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Abstract

The Data Encryption Standard (DES) is the best known and most

widely used cryptosystem for civilian applications. It was developed

at IBM and adopted by the National Buraeu of Standards in the mid

70's, and has successfully withstood all the attacks published so far in

the open literature. In this paper we develop a new type of cryptan-

alytic attack which can break the reduced variant of DES with eight

rounds in a few minutes on a PC and can break any reduced variant of

DES (with up to 15 rounds) in less than 256 operations. The new at-

tack can be applied to a variety of DES-like substitution/permutation

cryptosystems, and demonstrates the crucial role of the (unpublished)

design rules.

1 Introduction

Iterated cryptosystems are a family of cryptographically strong functions

based on iterating a weaker function n times. Each iteration is called a round

and the cryptosystem is called an n-round cryptosystem. The round function

is a function of the output of the previous round and of a subkey which is a

key dependent value calculated via a key scheduling algorithm. The round

function is usually based on S boxes, bit permutations, arithmetic operations

and the exclusive-or (denoted by � and XOR) operations. The S boxes are

nonlinear translation tables mapping a small number of input bits to a small

number of output bits. They are usually the only part of the cryptosystem

that is not linear and thus the security of the cryptosystem crucially depends

on their choice. The bit permutation is used to rearrange the output bits of

the S boxes in order to make the input bits of each S box in the following

round depend on the output of as many S boxes as possible. The XOR op-

eration is often used to mix the subkey with the data. In most applications

the encryption algorithm is assumed to be known and the secrecy of the data

depends only on the secrecy of the randomly chosen key.

An early proposal for an iterated cryptosystems was Lucifer[7], which was

designed at IBM to resolve the growing need for data security in its products.

The round function of Lucifer has a combination of non linear S boxes and a
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bit permutation. The input bits are divided into groups of four consecutive

bits. Each group is translated by a reversible S box giving a four bit result.

The output bits of all the S boxes are permuted in order to mix them when

they become the input to the following round. In Lucifer only two �xed S

boxes (S0 and S1) were chosen. Each S box can be used at any S box location

and the choice is key dependent. Decryption is accomplished by running the

data backwards using the inverse of each S box.

The Data Encryption Standard (DES) [15] is an improved version of

Lucifer. It was developed at IBM and adopted by the U.S. National Bureau of

Standards (NBS) as the standard cryptosystem for sensitive but unclassi�ed

data (such as �nancial transactions and email messages). DES has become

a well known and widely used cryptosystem. The key size of DES is 56 bits

and the block size is 64 bits. This block is divided into two halves of 32 bits

each. The main part of the round function is the F function, which works

on the right half of the data using a subkey of 48 bits and eight (six-bit to

four-bit) S boxes. The 32 output bits of the F function are XORed with

the left half of the data and the two halves are exchanged. The complete

speci�cation of the DES algorithm appears in [15].

An extensive cryptanalytic literature on DES was published since its

adoption in 1977. Yet, no short-cuts which can reduce the complexity of

cryptanalysis to less than half of exhaustive search were ever reported in the

open literature.

The 50% reduction[9] (under a chosen plaintext attack) is based on the

following symmetry under complementation:

T = DES(P;K)

implies that
�T = DES( �P ; �K)

where �X is the bit by bit complementation of X. Cryptanalysis can exploit

this symmetry if two plaintext/ciphertext pairs (P1, T1) and (P2, T2) are

available with P1 = �P2 (or similarly T1 = �T2). The attacker encrypts P1
under all the 255 keys K whose least signi�cant bit is zero. If such a ciphertext

T is equal to T1 then the corresponding key K is likely to be the real key.

If T = �T2 then �K is likely to be the real key. Otherwise neither K nor �K
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can be the real key. Since testing whether T = �T2 is much faster than an

encryption, the computational saving is very close to 50%.

Di�e and Hellman[6] suggested exhaustive search of the entire key space

on a parallel machine. They estimate that a VLSI chip may be built which

can search one key every microsecond. By building a search machine with

a million such chips, all searching in parallel, 1012 keys can be searched per

second. The entire key space contains about 7 � 1016 keys and it can be

searched in 105 seconds which is about a day. They estimate the cost of this

machine to be $20-million and the cost per solution to be $5000.

Hellman[8] presented a time memory tradeo� method for a chosen plain-

text attack which takes mt words of memory and t2 operations provided mt2

equals the number of possible keys (256 for DES). A special case (m = t)

of this method takes about 238 time and 238 memory, with a 256 preprocess-

ing time. Hellman suggests a special purpose machine which produces 100

solutions per day with an average wait of one day. He estimates that the

machine costs about $4-million and the cost per solution is about $1{100.

The preprocessing is estimated to take 2.3 years on the same machine.

The Method of Formal Coding in which the formal expression of each

bit in the ciphertext is found as a XOR sum of products of the bits of the

plaintext and the key was suggested in [9]. The formal manipulations of

these expressions may decrease the key search e�ort. Schaumuller-Bichl[16,

17] studied this method and concluded that it requires an enormous amount

of computer memory which makes the whole approach impractical.

In 1987 Chaum and Evertse[2] showed that a meet in the middle attack

can reduce the key search for DES reduced to a small number of rounds by

the following factors:

Number of Rounds Reduction Factor

4 219

5 29

6 22

7 {

They also showed that a slightly modi�ed version of DES reduced to seven
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rounds can be solved with a reduction factor of 2. However, they proved that

a meet in the middle attack of this kind is not applicable to DES reduced to

eight or more rounds.

In their method they look for a set of data bits (J) in a middle round and

a set of key bits (I) for which any change of the values of the I bits cannot

change the value of the J bits in either directions. Knowing those �xed sets

and given several plaintext/ciphertext pairs the following algorithm is used:

1. Try all the keys in which all the key bits in I are zero. Partially encrypt

and decrypt a plaintext/ciphertext pair to get the data in the middle

round.

2. Discard the keys for which the J bits are not the same under partial

encryption/decryption.

3. For the remaining keys try all the possible values of the key bits in I.

This algorithm requires about 256�jIj + 2jIj encryption/decryption attempts.

In the same year, Donald W. Davies[3] described a known plaintext crypt-

analytic attack on DES. Given su�cient data, it could yield 16 linear rela-

tionships among key bits, thus reducing the size of a subsequent key search

to 240. It exploited the correlation between the outputs of adjacent S boxes,

due to their inputs being derived from, among other things, a pair of iden-

tical bits produced by the bit expansion operation. This correlation could

reveal a linear relationship among the four bits of key used to modify these

S box input bits. The two 32-bit halves of the DES result (ignoring IP) re-

ceive these outputs independently, so each pair of adjacent S boxes could be

exploited twice, yielding 16 bits of key information.

The analysis does not require the plaintext P or ciphertext T but uses

the quantity P �T and requires a huge number of random inputs. The S box

pairs vary in the extent of correlation they produce so that, for example, the

pair S7/S8 needs about 1017 samples but pair S2/S3 needs about 1021. With

about 1023 samples, all but the pair S3/S4 should give results (i.e., a total of

14 bits of key information). To exploit all pairs the cryptanalyst needs about

1026 samples. The S boxes do not appear to have been designed to minimize
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the correlation but they are somewhat better than a random choice in this

respect. Since the number of samples is larger than the 264 size of the sample

space, this attack is purely theoretical, and cannot be carried out. However,

for DES reduced to eight rounds the sample size of 1012 or 1013 (about 240)

is on the verge of practicality. Therefore, Davies' analysis had penetrated

more rounds than previously reported attacks.

