

Exercises on text classification with Multi-Layer Perceptrons (MLPs)

Ion Androutsopoulos, 2025–26

Submit as a group of 2–3 members (unless specified otherwise in the lectures) a report
(max. 10 pages, PDF format) for exercises 4 and 5. Include in your report all the
required information, especially experimental results. Do not include code in the report,
but include a link to a Colab notebook containing your code. Make sure to divide fairly
the work of your group to its members and describe in your report the contribution of
each member. The contribution of each member will also be checked during the oral
examination of your submission. For delayed submissions, one point will be subtracted
per day of delay.

1. Show that without activation functions, a multi-layer neural network is equivalent to
applying a linear transformation to the input, i.e., the output can be written as 𝑜⃗ = 𝑊𝑥⃗ + 𝑏,
where 𝑊 is a weights matrix, 𝑏 ∈ ℝ is a bias term, and 𝑥⃗𝜖ℝ! is the input feature vector.
2. Confirm the computation of "#

"$%⃗
 in the computation graph of slide 19.

Answer: The gradient that we need to compute is:

𝜕𝐸
𝜕𝑜⃗

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝐸
𝜕𝑜'…
𝜕𝐸
𝜕𝑜(…
𝜕𝐸
𝜕𝑜)⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

Let us consider separately a single derivative "#

"$!
 (a single element of the gradient):

𝜕𝐸
𝜕𝑜(

=
𝜕
𝜕𝑜(

4
1
2
7𝑡* − 𝑜*:

+
)

*,'

=
𝜕
𝜕𝑜(

1
2
(𝑡(− 𝑜()+ =

1
2
∙ 2 ∙ (𝑡(− 𝑜() ∙

𝜕
𝜕𝑜(

(𝑡(− 𝑜()

= (𝑡(− 𝑜() ∙ (−1) = (𝑜(− 𝑡()

Hence:

𝜕𝐸
𝜕𝑜⃗

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝐸
𝜕𝑜'…
𝜕𝐸
𝜕𝑜(…
𝜕𝐸
𝜕𝑜)⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
𝑜' − 𝑡'
…

𝑜(− 𝑡(
…

𝑜) − 𝑡)⎦
⎥
⎥
⎥
⎤
= 𝑜⃗ − 𝑡

Note: We do not need to compute "#

"-⃗
, because we do not update 𝑡 (the correct prediction).

3. (i) Compute the gradient "#

"$%⃗ (#)
 in the network with the following computation graph.

Answer: The gradient "#

"$%⃗ (#)
 is computed as in Exercise 2.

(ii) Show that for a sigmoid node 𝜎(𝑠) = 𝑜⃗, "#

".⃗
 can be computed as follows, where 𝐽 is the

Jacobian matrix.1

1 See https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant.

https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant

Answer: The gradient that we need to compute is:

𝜕𝐸
𝜕𝑠

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝐸
𝜕𝑠'
⋮
𝜕𝐸
𝜕𝑠(
⋮
𝜕𝐸
𝜕𝑠)⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

Let us consider separately a single derivative "#

".!
 (a single element of the gradient). By the

chain rule of derivatives, we obtain:

𝜕𝐸
𝜕𝑠(

=4
𝜕𝐸
𝜕𝑜*

𝜕𝑜*
𝜕𝑠(

)

*,'

However, each 𝑠(affects only 𝑜(= 𝜎(𝑠(). It does not affect any other 𝑜* = 𝜎7𝑠*:, for 𝑗 ≠ 𝑖.

Hence, "$%
".!

= 0	for 𝑗 ≠ 𝑖, and we obtain:

𝜕𝐸
𝜕𝑠(

=
𝜕𝐸
𝜕𝑜(

𝜕𝑜(
𝜕𝑠(

=
𝜕𝐸
𝜕𝑜(

𝜕𝜎(𝑠()
𝜕𝑠(

=
𝜕𝐸
𝜕𝑜(

𝜎(𝑠()71 − 𝜎(𝑠():

where we have use the property of the sigmoid that 𝑑𝜎(𝑥)𝑑𝑥 = 𝜎(𝑥)71 − 𝜎(𝑥):.

