide how many epochs to use. You may optionally add an extra RNN layer to produce
word embeddings from characters (slide 19), concatenating each resulting character-based
word embedding with the corresponding pre-trained word embedding (e.g., obtained with
Word2Vec). Include experimental results of a baseline majority classifier, as well as
experimental results of your best probabilistic classifier from exercise 11 of Part 2 and your
MLP classifier from exercise 4 of Part 3, now treated as baselines. Include in your report:

e Curves showing the loss on training and development data as a function of epochs.

e Precision, recall, F1, precision-recall AUC scores for each class and classifier,
separately for the training, development, and test subsets, as in exercise 4 of Part 3.

e Macro-averaged precision, recall, F1, precision-recall AUC scores (averaging the
corresponding scores of the previous bullet over the classes), for each classifier,
separately for the training, development, and test subsets, as in exercise 4 of Part 3.

e A short description of the methods and datasets you used, including statistics about
the datasets (e.g., average document length, number of training/dev/test documents,
vocabulary size) and a description of the preprocessing steps that you performed.

You may optionally wish to try ensembles (e.g., majority voting of the best checkpoints,
temporal averaging of the weights of the best checkpoints).

> 2. Repeat exercise 5 of Part 3 (text classification with MLPs), now using a bi-directional
stacked RNN (with GRU or LSTM cells) implemented (by you) in PyTorch. Tune the hyper-
parameters (e.g., number of stacked RNNs, dropout probability) on the development subset.
Monitor the performance of the RNN on the development subset during training to decide
how many epochs to use. You may optionally add an extra RNN layer to produce word
embeddings from characters (slide 19), concatenating each resulting character-based word
embedding with the corresponding pre-trained word embedding (e.g., obtained with
Word2Vec). Include experimental results of a baseline that tags each word with the most
frequent tag it had in the training data; for words that were not encountered in the training
data, the baseline should return the most frequent tag (over all words) of the training data.
Also include experimental results of your best method of exercise 5 of Part 3, now treated as
an additional baseline. Include in your report:

e Curves showing the loss on training and development data as a function of epochs.



e Precision, recall, F1, precision-recall AUC scores for each class (tag) and classifier,
separately for the training, development, and test subsets, as in exercise 5 of Part 3.

e Macro-averaged precision, recall, F1, precision-recall AUC scores for each classifier,
separately for the training, development, and test subsets, as in exercise 5 of Part 3.

e A short description of the methods and datasets you used, including statistics about
the datasets (e.g., average document length, number of training/dev/test documents,
vocabulary size) and a description of the preprocessing steps that you performed.

You may optionally wish to try ensembles (e.g., majority voting of the best checkpoints,
temporal averaging of the weights of the best checkpoints).

3. Write down the equations for a modified version of the “RNN with deep self-attention”
(slide 18), where the uni-directional RNN with GRU cells is replaced by a stacked bi-
directional RNN with GRU cells. Use the notation GRU(h;_4, ;) to denote the new state of a
GRU cell with previous state h,_; and input 7.

Answer: At the first layer of the GRU RNN, we have (fort = 1, ..., k):
Y = GRU (A, %, )

Y = GRU (R, %)

t+1’
1 (1), <1
= TR

where H(()l) is the initial state of the left-to-right GRU RNN of the first layer, E&r)l is the initial
state of the right-to-left GRU RNN of the first layer, *; " denotes concatenation, and X, ..., X
are the word embeddings of the input word sequence.

Similarly, at the m-th layer of the GRU RNN:

-

R™ = GRU (R, A Y)

t—-1’

™ = GRU (AT, ™)

t+1’

A = TR, )
The other equations remain as on slide 18.

4. (a) Modify the equations of the neural network of the previous exercise to support multi-
label classification, i.e., cases where the same text (e.g., tweet) may belong in multiple classes
(labels). As a twist, use a separate label-specific self-attention-head for each class, which will
produce a different distribution of attention scores ac 1, ..., a. x (Where k is again the length of
the input text, counted in words) and a different hgy,, . for each class c. Feed the hgyy, o of
each class ¢ to a separate (different per class) dense layer with a sigmoid to produce the
probability that the input text should be assigned class c.