During the last decade several cryptosystems which are variants of DES

were suggested. Schaumuller-Bichl suggested three such cryptosystems [16,

18]. Two of them (called C80 and C82) are based on the DES structure with

the replacement of the F function by nonreversible functions. The third

one, called The Generalized DES Scheme (GDES), is an attempt to speed

up DES. GDES has 16 rounds with the original DES F function but with a

larger block size which is divided into more than two parts. She claims that

GDES increases the encryption speed of DES without decreasing its security.

Another variant is the Fast Data Encryption Algorithm (Feal). Feal was

designed to be e�ciently implementable on an eight bit microprocessor. The

�rst version of Feal[20], called Feal-4, has four rounds. Feal-4 was broken

by Den-Boer[4] using a chosen plaintext attack with 100{10000 encryptions.

The creators of Feal reacted by introducing a new version, called Feal-8, with

eight rounds and additional XORs of the plaintext and the ciphertext with

subkeys[19,14]. Both versions were described as cryptographically better

than DES in several aspects.

In this paper we describe a new kind of attack that can be applied to

many DES-like iterated cryptosystems. This is a chosen plaintext attack

which uses only the resultant ciphertexts. The basic tool of the attack is the

ciphertext pair which is a pair of ciphertexts whose plaintexts have particular

di�erences. The two plaintexts can be chosen at random, as long as they

satisfy the di�erence condition, and the cryptanalyst does not have to know

their values. The attack is statistical in nature and can fail in rare instances.

The main results described in this paper are as follows (note that the

complexities we quote are based on the number of encryptions needed to

create all the necessary pairs on the target machine, while the attacking

algorithm itself uses fewer and simpler operations). DES reduced to six

rounds was broken in less than 0.3 seconds on a personal computer using 240
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Rounds Complexity

4 24

6 28

8 216

9 226

10 235

11 236

12 243

13 244

14 251

15 252

16 258

Table 1. Summary of the cryptanalysis of DES.

ciphertexts. DES reduced to eight rounds was broken in less than two minutes

on a computer by analysing 15000 ciphertexts chosen from a pool of 50000

candidate ciphertexts. DES reduced to up to 15 rounds is breakable faster

than exhaustive search, but DES with 16 rounds still requires 258 steps (which

is slightly higher than the complexity of exhaustive search). A summary of

the cryptanalytic results on DES reduced to intermediate number of rounds

appears in table 1.

Some researchers have proposed to strengthen DES by making all the

subkeys Ki independent (or at least to derive them in a more complicated

way from a longer actual key K). Our attack can be carried out even in

this case. DES reduced to eight rounds with independent subkeys (i.e., with

8 � 48 = 384 independent key bits which are not compatible with the key

scheduling algorithm) was broken in less than two minutes using the same

ciphertexts as in the case of dependent subkeys. The full DES with inde-

pendent subkeys (i.e., with 16 � 48 = 768 independent key bits) is breakable

within 261 steps. As a result, any modi�cation of the key scheduling algo-

rithm cannot make DES much stronger. The attacks on DES reduced to 9{16

rounds are not in
uenced by the P permutation and the replacement of the

P permutation by any other permutation cannot make them less successful.

On the other hand, the replacement of the order of the eight DES S boxes

6



(without changing their values) can make DES much weaker: DES with 16

rounds with a particular replaced order is breakable in about 246 steps. The

replacement of the XOR operation by the more complex addition operation

makes this cryptosystem much weaker. DES with random S boxes is shown

to be very easy to break. Even a minimal change of one entry in one of the

DES S boxes can make DES easier to break. GDES is shown to be trivially

breakable with six encryptions in less than 0.2 seconds, while GDES with

independent subkeys is breakable with 16 encryptions in less than 3 seconds.

This attack is applicable also to a wide variety of DES-like cryptosystems.

In forthcoming papers we describe several extensions to our new attack. Lu-

cifer reduced to eight rounds can be broken using less than 60 ciphertexts (30

pairs). The Feal-8 cryptosystem can be broken with less than 2000 cipher-

texts (1000 pairs) and the Feal-4 cryptosystem can be broken with just eight

ciphertexts and one of their plaintexts. As a reaction to our attack on Feal-8,

its creators introduced Feal-N[11], with any even number of rounds N. They

suggest the use of Feal-N with 16 and 32 rounds. Feal-NX[12] is similar to

Feal-N with the extension of the key size to 128 bits. Nevertheless, Feal-N

and Feal-NX can be broken for any N � 31 rounds faster than exhaustive

search.

Di�erential cryptanalytic techniques are applicable to hash functions, in

addition to cryptosystems. For example, the following messages hash to the

same value in Merkle's Snefru[10] function with two passes:

� 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000

� 00000000 f1301600 13dfc53e 4cc3b093 37461661 ccd8b94d

24d9d35f 71471fde 00000000 00000000 00000000 00000000

� 00000000 1d197f00 2abd3f6f cf33f3d1 8674966a 816e5d51

acd9a905 53c1d180 00000000 00000000 00000000 00000000

� 00000000 e98c8300 1e777a47 b5271f34 a04974bb 44cc8b62

be4b0efc 18131756 00000000 00000000 00000000 00000000

and the following two messages hash to the same value in a variant of

Miyaguchi's N-Hash[13] function with six rounds:
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� CAECE595 127ABF3C 1ADE09C8 1F9AD8C2

� 4A8C6595 921A3F3C 1ADE09C8 1F9AD8C2.

2 Introduction to di�erential cryptanalysis

Di�erential cryptanalysis is a method which analyses the e�ect of particular

di�erences in plaintext pairs on the di�erences of the resultant ciphertext

pairs. These di�erences can be used to assign probabilities to the possible

keys and to locate the most probable key. This method usually works on

many pairs of plaintexts with the same particular di�erence using only the

resultant ciphertext pairs. For DES-like cryptosystems the di�erence is cho-

sen as a �xed XORed value of the two plaintexts. In this introduction we

show how these di�erences can be analyzed and exploited.

We now introduce the following notation:

nx: An hexadecimal number is denoted by a subscript x (i.e., 10x = 16).

X
�, X 0: At any intermediate point during the encryption of pairs of mes-

sages, X and X� are the corresponding intermediate values of the two

executions of the algorithm, and X 0 is de�ned to be X 0 = X �X
�.

P (X): The P permutation is denoted by P (X). Note that P as a variable

denotes the plaintext.

E(X): The E expansion is denoted by E(X).

IP (X): The initial permutation. In this paper the existence of IP and IP�1

are ignored, since they have no cryptanalytic signi�cance in our attack.

P : The plaintext (after the known initial permutation IP ) is denoted by P .

P
� is the other plaintext in the pair and P 0 = P � P

� is the plaintexts

XOR.

T : The ciphertexts of the corresponding plaintexts P , P � (before the inverse

initial permutation IP�1) are denoted by T and T �. T 0 = T � T
� is

the ciphertexts XOR.
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(L;R): The left and right halves of the plaintext P are denoted by L and R

respectively.

(l; r): The left and right halves of the ciphertext T are denoted by l and r

respectively.

a, . . . , j: The 32 bit inputs of the F function in the various rounds. See

�gure 1. Note that a = R.

A, . . . , J: The 32 bit outputs of the F function in the various rounds. See

�gure 1.

Si: The S boxes S1, S2, . . . , S8.

SiEX, SiKX, SiIX , SiOX: The input of Si in round X is denoted by SiIX for

X 2 fa; : : : ; jg. The output of Si in round X is denoted by SiOX . The

value of the six subkey bits entering the S box Si is denoted by SiKX and

the value of the six input bits of the expanded data (E(X)) which are

XORed with SiKX to form SiIX is denoted by SiEX . The S box number

i and the round marker X are optional. For example S1Ea denotes the

�rst six bits of E(a). S1Ka denotes the �rst six bits of the subkey K1.