Therefore:

𝜕𝐸
𝜕𝑠

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝐸
𝜕𝑠'
⋮
𝜕𝐸
𝜕𝑠(
⋮
𝜕𝐸
𝜕𝑠)⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝐸
𝜕𝑜'

𝜕𝜎(𝑠')
𝜕𝑠'
⋮

𝜕𝐸
𝜕𝑜(

𝜕𝜎(𝑠()
𝜕𝑠(
⋮

𝜕𝐸
𝜕𝑜)

𝜕𝜎(𝑠))
𝜕𝑠) ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝐸
𝜕𝑜'

𝜎(𝑠')71 − 𝜎(𝑠'):

⋮
𝜕𝐸
𝜕𝑜(

𝜎(𝑠()71 − 𝜎(𝑠():

⋮
𝜕𝐸
𝜕𝑜)

𝜎(𝑠))71 − 𝜎(𝑠)):⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

The latter can also be written as:

𝜕𝐸
𝜕𝑠

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜎(𝑠')
𝜕𝑠'

0 … 0

0
𝜕𝜎(𝑠+)
𝜕𝑠+

… 0

⋮ ⋮ ⋮ ⋮

0 0 …
𝜕𝜎(𝑠))
𝜕𝑠) ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝐸
𝜕𝑜'
𝜕𝐸
𝜕𝑜+
⋮
𝜕𝐸
𝜕𝑜)⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

=

⎣
⎢
⎢
⎢
⎡𝜎(𝑠')71 − 𝜎(𝑠'): 0 … 0

0 𝜎(𝑠+)71 − 𝜎(𝑠+): … 0
⋮ ⋮ ⋮ ⋮
0 0 … 𝜎(𝑠))71 − 𝜎(𝑠)):⎦

⎥
⎥
⎥
⎤
𝜕𝐸
𝜕𝑜⃗

More generally, it can be written as:

𝜕𝐸
𝜕𝑠

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜎(𝑠')
𝜕𝑠'

𝜕𝜎(𝑠+)
𝜕𝑠'

…
𝜕𝜎(𝑠))
𝜕𝑠'

𝜕𝜎(𝑠')
𝜕𝑠+

𝜕𝜎(𝑠+)
𝜕𝑠+

…
𝜕𝜎(𝑠))
𝜕𝑠+

⋮ ⋮ ⋮ ⋮
𝜕𝜎(𝑠')
𝜕𝑠)

𝜕𝜎(𝑠+)
𝜕𝑠)

…
𝜕𝜎(𝑠))
𝜕𝑠) ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝐸
𝜕𝑜'
𝜕𝐸
𝜕𝑜+
⋮
𝜕𝐸
𝜕𝑜)⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

= 𝐽/
𝜕𝐸
𝜕𝑜⃗

where 𝐽 is the Jacobian matrix:

𝐽 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜎(𝑠')
𝜕𝑠'

𝜕𝜎(𝑠')
𝜕𝑠+

…
𝜕𝜎(𝑠')
𝜕𝑠)

𝜕𝜎(𝑠+)
𝜕𝑠'

𝜕𝜎(𝑠+)
𝜕𝑠+

…
𝜕𝜎(𝑠+)
𝜕𝑠)

⋮ ⋮ ⋮ ⋮
𝜕𝜎(𝑠))
𝜕𝑠'

𝜕𝜎(𝑠))
𝜕𝑠+

…
𝜕𝜎(𝑠))
𝜕𝑠) ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

The latter applies more generally. For a node that computes 𝑓(𝑠, …) = 𝑜⃗, we can compute
"#
".⃗

 as follows (provided that 𝑠 is fed only to the 𝑓 node):

(Check that this is also true for "#

"$%⃗
 in exercise 2.)

If 𝑠 is fed to two (or more) nodes 𝑓', 𝑓+, we have to add the gradients for "#
".⃗

 that we get from
𝑓', 𝑓+:

(iii) Show that for a matrix-vector multiplication node 𝑊𝑜⃗ = 𝑠, "#

"$%⃗
 can be computed as

follows:

Answer:

𝑠 =

⎣
⎢
⎢
⎢
⎡
𝑠'
𝑠+
𝑠0
…
𝑠)⎦
⎥
⎥
⎥
⎤
= 𝑊𝑜⃗ =

⎣
⎢
⎢
⎢
⎡
𝑤',' 𝑤+,' … 𝑤2,'
𝑤',+ 𝑤+,+ … 𝑤2,+
𝑤',0 𝑤+,0 … 𝑤2,0
… … … …
𝑤',) 𝑤+,) … 𝑤2,)⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
𝑜'
𝑜+
𝑜0
…
𝑜2⎦
⎥
⎥
⎥
⎤
=