Answer: Let C be the set of possible classes (labels). We modify the self-attention MLP of

slide 21, so that agl) e R ie, agl) is now a vector (not a scalar) containing |C| attention
scores dyy, ..., @|c|¢ for word position t, one for each possible class. To achieve this, we



modify the dimensions of W® and b® of layer [ of the self-attention MLP, to be |C| x d and

. . . — . (-1
|C|, respectively, where d is the dimensionality of the previous layer a, .

The softmax of slide 18 is now applied /abel-wise, on the attention scores of a particular class,
i.e., for each possible class c:

O, O )
ct’ ac,l' e ac,k

ac¢ = softmax(a
We form a separate weighted sum hg,,,, . for each possible class c:

k
M
hsum,c = 2 ac,thg )

t=1

where M is the number of stacked GRU RNNs of the previous exercise, and we feed each
hsym, to a separate dense layer (a transposed vector really, why?) W, . with bias term by,

per class ¢, to compute the probability of the corresponding class:
P(clxy, oo, ) = oWy chym,c + by c)
The other equations of the neural network remain as in the previous exercise.
(b) Couldn’t we use a single (shared) self-attention-head (and a single hg,,,) for all the
classes? What would change in that case in the equations above? What is the advantage of

using a separate /label-specific self-attention-head for each class?

5. We train the following neural machine translation model.

Er liebte

----------------------------------- 5 NULL Er

iEmbed (% &) E

He loved to eat

Image from Stephen Merity’s http://smerity.com/articles/2016/google nmt_arch.html

Let V, V' be the vocabularies of the source language (English) and target language (German),
respectively. Each training instance is a pair consisting of (i) a sequence of one-hot vectors:

X1, X3, X3, e, Xy, € {0, 1}V



corresponding to an English sentence (each vector shows the position of the corresponding
word in V) and (ii) a sequence of one-hot vectors:

V1,Y2,¥V3r s Ym € {0, 1}|V’|

corresponding to a German sentence that is the correct (gold) translation of the English one
(each vector shows the position of the corresponding word in V).

Let E € RE“*IVI and E" € RA“XIV'l contain the word embeddings of the source and target
language, respectively. (Word embeddings in both languages have d(®) dimensions.)

The following formulae describe how the model works and how the loss (L) is computed,
given a training instance. Fill in the blanks (for the solution, they have been filled in in red).
The notation [...;...] denotes concatenation and f, g denote activation functions.

Encoder: (i € {1,2,3,...,n})

e, =Ex; € R4 (The embedding of the English word at position i.)
Ry = LSTM(h;_y, ¢; ) € R4™ hy € RA™
hy = LSTM(hy,1, ;) € RE® hpy, € REP

hi = [ ] € REA®

Decoder: (i € {1,2,3,...,n}, j € {1,2,3,...,m})

ti=E'y; € R4 (The embedding of the correct German word at position j.)
z = LSTM(z_1, [tj_1; ¢;]) € RZ® 2o € RY?, £ € RZ®

(We assume we are in training mode and that we use teacher
forcing, hence we use the correct previous German word as the
previous word, which has embedding ¢;_;.)

@ij=v" fWOh +UDz_ +b@)eR W@ g ga“x2a®
U(a) € Rd(z)xd(z)

b@ e R,y e RA”

0 o P@))
Y X exp(@ )
6 =W g(Tia;h) € R4 w© e rxza®
8 = W@z +p©@ e RIV'I w© e IV I1xa®
p© e RVl
Ojx = l;:p& (How probable the model believes it is for the k-th word of the

k=1XP(0j k)
German vocabulary to be the correct word for the j-th position of
the translation.)



T, = argmax; yj; (According to the 1-hot y;, the correct word for the j-the position of
the translation is the 7j-th word of the German vocabulary.)

L=- Z}"zl log Ojr; (By minimizing L, we maximize the likelihood of the correct German
word, at every position of the German translation.)

6. [optional] Repeat exercise 3 of Part 1 (n-gram language models and context-aware spelling
correction) now using an RNN language model, instead of an n-gram language model.
Compare the results you obtain using the RNN language model to those you had obtained
with the bigram and trigram language models of Part 1 (and the optional MLP language
model of exercise 7 of Part 3, if you implemented it).