S1Ia denotes the input of the S box S1 which is S1Ia = S1Ea � S1Ka.

S1Oa denotes the output of S1 which is S1Oa = S1(S1Ia). See �gure 2.

De�nition 1 An independent key is a list of n subkeys which is not neces-

sarily derived from the key scheduling algorithm.

Example 1 DES has 216�48 = 2768 possible independent keys, but only 256

possible keys. Note that every key can be viewed as a special type of an

independent key.

Remark To simplify the probabilistic analysis of our attack, we assume that

all the subkeys are independent. Attacks on DES with dependent subkeys

seem to be just as successful in practice, but their theoretical analysis is much

harder.

Let us recall how the DES F function behaves in these terms. The F

function takes a 32 bit input and a 48 bit key. The input is expanded (by
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Plaintext (P)

F

K1

A a

F

K2

B b

F

K3

C c

F

K4

D d

F

K5

E e

F

K6

F f

F

K7

G g

F

K8

H h

Ciphertext (T)

Figure 1. DES reduced to eight rounds.
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input (32 bits)

E

48 bits

S1
E

S2
E

S3
E

S4
E

S5
E

S6
E

S7
E

S8
E

subkey  (48 bits)

S1
K

S2
K

S3
K

S4
K

S5
K

S6
K

S7
K

S8
K

S1

S1
I

S1
O

S2

S2
I

S2
O

S3

S3
I

S3
O

S4

S4
I

S4
O

S5

S5
I

S5
O

S6

S6
I

S6
O

S7

S7
I

S7
O

S8

S8
I

S8
O

P

output (32 bits)

Figure 2. The F function of DES.

the E expansion) to 48 bits and XORed with the key. The result is fed into

the S boxes and the resultant bits are permuted.

Given the XOR value of an input pair to the F function it is easy to

determine its XOR value after the expansion by the formula:

E(X)� E(X�) = E(X �X
�):

The XOR with the key does not change the XOR value in the pair, i.e., the

expanded XOR stays valid even after the XOR with the key, by the formula:

(X �K)� (X� �K) = X �X
�
:

The output of the S boxes is mixed by the P permutation and thus the XOR

of the pair after the P permutation is the permuted value of the S boxes
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output XOR, by the formula:

P (X)� P (X�) = P (X �X
�):

The output XOR of the F function is linear in the XOR operation that

connects the di�erent rounds:

(X � Y )� (X� � Y
�) = (X �X

�)� (Y � Y
�):

The XOR of pairs is thus invariant in the key and is linear in the E expansion,

the P permutation and the XOR operation.

The S boxes are known to be non linear. Knowledge of the XOR of the

input pairs cannot guarantee knowledge of the XOR of the output pairs.

Usually several output XORs are possible. A special case arises when both

inputs are equal, in which case both outputs must be equal too. However, a

crucial observation is that for any particular input XOR not all the output

XORs are possible, the possible ones do not appear uniformly, and some

XORed values appear much more frequently than others.

Before we proceed we want to mention the known design principles of the

S boxes[1]:

1. No S box is a linear or a�ne function of its input.

2. Changing one input bit to an S box results in changing at least two

output bits.

3. S(X) and S(X � 001100) must di�er in at least two bits.

4. S(X) 6= S(X � 11ef00) for any choice of e and f .

5. The S boxes were chosen to minimize the di�erences between the num-

ber of 1's and 0's in any S box output when any single bit is held

constant.

In DES any S box has 64 � 64 possible input pairs, and each one of them

has an input XOR and an output XOR. There are only 64 �16 possible tuples

of input and output XORs. Therefore, each tuple results in average from
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four pairs. However, not all the tuples exist as a result of a pair, and the

existing ones do not have a uniform distribution. Very important properties

of the S boxes are derived from the analysis of the tables that summarize

this distribution:

De�nition 2 A table that shows the distribution of the input XORs and

output XORs of all the possible pairs of an S box is called the pairs XOR

distribution table of the S box. In this table each row corresponds to a partic-

ular input XOR, each column corresponds to a particular output XOR and

the entries themselves count the number of possible pairs with such an input

XOR and an output XOR.

Each line in a pairs XOR distribution table contains 64 possible pairs in

16 di�erent entries. Thus in each line in the table the average of the entries

is exactly four.

Example 2 Table 2 is a partial1 pairs XOR distribution table of S1. S1

itself is described in table 3.

Example 3 The �rst line of table 2 shows that for the zero input XOR, the

output XOR must be zero too, as we noticed above. Also, the di�erent lines

in the table have di�erent output XOR distributions.

The following de�nition deals with pairs XOR distribution tables:

De�nition 3 Let X be a six bit value and Y be a four bit value. We say

that X may cause Y by an S box if there is a pair in which the input XOR

of the S box equals X and the output XOR of the S box equals Y . If there

is such a pair we write X ! Y , and if there is no such pair we say that X

may not cause Y by the S box and write X 6! Y .

Example 4 Consider the input XOR S10I = 34x. It has only eight possible

output XORs, while the other eight entries are impossible. The possible

output XORs S10O are 1x, 2x, 3x, 4x, 7x, 8x, Dx and Fx. Therefore, the

input XOR S10I = 34x may cause output XOR S10O = 1x (34x ! 1x). Also

34x ! 2x and 34x ! Fx. On the other hand 34x 6! 0x and 34x 6! 9x.

1The full pairs XOR distribution tables of all the S boxes appear in appendix B.
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Input Output XOR
XOR 0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx

0x 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1x 0 0 0 6 0 2 4 4 0 10 12 4 10 6 2 4
2x 0 0 0 8 0 4 4 4 0 6 8 6 12 6 4 2
3x 14 4 2 2 10 6 4 2 6 4 4 0 2 2 2 0
4x 0 0 0 6 0 10 10 6 0 4 6 4 2 8 6 2
5x 4 8 6 2 2 4 4 2 0 4 4 0 12 2 4 6
6x 0 4 2 4 8 2 6 2 8 4 4 2 4 2 0 12
7x 2 4 10 4 0 4 8 4 2 4 8 2 2 2 4 4
8x 0 0 0 12 0 8 8 4 0 6 2 8 8 2 2 4
9x 10 2 4 0 2 4 6 0 2 2 8 0 10 0 2 12
Ax 0 8 6 2 2 8 6 0 6 4 6 0 4 0 2 10
Bx 2 4 0 10 2 2 4 0 2 6 2 6 6 4 2 12
Cx 0 0 0 8 0 6 6 0 0 6 6 4 6 6 14 2
Dx 6 6 4 8 4 8 2 6 0 6 4 6 0 2 0 2
Ex 0 4 8 8 6 6 4 0 6 6 4 0 0 4 0 8
Fx 2 0 2 4 4 6 4 2 4 8 2 2 2 6 8 8

.

.