⎣
⎢
⎢
⎢
⎡
𝑤','𝑜' +𝑤+,'𝑜+ +⋯+𝑤2,'𝑜2
𝑤',+𝑜' +𝑤+,+𝑜+ +⋯+𝑤2,+𝑜2
𝑤',0𝑜' +𝑤+,0𝑜+ +⋯+𝑤2,0𝑜2

…
𝑤',)𝑜' +𝑤+,)𝑜	+ +⋯+𝑤2,)𝑜2⎦

⎥
⎥
⎥
⎤

The gradient that we need to compute is:

𝜕𝐸
𝜕𝑜⃗

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝐸
𝜕𝑜'
⋮
𝜕𝐸
𝜕𝑜(
⋮
𝜕𝐸
𝜕𝑜2⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

Let us consider separately a single derivative "#

"$!
 (a single element of the gradient). By the

chain rule of derivatives, we obtain:

𝜕𝐸
𝜕𝑜(

=4
𝜕𝐸
𝜕𝑠*

𝜕𝑠*
𝜕𝑜(

)

*,'

According to the equations for 𝑠 = 𝑊𝑜⃗ above:

𝑠* = 𝑤',*𝑜' +𝑤+,*𝑜+ +⋯+𝑤(,*𝑜(+⋯	+ 𝑤2,*𝑜2

Hence:

𝜕𝑠*
𝜕𝑜(

= 𝑤(,*

Therefore:

𝜕𝐸
𝜕𝑜(

=4
𝜕𝐸
𝜕𝑠*

𝜕𝑠*
𝜕𝑜(

)

*,'

=4
𝜕𝐸
𝜕𝑠*

𝑤(,*

)

*,'

which can also be written as:

𝜕𝐸
𝜕𝑜(

= K
𝜕𝑠'
𝜕𝑜(

𝜕𝑠+
𝜕𝑜(

…
𝜕𝑠)
𝜕𝑜(

L

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝐸
𝜕𝑠'
𝜕𝐸
𝜕𝑠+
⋮
𝜕𝐸
𝜕𝑠)⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

= [𝑤(,' 𝑤(,+ … 𝑤(,)]

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝐸
𝜕𝑠'
𝜕𝐸
𝜕𝑠+
⋮
𝜕𝐸
𝜕𝑠)⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

Hence, for the overall gradient:

𝜕𝐸
𝜕𝑜⃗

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝐸
𝜕𝑜'
𝜕𝐸
𝜕𝑜+
⋮
𝜕𝐸
𝜕𝑜(
⋮
𝜕𝐸
𝜕𝑜2⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝑠'
𝜕𝑜'

𝜕𝑠+
𝜕𝑜'

…
𝜕𝑠)
𝜕𝑜'

𝜕𝑠'
𝜕𝑜+

𝜕𝑠+
𝜕𝑜+

…
𝜕𝑠)
𝜕𝑜+

⋮ ⋮ ⋮ ⋮
𝜕𝑠'
𝜕𝑜(

𝜕𝑠+
𝜕𝑜(

…
𝜕𝑠)
𝜕𝑜(

⋮ ⋮ ⋮ ⋮
𝜕𝑠'
𝜕𝑜2

𝜕𝑠+
𝜕𝑜2

…
𝜕𝑠)
𝜕𝑜2⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝐸
𝜕𝑠'
𝜕𝐸
𝜕𝑠+
⋮
𝜕𝐸
𝜕𝑠)⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
𝑤',' 𝑤',+ … 𝑤',)
𝑤+,' 𝑤+,+ … 𝑤+,)
⋮ ⋮ ⋮ ⋮
𝑤(,' 𝑤(,+ … 𝑤(,)
⋮ ⋮ ⋮ ⋮

𝑤2,' 𝑤2,+ … 𝑤2,)⎦
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝐸
𝜕𝑠'
𝜕𝐸
𝜕𝑠+
⋮
𝜕𝐸
𝜕𝑠)⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

𝐽$%⃗
/ 𝜕𝐸
𝜕𝑠

= 𝑊/ 𝜕𝐸
𝜕𝑠

Note: We prefer to use matrix operators, which can be efficiently computed using highly
optimized algorithms and GPUs, rather than relying on our own for-loops (e.g., in our own
Python scripts) to compute individual elements of matrices, which is much slower.