7. (a) In the neural network of slide 18, RNN with deep self-attention

the hidden states hq,hy, ..., h; of the ;

RNN (with GRU cells) are vectors of e e
128 dimensions each. The hidden layers o Hemslligianlg) = et B

(), ..., (I = 1) of the Attention MLP

= ReLU(WDh, + b))
have 64 neurons each, and the outputs

: 1 -1 _ (1=1),(=2) | 5(-1)

of the hidden layers are al ), . a™y, e e R
t t — W(l)ail 1>+b(l)

The output layer of the Attention MLP — sotemax(a®;a®,...,ad)

. : O] ’)

has a single neuron with output a, . >0 e = TR
“he = (1-2)Oh1+20h
. . Hell there relax z = o(W.xi+ U.hiy +b2)
What are the dimensions (shapes) of R = oWzt Uit +,)

WwO,w®?, . wbh? Briefly explain ..
your answers.

, P. Mal iotis and L. d los, “Deeper Attention to Abusive User Content
Moderation”, EMNLP 2017, http://nlp.cs.aueb.gr/pubs/emnlp2017.pdf.
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Matrix W has shape 64 X 128, to convert each vector hq, h,, ..., hy (the RNN states, which
have dimensions 128 X 1 each) to vectors of dimensions 64 X 1, i.e., to vectors with as many
elements as the neurons of layer (1) of the MLP. Each resulting 64 X 1 vector is the output
agl) (for t = 1,..., k) of layer (1) of the MLP, when the MLP is applied to the corresponding
state h; of the RNN.

Matrices W@, ..., W=D have dimensions 64 X 64, to convert the 64 X 1 vectors that W (1)
produces to vectors again of dimensions 64 X 1, i.e., to vectors with as many elements as the
neurons of layers (2), ..., (I — 1) of the MLP. Each resulting 64 X 1 vector is the output

agz)’ ) agl_l) of layer (2), ..., (L — 1), respectively, of the MLP.

Matrix W has shape 1 x 64 (it will be a transposed vector), to convert each vector 64 X 1
generated by W@V to a single real number, i.e., it will produce the real numbers

a®, ...,a® of slide 21.
What are the dimensions (shapes) of b, b, ... b(D? Briefly explain your answers.

b™ is a vector 64 X 1, to be added it to the 64 X 1 vector generated by the multiplication

W®h, (for t = 1, ..., k) and obtain agl), which is also 64 X 1. (An activation function, here
ReLU, does not change the shape of a vector it is applied to, it is simply applied to each
element of the vector.)

Similarly b, ..., b=V are vectors of shape 64 X 1, to add each one to the 64 X 1 vector

generated by the multiplication W(Z)agl), e W(l'l)agl_z), respectively (for t = 1, ..., k) and

@ -
» U

obtain the vectors a,™, ...

, respectively, which are also 64 X 1 each.



b® is real number (degenerate vector 1 X 1), to be added to the real number produced by the

multiplication W(l)agl_l) (fort = 1, ..., k) and obtain the real numbers ag), e a}({l).

(b) We wish to use the network of the previous slide to classify tweets (that refer to a
particular product) in classes c; (positive opinion), ¢, (negative opinion), ¢3 (no opinion), ¢,
(conflict, i.e., positive and negative opinion together). Each tweet is to be classified in exactly
one class. We replace the formula P,_gyy (reject|c) = J(thsum + bp) of the slide above
with the following formula, which you need to complete. The new formula produces (on its
left-hand-side) a vector p € R* containing the probabilities (one per class) that the network

assigns to the input tweet. Complete the right-hand-side of the formula and specify the
dimensions (shapes) of every matrix and vector involved. Briefly explain your answers.

New formula:

p= € R*

Dimensions of matrices and vectors of the right-hand-side and brief explanation:
The new formula will be the following.
p= softmax(thsum + bp)

Matrix W, has shape 4 X 128, to convert the vector hgy,, (Which has shape 128 X 1, since it

is the sum of states of the RNN) to a vector of four real number, which the softmax then
converts to a probability distribution.

b, is a 4 X 1 vector, to be added to the 4 X 1 vector produced by the multiplication W), Ay,