.
30x 0 4 6 0 12 6 2 2 8 2 4 4 6 2 2 4
31x 4 8 2 10 2 2 2 2 6 0 0 2 2 4 10 8
32x 4 2 6 4 4 2 2 4 6 6 4 8 2 2 8 0
33x 4 4 6 2 10 8 4 2 4 0 2 2 4 6 2 4
34x 0 8 16 6 2 0 0 12 6 0 0 0 0 8 0 6
35x 2 2 4 0 8 0 0 0 14 4 6 8 0 2 14 0
36x 2 6 2 2 8 0 2 2 4 2 6 8 6 4 10 0
37x 2 2 12 4 2 4 4 10 4 4 2 6 0 2 2 4
38x 0 6 2 2 2 0 2 2 4 6 4 4 4 6 10 10
39x 6 2 2 4 12 6 4 8 4 0 2 4 2 4 4 0
3Ax 6 4 6 4 6 8 0 6 2 2 6 2 2 6 4 0
3Bx 2 6 4 0 0 2 4 6 4 6 8 6 4 4 6 2
3Cx 0 10 4 0 12 0 4 2 6 0 4 12 4 4 2 0
3Dx 0 8 6 2 2 6 0 8 4 4 0 4 0 12 4 4
3Ex 4 8 2 2 2 4 4 14 4 2 0 2 0 8 4 4
3Fx 4 8 4 2 4 0 2 4 4 2 4 8 8 6 2 2

Table 2. Partial pairs XOR distribution table of S1.

14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7

0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8

4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

Table 3. S1 table.

Examples 3 and 4 demonstrate that for a �xed input XOR, the possible

output XORs do not have a uniform distribution. The following de�nition

extends de�nition 3 with probabilities.

De�nition 4 We say that X may cause Y with probability p by an S box if

for a fraction p of the pairs in which the input XOR of the S box equals X,

the output XOR equals Y .

Example 5 34x ! 2x results from 16 out of the 64 pairs of S1, i.e., with
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S box Percentage

S1 79.4

S2 78.6

S3 79.6

S4 68.5

S5 76.5

S6 80.4

S7 77.2

S8 77.1

Table 4. Percentage of the possible entries in the various pairs XOR distri-

bution tables.

probability 1
4
. 34x ! 4x results only from two out of the 64 pairs of S1, i.e.,

with probability 1
32
.

Di�erent distributions appear in di�erent lines of the table. In total

between 70% and 80% of the entries are possible and between 20% and 30%

are impossible. The exact percentage for each S box is shown in table 4. In

various formulas in this paper we approximate the percentage of the possible

entries by 80%.

The pairs XOR distribution tables let us �nd the possible input and

output values of pairs given their input and output XORs. The following

example shows a simple case:

Example 6 Consider the entry 34x ! 4x in the pairs XOR distribution

table of S1. Since the entry 34x ! 4x has value 2, only two pairs satisfy

these XORs. These pairs are duals. If the �rst pair is S1I, S1
�

I then the

other pair is S1�I, S1I . By looking at table 5 we see that these inputs must

be 13x and 27x whose corresponding outputs are 6x and 2x respectively.

Next we show how to �nd the key bits using known input pairs and output

XOR of an S box in the F function.

Example 7 Consider S1 and assume that the input pair is S1E = 1x, S1
�

E =

35x and that the value of the corresponding six key bits is S1K = 23x. Then
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Output Possible

XOR Inputs

(S10O) (S1I)

1 03, 0F , 1E, 1F , 2A, 2B, 37, 3B

2 04, 05, 0E, 11, 12, 14, 1A, 1B, 20, 25, 26, 2E, 2F , 30, 31, 3A

3 01, 02, 15, 21, 35, 36

4 13, 27

7 00, 08, 0D, 17, 18, 1D, 23, 29, 2C, 34, 39, 3C

8 09, 0C, 19, 2D, 38, 3D

D 06, 10, 16, 1C, 22, 24, 28, 32

F 07, 0A, 0B, 33, 3E, 3F

Table 5. Possible input values for the input XOR S10I = 34x by the out-

put XOR (in hexadecimal).

S box input Possible Keys

06, 32 07, 33

10, 24 11, 25

16, 22 17, 23

1C, 28 1D, 29

Table 6. Possible keys for 34x ! Dx by S1 with input 1x, 35x (in hexadec-

imal).

the actual inputs of S1 (after XORing the input and key bits) are S1I = 22x,

S1�I = 16x and the outputs are S1O = 1x, S1
�

O = Cx respectively. The output

XOR is S10O = Dx.

Assume we know that S1E = 1x, S1
�

E = 35x and S1
0

O = Dx and we want

to �nd the key value S1K. The input XOR is S10E = S10I = 34x regardless

of the actual value of S1K. By consulting table 2 we can see that the input

to the S box has eight possibilities. These eight possibilities make eight

possibilities for the key (by SK = SE � SI) as described in table 6. Each

line in the table describes two pairs with the same two inputs but with the

opposite order. Each pair leads to one key, so each line leads to two keys

(which are SE � SI and SE � S
�

I ). The right key value S1K must occur in

this table.
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S box input Possible Keys

01, 35 03, 37

02, 36 00, 34

15, 21 17, 23

Table 7. Possible keys for 34x ! 3x by S1 with input 21x, 15x (in hexadec-

imal).

Using additional pairs we can get additional candidates for S1K. Lets look

at the input pair S1E = 21x, S1
�

E = 15x (with the same S1K = 23x). The

inputs to the S box are S1I = 2x, S1
�

I = 36x and the outputs are S1O = 4x,

S1�O = 7x. The output XOR is S10O = 3x. The possible inputs to the S box

where 34x ! 3x and the corresponding possible keys are described in table 7.

The right key must occur in both tables. The only common key values in

tables 6 and 7 are 17x and 23x. These two values are indistinguishable with

this input XOR since 17x�23x = 34x = S10E, but may become distinguishable

by using a pair with a di�erent input XOR value (S10E 6= 34x).

The following example is an extension of example 7 to a three-round

cryptosystem.

Example 8 Assume we have a ciphertext pair whose plaintext XOR is

known and the values of the six bits 33, . . . , 38 of the plaintext XOR are

zero. The input XOR of the �rst round is zero in all the bits entering S1

(S10Ea = S10Ia = 0) and thus the output XOR of S1 in the �rst round must

be zero (S10Oa = 0). The left half of the ciphertext is calculated as the XOR

value of the left half of the plaintext, the output of the �rst round and the

output of the third round (l = L�A�C). Since the plaintext XOR and the

ciphertext XOR are known and the output XOR of S1 in the �rst round is

known as well, the output XOR of S1 in the third round can be calculated.

The input pair S1Ec, S1
�

Ec in the third round is easily extractable from the

ciphertext pair.

If the input pair of S1 in the third round is S1Ec = 1x, S1
�

Ec = 35x and

the output XOR is S10Oc = Dx then the value of S1Kc can be found as in

example 7 and it must appear in table 6. Using additional pairs we can

discard some of the possible values till we get a unique value of S1Kc. Since
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S10Ec is not constant, there should not be any indistinguishable values of the

subkey.

The following de�nition extends de�nitions 3 and 4 for use with the F

function:

De�nition 5 Let X and Y be 32 bit values. We say that X may cause Y

with probability p by the F function if for a fraction p of all the possible input

pairs encrypted by all the possible subkey values in which the input XOR of

the F function equals X, the output XOR equals Y . If p > 0 we denote this

possibility by X ! Y .

Lemma 1 In DES, if X ! Y with probability p by the F function then

every �xed input pair Z, Z� with Z 0 = Z � Z
� = X causes the F function

output XOR to be Y by the same fraction p of the possible subkey values.

Proof To prove the lemma it su�ces to show the property for each of the

S boxes. For each input XOR of the data S 0

E there is S 0

I = S
0

E regardless of

SK. If there are k possible input pairs to the S box with this input XOR

that may cause a given output XOR, we can choose precisely k key values

SK = SE�SI , each taking the �xed input pair SE, S
�

E to one of the possible

input pairs SI , S
�

I of the S box and thus causing the given output XOR.