(iv) Show that for a matrix-vector multiplication node 𝑊𝑜⃗ = 𝑠, "#

"3
= "#

".⃗
⊗ 𝑜⃗, where ⊗

denotes the outer product.2

2 See https://en.wikipedia.org/wiki/Matrix_multiplication#Outer_product.

https://en.wikipedia.org/wiki/Matrix_multiplication#Outer_product

Answer: Recall that we use the following notation for the elements of 𝑊:

𝑊 =

⎣
⎢
⎢
⎢
⎡
𝑤',' 𝑤+,' … 𝑤2,'
𝑤',+ 𝑤+,+ … 𝑤2,+
𝑤',0 𝑤+,0 … 𝑤2,0
… … … …
𝑤',) 𝑤+,) … 𝑤2,)⎦

⎥
⎥
⎥
⎤

The gradient that we need to compute is:

𝜕𝐸
𝜕𝑊

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝐸
𝜕𝑤','

𝜕𝐸
𝜕𝑤+,'

…
𝜕𝐸

𝜕𝑤2,'
𝜕𝐸
𝜕𝑤',+

𝜕𝐸
𝜕𝑤+,+

…
𝜕𝐸

𝜕𝑤2,+
𝜕𝐸
𝜕𝑤',0

𝜕𝐸
𝜕𝑤+,0

…
𝜕𝐸

𝜕𝑤2,0… … … …
𝜕𝐸
𝜕𝑤',)

𝜕𝐸
𝜕𝑤+,)

…
𝜕𝐸

𝜕𝑤2,)⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

Let us consider separately a single derivative "#

"4!,%
 (a single element of the gradient). By the

chain rule of derivatives, we obtain:

𝜕𝐸
𝜕𝑤(,*

=4
𝜕𝐸
𝜕𝑠5

𝜕𝑠5
𝜕𝑤(,*

)

5,'

According to the equations for 𝑠 = 𝑊𝑜⃗ in part (iii) of the exercise:

𝑠5 = 𝑤',5𝑜' +𝑤+,5𝑜+ +⋯+𝑤(,5𝑜(+⋯	+ 𝑤2,5𝑜2

Hence:	

𝜕𝑠5
𝜕𝑤(,*

= 0,	for	𝑙 ≠ 𝑗

and:

𝜕𝐸
𝜕𝑤(,*

=4
𝜕𝐸
𝜕𝑠5

𝜕𝑠5
𝜕𝑤(,*

)

5,'

=
𝜕𝐸
𝜕𝑠*

𝜕𝑠*
𝜕𝑤(,*

Given that:

𝑠* = 𝑤',*𝑜' +𝑤+,*𝑜+ +⋯+𝑤(,*𝑜(+⋯	+ 𝑤2,*𝑜2

we obtain:

𝜕𝑠*
𝜕𝑤(,*

= 𝑜(

Hence:

𝜕𝐸
𝜕𝑤(,*

=
𝜕𝐸
𝜕𝑠*

𝜕𝑠*
𝜕𝑤(,*

=
𝜕𝐸
𝜕𝑠*

𝑜(

Going back to the overall gradient:

𝜕𝐸
𝜕𝑊

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝐸
𝜕𝑤','

𝜕𝐸
𝜕𝑤+,'

…
𝜕𝐸

𝜕𝑤2,'
𝜕𝐸
𝜕𝑤',+

𝜕𝐸
𝜕𝑤+,+

…
𝜕𝐸

𝜕𝑤2,+
𝜕𝐸
𝜕𝑤',0

𝜕𝐸
𝜕𝑤+,'

…
𝜕𝐸

𝜕𝑤2,0
⋮ ⋮ ⋮ ⋮
𝜕𝐸
𝜕𝑤',)

𝜕𝐸
𝜕𝑤+,)

…
𝜕𝐸

𝜕𝑤2,)⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝐸
𝜕𝑠'

𝑜'
𝜕𝐸
𝜕𝑠'

𝑜+ …
𝜕𝐸
𝜕𝑠'

𝑜2

𝜕𝐸
𝜕𝑠+

𝑜'
𝜕𝐸
𝜕𝑠+

𝑜+ …
𝜕𝐸
𝜕𝑠+

𝑜2

𝜕𝐸
𝜕𝑠0

𝑜'
𝜕𝐸
𝜕𝑠0

𝑜+ …
𝜕𝐸
𝜕𝑠0

𝑜2
⋮ ⋮ ⋮ ⋮

𝜕𝐸
𝜕𝑠)

𝑜'
𝜕𝐸
𝜕𝑠)

𝑜+ …
𝜕𝐸
𝜕𝑤.'