Thus, the fraction p is held constant for all the input pairs, and therefore

equals the average over all the input pairs.

In other iterated cryptosystems this lemma does not necessarily hold. How-

ever, we assume that the fraction is very close to p, which is usually the

case.

Corollary 1 The probability p of X ! Y by the F function is the prod-

uct of pi in which Xi ! Yi by the S boxes Si (i 2 f1; : : : ; 8g) where

X1X2X3X4X5X6X7X8 = E(X) and Y1Y2Y3Y4Y5Y6Y7Y8 = P
�1(Y ).

The above discussion about �nding the key bits entering S boxes can be

extended to �nd the subkeys entering the F function. The method is as

follows:
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1. Choose an appropriate plaintext XOR.

2. Create an appropriate number of plaintext pairs with the chosen plain-

text XOR, encrypt them and keep only the resultant ciphertext pairs.

3. For each pair derive the expected output XOR of as many S boxes in

the last round as possible from the plaintext XOR and the ciphertext

pair. (Note that the input pair of the last round is known since it

appears as part of the ciphertext pair).

4. For each possible key value, count the number of pairs that result with

the expected output XOR using this key value in the last round.

5. The right key value is the (hopefully unique) key value suggested by

all the pairs.

We are left with the problem of pushing the knowledge of the XORs of

the plaintext pairs as many rounds as possible (in step 3) without making

them all zeroes. When the XORs of the pairs are zero, i.e., both texts are

equal, the outputs are equal too, which makes all the keys equally likely. The

pushing mechanism is a statistical characteristic of the cryptosystem which

is an extension of the single round analysis. Before we de�ne it formally we

give an informal de�nition and three examples.

De�nition 6 (informal) Associated with any pair of encryptions are the

XOR value of its two plaintexts, the XOR of its ciphertexts, the XORs of the

inputs of each round in the two executions and the XORs of the outputs of

each round in the two executions. These XOR values form an n-round char-

acteristic. A characteristic has a probability, which is the probability that a

random pair with the chosen plaintext XOR has the round and ciphertext

XORs speci�ed in the characteristic. We denote the plaintexts XOR of a

characteristic by 
P and its ciphertexts XOR by 
T .

The following example describes a one-round characteristic with proba-

bility 1. This is the only one-round characteristic with probability greater

than 1
4
. This characteristic is very useful and is applicable in any DES-like

cryptosystem.
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Example 9 A one-round characteristic with probability 1 is (for any L0):


P = (L0
; 0x)

A
0 = 0x a

0 = 0x always


T = (L0
; 0x)

F

The following example describes a simple one-round characteristic with

probability 14
64
.

Example 10 In this one-round characteristic all the S box input XORs ex-

cept one are zero. One S box input XOR is not zero, and is chosen to

maximize the probability that the input XOR may cause the output XOR.

Since there are several input bits that are going into two neighboring S boxes

by the E expansion we have to ensure that the XORs of these bits are zero.

There are only two private bits entering each S box. These bits can have

non zero XOR values. The best such probability for S1 is 14
64

(i.e., there is an

entry that contains 14 pairs that does not cause the input of the neighboring

S2 or S8 to be non zero). Thus, it is easy to get a one-round characteristic

with probability 14
64

which is:

S1 : 0Cx ! Ex with probability 14
64

S2; : : : ; S8 : 00x ! 0x always.
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This characteristic can also be written (for any L0) as:


P = (L0
; 60 00 00 00x)

A
0 = 00 80 82 00x a

0 = 60 00 00 00x with probability 14
64

= P (E0 00 00 00x)


T = (L0 � 00 80 82 00x; 60 00 00 00x)

F

One-round characteristics with probability 1
4
are possible using non zero

input XOR in S2 or S6.

The following example describes a two-round characteristic which is eas-

ily obtained by concatenating the two one-round characteristics that are de-

scribed in examples 10 and 9:

Example 11 A two-round characteristic with probability 14
64
:


P = 00 80 82 00 60 00 00 00x

A
0 = 00 80 82 00x a

0 = 60 00 00 00x with probability 14
64

B
0 = 0 b

0 = 0 always


T = 60 00 00 00 00 00 00 00x

F

F
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We can now formulate the exact de�nition of a characteristic:

De�nition 7 An n-round characteristic is a tuple 
 = (
P ;
�;
T ) where


P and 
T arem bit numbers and 
� is a list of n elements 
� = (�1;�2; : : : ;�n),

each of which is a pair of the form �i = (�iI ; �
i
O) where �

i
I and �

i
O are m=2

bit numbers and m is the block size of the cryptosystem. A characteristic

satis�es the following requirements:

�
1
I = the right half of 
P

�
2
I = the left half of 
P � �

1
O

�
n
I = the right half of 
T

�
n�1
I = the left half of 
T � �

n
O

and for every i s.t. 2 � i � n� 1:

�
i
O = �

i�1
I � �

i+1
I :

De�nition 8 A right pair with respect to an n-round characteristic 
 =

(
P ;
�;
T ) and an independent key K is a pair for which P 0 = 
P and for

the �rst n rounds of the encryption of the pair using the independent key

K the input XOR of the ith round equals �iI and the output XOR of the F

function equals �iO. Every pair which is not a right pair with respect to the

characteristic and the independent key is called a wrong pair with respect to

the characteristic and the independent key. Throughout this paper we refer

them shortly by right pair and wrong pair.

De�nition 9 The concatenation of an n-round characteristic 
1 = (
1
P ;


1
�;


1
T )

with an m-round characteristic 
2 = (
2
P ;


2
�;


2
T ) where 
1

T equals the

swapped value of the two halves of 
2
P , is the characteristic 
 = (
1

P ;
�;

2
T )

where 
� is the concatenation of the lists 
1
� and 
2

�.

The following de�nitions, lemma, conclusion and theorem deal with the

probability of characteristics:

De�nition 10 Round i of a characteristic 
 has probability p
i if �iI ! �
i
O

with probability p
i by the F function.

22



De�nition 11 An n-round characteristic 
 has probability p
 if p
 is the

product of the probabilities of its n rounds:

p

 =

nY
i=1

p


i :

Note that by de�nitions 9 and 11 the probability of a characteristic 


which is the concatenation of the characteristic 
1 with the characteristic


2 is the product of their probabilities: p
 = p

1

� p

2

. As a result, every

n-round characteristic can be described as the concatenation of n one-round

characteristics with probability which is the product of the one-round char-

acteristics probabilities.

Theorem 1 The formally de�ned probability of a characteristic 
 = (
P ;
�;
T )

is the actual probability that any �xed plaintext pair satisfying P 0 = 
P is

a right pair when random independent keys are used.

Proof The probability of any �xed plaintext pair satisfying P
0 = 
P to

be a right pair is the probability that at all the rounds i: �iI ! �
i
O. The

probability at each round is independent of its exact input (as proved in

lemma 1) and independent of the action of the previous rounds (since the

independent keys completely randomize the inputs to each S box, leaving

only the XOR value �xed). Therefore, the probability of a pair to be a right

pair is the product of the probabilities of �iI ! �
i
O, which was de�ned above

as the probability of the characteristic.

For practical purposes the signi�cant probability with respect to a char-

acteristic is the probability that a pair whose plaintext XOR equals the char-

acteristic's plaintext XOR is a right pair using a �xed key (the one we try to

�nd). This probability is not constant for all the keys (as we show later in

this paper in a special case). However, we assume that the characteristic's

probability is a very good approximation of it, which is usually the case.

After this formal discussion we show a three-round characteristic:

Example 12 An extension to three rounds of the characteristic described

in example 11 can be achieved by concatenating it with the characteristic of
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example 10. Thus a three-round characteristic with probability
�
14
64

�2
� 0:05

is:


P = 00 80 82 00 60 00 00 00x

A
0 = 00 80 82 00x a

0 = 60 00 00 00x with probability 14
64

B
0 = 0 b

0 = 0 always

C
0 = 00 80 82 00x c

0 = 60 00 00 00x with probability 14
64


T = 00 80 82 00 60 00 00 00x

F

F

F

where in the fourth round d
0 = b

0 � C
0 = C

0 = A
0. We see that when the

plaintexts di�er in the �ve speci�ed bit locations, with probability about 0:05

there is a di�erence of only three bits at the input of the fourth round. After

the bit expansion, �ve S boxes have non zero input XOR and three have zero

input XORs and thus zero output XORs. In this case it is possible to deduce

12 bits of e0 by e0 = c
0 �D

0.

This structure of three rounds with a zero input XOR in the middle

round is very useful and forms the best possible probability for three-round

characteristics2. A similar structure can be used in �ve-round characteristics.

The middle round has zero input and output XORs and there is a symmetry

2Since less than two di�ering S boxes are impossible and there are characteristics of

this structure with two di�ering S boxes, each with the best possible probability ( 1
4
).
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around it, i.e.:


P = (L0
; R

0)

A
0

a
0 = R

0 with some probability pa

B
0 = a

0 = R
0

b
0 = L

0 � A
0 with some probability pb

C
0 = 0 c

0 = 0 always

D
0 = R

0
d
0 = L

0 � A
0 with probability pb

E
0 = A

0
e
0 = R

0 with probability pa


T = 
P = (L0
; R

0)

F

F

F

F

F

Where in the sixth round f 0 = d
0 � E

0 = b
0 � A

0 = L
0. The existence of a

string b0 ! a
0 ! A

0 ensures the existence of such a �ve-round characteristic.

The characteristic's probability is quite low since three S box inputs must

di�er in both rounds b0 ! a
0 and a0 ! A

0, and six in the whole �ve-round

characteristic. The best probability for an S box is 16
64

= 1
4
. This limits the

�ve-round characteristic's probability to be lower than or equal to
�
1
4

�6
=

1
4096

. In fact, the best known �ve-round characteristic has probability about
1

10486
.
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Among the most useful characteristics are those that can be iterated.

De�nition 12 A characteristic 
 = (
P ;
�;
T ) is called an iterative char-

acteristic if the swapped value of the two halves of 
P equals 
T .

We can concatenate an iterative characteristic to itself any number of

times and can get characteristics with an arbitrary number of rounds. The

advantage of iterative characteristics is that we can build an n-round charac-

teristic for any large n with a �xed reduction rate of the probability for each

additional round, while in non iterative characteristics the reduction rate of

the probability usually increases due to the avalanche e�ect.

There are several kinds of iterative characteristics but the simplest ones

are the most useful. These characteristics are based on a non zero input XOR

to the F function that may cause a zero output XOR (i.e., two di�erent inputs

yield the same output). This is possible in DES if at least three neighboring

S boxes di�er in the pair (this phenomena is also described in [5,1]). The

structure of these characteristics is described in the following example.

Example 13 If the input XOR of the F function is marked by  , s.t.  ! 0

then we have the following iterative characteristic:


P = (L0
; R

0) = ( ; 0)

A
0 = 0 a

0 = 0 always

B
0 = 0 b

0 = L
0 � A

0 =  with some probability


T = (R0
; L

0) = (0;  )

F

F

The best such characteristic has probability about 1
234

. A �ve-round char-

acteristic based on this iterative characteristic has probability about 1
55000

.
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The statistical behavior of most characteristics does not allow us to look

for the intersection of all the keys suggested by the various pairs as we did

in example 7, since the intersection is usually empty: the wrong pairs do

not necessarily list the right key as a possible value. However, we know

that the right key value should result from all the right pairs which occur

(approximately) with the characteristic's probability. All the other possible

key values are fairly randomly distributed: the expected XOR value (which

is usually not the real value in the pair) with the known ciphertext pair can

cause any key value to be possible, and even the wrong key values suggested

by the right pairs are quite random. Consequently, the right key appears

with the characteristic's probability (from right pairs) plus other random

occurrences (from wrong pairs). To �nd the key we just have to count the

number of occurrences of each of the suggested keys. The right key is likely

to be the one that occurs most often.

Each characteristic lets us look for a particular number of bits in the

subkey of the last round (all the bits that enter some particular S boxes).

The most useful characteristics are those which have a maximal probability

and a maximal number of subkey bits whose occurrences can be counted. Yet,

it is not necessary to count on all the possible subkey bits. The advantages

of counting on all the possible subkey bits are the good identi�cation of the

right key value and the small amount of data needed. However, counting

the number of occurrences of all the possible values of a large number of bits

usually demands huge memory which can make the attack impractical. We

can count on a smaller number of subkey bits entering a smaller number of S

boxes, and use all the other S boxes only to identify and discard those wrong

pairs in which the input XORs in such S boxes cannot cause the expected

output XORs. Since about 20% of the entries in the pairs XOR distribution

tables of the S boxes are impossible, about 20% of the wrong pairs can be

discarded by each S box before they are actually counted.

The following de�nition and lemma give us a tool to evaluate the usability

of a counting scheme based on a characteristic:

De�nition 13 The ratio between the number of right pairs and the average

count in a counting scheme is called the signal to noise ratio of the counting

scheme and is denoted by S=N .
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To �nd the right key in a counting scheme we need a high probability

characteristic and enough ciphertext pairs to guarantee the existence of sev-

eral right pairs. This means that for a characteristic with probability 1
10000

we need several tens of thousands of pairs. How many pairs we need depends

on the probability of the characteristic, the number of key bits that we count

on and the level of identi�cation of wrong pairs that can be discarded before

the counting. If we are looking for k key bits then we count the number of

occurrences of 2k possible key values in 2k counters. The counters contain

an average count of m����

2k
counts where m is the number of pairs, � is the

average count per counted pair and � is the ratio of the counted to all pairs

(i.e., counted and discarded). The right key value is counted about m � p

times using the right pairs where p is the characteristic's probability, plus

the random counts estimated above for all the possible keys. The signal to

noise ratio of a counting scheme is therefore:

S=N =
m � p

m � � � �=2k
=

2k � p

� � �
:

A simple corollary of this formula is that the signal to noise ratio of a

counting scheme is independent of the amount of pairs used in the scheme.

Another corollary is that di�erent counting schemes based on the same char-

acteristic but with a di�erent number of subkey bits have di�erent S=N .

Usually we relate the number of pairs needed by a counting scheme to

the number of the right pairs needed. The number of right pairs needed is

mainly a function of the signal to noise ratio. When the S=N is high enough,

only a few occurrences of right pairs are needed to uniquely identify the right

value of the subkey bits. We observed experimentally that when the S=N

is about 1{2, about 20{40 occurrences of right pairs are su�cient. When

the S=N is much higher even 3{4 right pairs are usually enough. When the

S=N is much smaller the identi�cation of the right value of the subkey bits

requires an unreasonably large number of pairs.

In many attacks we use several simultaneous characteristics. In order to

minimize the number of ciphertexts needed, we can pack them into more

economical structures.

De�nition 14 A quartet is a structure of four ciphertexts that simultane-

ously contains two ciphertext pairs of one characteristic and two ciphertext
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pairs of a second characteristic. An octet is a structure of eight ciphertexts

that simultaneously contains four ciphertext pairs of each of three character-

istics.