𝑜2⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝐸
𝜕𝑠'
𝜕𝐸
𝜕𝑠+
𝜕𝐸
𝜕𝑠0
⋮
𝜕𝐸
𝜕𝑠)⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

[𝑜' 𝑜+ … 𝑜2] =
𝜕𝐸
𝜕𝑠

⊗ 𝑜⃗

à 4. Repeat exercise 11 of Part 2 (text classification with mostly linear classifiers), now
using an MLP classifier implemented (by you) in PyTorch.3 You may use different features in
the MLP classifier than the ones you used in exercise 11 of Part 2. Tune the hyper-parameters
(e.g., number of hidden layers, dropout probability) on the development subset of your
dataset. Monitor the performance of the MLP on the development subset during training to
decide how many epochs to use. Include experimental results of a baseline majority classifier,
as well as experimental results of your best classifier from exercise 11 of Part 2, now treated
as a second baseline. Include in your report:

• Curves showing the loss on training and development data as a function of epochs
(slide 39).

• Precision, recall, F1, precision-recall AUC scores, for each class and classifier,
separately for the training, development, and test subsets, as in exercise 11 of Part 2.

• Macro-averaged precision, recall, F1, precision-recall AUC scores (averaging the
corresponding scores of the previous bullet over the classes), for each classifier,
separately for the training, development, and test subsets, as in exercise 11 of Part 2.

• A short description of the methods and datasets you used, including statistics about
the datasets (e.g., average document length, number of training/dev/test documents,
vocabulary size) and a description of the preprocessing steps that you performed.

3 See http://pytorch.org/.

http://pytorch.org/

You may optionally wish to try ensembles. One possibility is to use k separate MLP
classifiers, corresponding to your k best checkpoints (k best epochs in terms of development
loss), and aggregate their decisions by majority voting. Another possibility is to use temporal
averaging, i.e., use a single MLP classifier, whose weights are the average of the weights of
the k best checkpoints.

à 5. Develop a part-of-speech (POS) tagger for one of the languages of the Universal
Dependencies treebanks (http://universaldependencies.org/), using an MLP (implemented by
you) operating on windows of words (slides 26–27). Consider only the words, sentences, and
POS tags of the treebanks (not the dependencies or other annotations). Use PyTorch to
implement the MLP. You may use any types of word features you prefer, but it is
recommended to use pre-trained word embeddings. Make sure that you use separate training,
development, and test subsets. Tune the hyper-parameters (e.g., number of hidden layers,
dropout probability) on the development subset. Monitor the performance of the MLP on the
development subset during training to decide how many epochs to use. Include experimental
results of a baseline that tags each word with the most frequent tag it had in the training data;
for words that were not encountered in the training data, the baseline should return the most
frequent tag (over all words) of the training data. Include in your report:

• Curves showing the loss on training and development data as a function of epochs
(slide 39).

• Precision, recall, F1, precision-recall AUC scores, for each class (tag) and classifier,
separately for the training, development, and test subsets, as in exercise 11 of Part 2.

• Macro-averaged precision, recall, F1, precision-recall AUC scores (averaging the
corresponding scores of the previous bullet over the classes), for each classifier,
separately for the training, development, and test subsets, as in exercise 11 of Part 2.

• A short description of the methods and datasets you used, including statistics about
the datasets (e.g., average sentence length, number of training/dev/test sentences and
words, vocabulary size) and a description of the preprocessing steps.

You may optionally wish to try ensembles, as in exercise 4 above.

6. (a) We use the window-based
neural network named entity
recognizer (NER) of the slide on the
right, with 300-dimensional word
embeddings, to recognize three
types of named entities (persons,
organizations, locations). We use B-
I-O tags (BPerson, IPerson,
BOrganization etc., with a single O
tag). The size of the vocabulary is
|𝑉| = 100,000. The “+” node concatenates the embeddings of the three words in the window.
The hidden layer contains 500 neurons (with tanh activation functions). What are the
dimensions of matrices 𝐸,𝑊('),𝑊(+)? Fully justify your answers.

7. [optional] Repeat exercise 3 of Part 1 (n-gram language models) now using an MLP
language model, instead of an n-gram language model. The MLP takes as input the
concatenation of the word embeddings of the n previous words, and outputs a probability
distribution over the vocabulary as a prediction for the next word. Compare the results you
obtained using the MLP language model to those you had obtained with the bigram and
trigram language models of Part 1.

http://universaldependencies.org/