Example 14 The following four plaintexts form a quartet (where  1 and  2
are the plaintext XORs of the characteristics):

1. A random plaintext P .

2. P �  1.

3. P �  2.

4. P �  1 �  2.

The two pairs of the �rst characteristic are the pairs labeled (1, 2) and (3,

4) and the two pairs of the second characteristic are the pairs labeled (1, 3)

and (2, 4).

The use of these structures can be done in two ways. When an attack

uses n pairs of each one of two characteristics we can use n=2 quartets which

contain the same information as each of the n pairs of each characteristic.

Thus, we save half the data. Using three characteristics we can save 2=3 of

the data. The other approach is used when an attack can simultaneously

use two characteristics while counting the same bits. Then we can divide the

data so that half of the pairs are based on the �rst characteristic and the

other half on the second. When quartets can be used we can save half the

data, and when octets can be used we can save 2=3 of the data.

3 DES reduced to four rounds

In section 2 we de�ned the notions of pairs and characteristics. In this

section we describe how it can be used to cryptanalyze DES reduced to four

rounds. This cryptanalysis is quite simple since it uses a characteristic with

probability 1, but it serves as a good introductory example to the method of

di�erential cryptanalysis.
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In this attack we use the following one-round characteristic 
1 with prob-

ability 1 which is an instance of the characteristic described in example 9:


1
P = 20 00 00 00 00 00 00 00x

A
0 = 0x a

0 = 0x always


1
T = 20 00 00 00 00 00 00 00x

F

where in the second round b0 = L
0 � A

0 = 20 00 00 00x.

In the �rst round the characteristic has a0 = 0 ! A
0 = 0 with probabil-

ity 1. The single bit di�erence between the two plaintexts starts to play a

role in the second round in S1. Since the inputs to S1 di�er only in one bit,

at least two output bits must di�er. Typically such two bits enter three S

boxes in the third round (c0 = a
0 � B

0 = B
0), where there is a di�erence of

one bit in each S box input. Thus, about six output bits di�er at the third

round. These bits are XORed with the known di�erence of the input of S1

in the second round (d0 = b
0�C 0), making a di�erence of about seven bits in

the input of the fourth round and about 11 bits in the entries of the S boxes

(due to the E expansion). Such an avalanche makes it very likely that the

input of all the S boxes di�er at the fourth round. Even if an input of an

S box does not di�er in one pair it can di�er in another pair and the exact

value of d0 is usually di�erent for every pair.

The 28 output XOR bits of S2, . . . , S8 in B0 must be equal to zero since

their input XORs are zero. Since a0 � B
0 = c

0 = D
0 � l

0 (see �gure 3) then

D
0 = a

0
� l

0
�B

0
: (1)

When the ciphertext pair values T and T
� are known then d and d

� are

known to be their right halves (by d = r). Since a0, l0 and the 28 bits of B0

are known, the corresponding 28 bits of D0 are known as well by equation 1.
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Plaintext (P)

F

K1

A a

F

K2

B b

F

K3

C c

F

K4

D d

Ciphertext (T)

Figure 3. DES reduced to four rounds.

These 28 bits are the output XORs of S boxes S2, . . . , S8. Thus, we know

the values SEd, S
�

Ed and S
0

Od of seven S boxes in the fourth round.

Given the encrypted pairs we use a separate counting procedure for each

one of the seven S boxes in the fourth round. We try all the 64 possible

values of SKd and check if SId = SEd � SKd and S
�

Id = S
�

Ed � SKd yield

SOd � S
�

Od = S
0

Od:

For each key we count the number of pairs for which the test succeeds. The

right key value is suggested by all the pairs since we use a characteristic with

probability 1 which causes all the pairs to be right pairs. The other 63 key

values may occur in some of the pairs. It is unlikely that a value occurs in all

the pairs for which S 0

I are di�erent and S
0

O are di�erent. In rare cases when

more than one key value is suggested by all the pairs a few additional pairs
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can be tried, or the analysis of the other key bits can be done in parallel for

all the surviving candidates.

So far we have found 7 � 6 = 42 bits of the subkey of the last round (K4).

If the subkeys are calculated via the DES key scheduling algorithm these

are 42 actual key bits out of the DES 56 key bits, and 14 key bits are still

missing. One can now try all the 214 possibilities of the missing bits and

decrypt the given ciphertexts using the resulting keys. The right key should

satisfy the known plaintext XOR value for all the pairs, but the other 214�1

values have only probability 2�64 to satisfy this condition.

Some researchers have proposed to strengthen DES by making all the

subkeys Ki independent (or at least to derive them in a more complicated

way from a longer actual key K). Our attack can be carried out even in

this case. To �nd the six missing bits of K4 and to �nd K3 we use another

plaintext XOR value with the following characteristic 
2:


2
P = 02 22 22 22 00 00 00 00x

A
0 = 0x a

0 = 0x always


2
T = 02 22 22 22 00 00 00 00x

F

Where in the second round b0 = L
0 � A

0 = 02 22 22 22x.

The value of S10Eb is zero. Thus, S1
0

Ob = 0. As above we �nd S10Od using

equation 1 and similarly we can �nd the corresponding six key bits S1Kd.

Now we know the complete fourth round subkey K4. Using K4 we par-

tially decrypt all the given ciphertexts by \peeling o�" the e�ect of the last

round. As a result we remain with a three-round cryptosystem. In this cryp-

tosystem the second P
0 value lets us calculate the third round subkey K3.

The inputs to the third round c and c� are known as halves of the ciphertexts
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of the three-round cryptosystem. The input XOR c
0 is easily calculated. The

output XOR C
0 is C 0 = b

0 � d
0 where b0 and d

0 are known. The counting

method is used again to count the number of occurrences of the possible

keys of all the eight S boxes at the third round. The values that are counted

for all the pairs are likely to the right key values. As a result the complete

K3 is found with high probability.

The P 0 values used above are insu�cient to �nd a unique K2 since the

S
0

Eb are constant for all the pairs, and thus the right key values are indis-

tinguishable from the alternative key values obtained by XORing them with

S
0

Eb. Although we can �nd these two possibilities for each S box, i.e., 28

possibilities for K2, we cannot use the above XOR values to �nd K1 since

in both XOR values there is R0 = 0 and thus a0 = 0 and A
0 = 0. Note

that a0 = 0! A
0 = 0 happens regardless of the key and thus all the possible

values of K1 are equally likely using these XOR values. To solve this problem

we have to use an additional characteristic which has a non zero input XOR

for all the S boxes of the �rst round. In addition we want to be able to dis-

tinguish the key values of all the S boxes so we choose two characteristics 
3

and 
4. These characteristics can be chosen arbitrarily under the following

two conditions:

� S
0

Ea 6= 0 for all the S boxes using either 
3
P or 
4

P .

� For every particular S box S 0

Ea of the characteristic 

3
P is di�erent from

S
0

Ea of 

4
P .

Then b and b� are known by decryption of the third round and B0 is known

by B0 = a
0� c0 = R

0� c0. The counting method is used to �nd K2. This time

it has to use the appropriate R0 value for each pair. Now a, a� and a
0 are

known by decryption of the second round and A0 is known by A0 = L
0 � b

0.

The counting method �nds K1. Using K1, K2, K3 and K4 we can decrypt

the original ciphertexts to get the corresponding plaintexts and then verify

their plaintext XOR values. If we �nd only one possibility for all the subkeys

the veri�cation must succeed. If several possibilities are found then only one

of them is likely to be veri�ed successfully, and thus the right key can be

identi�ed.
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Typically, 16 encryptions are su�cient for this attack. These 16 encryp-

tions contain eight pairs of the characteristic 
1, eight pairs of 
2, four pairs

of 
3 and four pairs of 
4. In order not to increase the amount of data

needed we use two octets that occupy four pairs of each of three plaintext

XOR.

4 DES reduced to six rounds

The cryptanalysis of DES reduced to six rounds is more complex than the

cryptanalysis of the four round version. We use two statistical characteristics

with probability 1
16
, and choose the key value that is counted most often.

Each one of the two characteristics lets us �nd the 30 key bits of K6 which are

used at the input of �ve S boxes in the sixth round, but three of the S boxes

are common so the total number of key bits found by the two characteristics

is 42. The other 14 key bits can be found later by means of exhaustive search

or by a more careful counting on the key bits entering the eighth S box in

the sixth round.
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The �rst characteristic 
1 is:


1
P = 40 08 00 00 04 00 00 00x

A
0 = 40 08 00 00x a

0 = 04 00 00 00x with probability 1
4

B
0 = 0x b

0 = 0x always

C
0 = 40 08 00 00x c

0 = 04 00 00 00x with probability 1
4


1
T = 40 08 00 00 04 00 00 00x

F

F

F

Where in the fourth round d0 = b
0 � C

0 = 40 08 00 00x.

Five S boxes in the fourth round (S2, S5, . . . , S8) have zero input XORs

(S 0

Ed = 0) and thus their output XORs are zero (S 0

Od = 0). The correspond-

ing output XORs in the sixth round can be found by F 0 = c
0�D0� l0. Since

the right key value is not suggested by all the pairs (due to the probabilistic

nature of the characteristic), we cannot use a separate counting procedure

for the subkey bits entering each S box. In order to increase the S=N we

should simultaneously count on subkey bits entering several S boxes. The

best approach is to count on all the 30 countable subkey bits together, which

maximizes the probability that the right key value is the one counted most of-

ten. A straightforward implementation of this method requires 230 counters,

which is impractical on most computers. However, the improved counting

procedure described at the end of this section achieves exactly the same result

with much smaller memory.

The same e�cient algorithm is used to �nd the 30 key bits of S1, S2, S4,
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S5 and S6 using the second characteristic 
2 which is:


2
P = 00 20 00 08 00 00 04 00x

A
0 = 00 20 00 08x a

0 = 00 00 04 00x with probability 1
4

B
0 = 0x b

0 = 0x always

C
0 = 00 20 00 08x c

0 = 00 00 04 00x with probability 1
4


2
T = 00 20 00 08 00 00 04 00x

F

F

F

Where in the fourth round d0 = b
0 � C

0 = 00 20 00 08x.

Again, �ve S boxes in the fourth round (S1, S2, S4, S5 and S6) have zero

input XORs. The computed key values of the common S boxes S2, S5 and S6

should be the same in both calculations (otherwise we should analyze more

pairs or consider additional candidate keys with almost maximal counts). If

this test is successful, we have probably found 42 bits of K6.

DES has 56 key bits. 14 of them are still missing. The simplest way to

�nd them is to search all the 214 possibilities for the expected plaintext XOR

value of the decrypted ciphertexts. A faster way is to start looking for the

six missing bits of K6 which enter S3 (the other eight key bits occur only in

other subkeys). At �rst we use our partial knowledge of the key to �lter the

given pairs. For each pair we check if at the �ve S boxes having S 0

Ed = 0

by the characteristic, the value of S 0

Of obtained by f and f � and the known

key bits form the expected value from F
0 = c

0 � D
0 � l

0. If not then this

cannot be a right pair. Otherwise it is almost certainly a right pair (since
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Into S box e bits Key bits

# SEe SKe

S1 ++++++ 3+..++

S2 ++3+++ +3+333

S3 ++++++ ++++++

S4 ++++3+ ++..++

S5 3+++++ +++.++

S6 ++++3+ +.+.++

S7 3+++++ +++.++

S8 ++3+++ ++++++

Table 8. Known bits at the �fth round.

the condition can be satis�ed accidentally only with probability 2�20). For

the remainder of the cryptanalysis we use only the (roughly) 1
16

of the pairs

which are believed to be the right pairs. This �ltration greatly improves

the signal to noise ratio of the following scheme, which otherwise would be

impractical.

Table 8 describes the known bits of the key and the input to the F

function at the �fth round assuming we know the 42 key bits. The digit `3'

means that the bit depends on the exact value of the missing key bits that

enter S3 in the sixth round. `+' means that it depends only on known key

bits. Eight key bits are not used at all in the subkey K6, and are marked

by `.'. This table shows that by guessing the six missing bits of K6 we can

verify its correctness by calculating e and e� for each right pair by a single

round decryption with K6 and by verifying that the values of S20Oe, S3
0

Oe

and S80Oe (for which all the input and key bits are known) are as expected

by E
0 = d

0 � f
0. Furthermore, we can verify that there are values of the

missing key bits (for each S box separately) such that the other S boxes

output XORs are as expected. The veri�cation of most of the 64 possibilities

of the six missing bits of K6 should fail, and with high probability only one

possibility survives. This value completes K6. Only eight key bits are missing

now. They can be found by trying all the 256 possibilities, or by applying a

similar analysis to key bits that enter S boxes in the �fth round.
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How much data is needed? The signal to noise ratio of the �rst part of

the algorithm (which �nds 30 key bits) is

S=N =
230 � 1

16

45
= 230�4�10 = 216:

The S=N is high and thus only 7{8 right pairs of each characteristic are

needed. Since the characteristics' probability is 1
16
, we need about 120 pairs

of each characteristic for the analysis. The S=N of the later part is

S=N =
26 � 1

4
= 16:

This is lower, but we do not care since we can almost certainly identify and

use only the 7{8 right pairs from the �rst part (while eliminating most of the

noise) and intersect the sets of possible key values. To reduce the number

of ciphertexts needed we use quartets which combine the two characteristics.

As a result only 240 ciphertexts (representing 120 pairs of each characteristic)

are needed for the complete cryptanalysis.

In order to decrease the amount of memory needed in the �rst part of

this attack we devised an equivalent but faster counting algorithm that uses

negligible memory and can count on all the countable subkey bits simulta-

neously. This algorithm can be used in any counting scheme that needs a

huge memory but analyses a relatively small number of pairs (after �ltering

out all the identi�able wrong pairs). The idea behind this algorithm is to

describe the pairs and the possible key values by a graph. In this graph each

pair is a vertex and every two pairs which suggest a common key value have

a connecting edge labeled by this value. Thus, each key value forms a clique

which contains all its suggesting pairs. The largest clique corresponds to the

key value which is counted by the largest number of pairs. In our implemen-

tation, for each of the �ve S boxes we keep a bit mask of 64 bits, one bit

for each possible key. Given the values of SE, S
�

E and S 0

O we set the bits of

the key masks that correspond to possible keys. Each pair has �ve such key

masks, one for every S box. A clique is de�ned as a set of pairs for which for

each of the �ve key masks there is a common bit set in all the pairs in the

set (i.e., the binary \and" operation is non zero for all the �ve key masks).

Finding the largest clique can be done in the following way: �rst compare

the key masks of every pair with all the following pairs in the pairs list. At
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each comparison there is usually at least one key mask without any common

bit set. For the remaining possibilities we try to \and" the result with third

pairs, fourth pairs and so on until no more pairs can be added to the clique.

Given the largest clique we can easily compute the corresponding key bits by

looking at each key mask for the key value it represents.

Using the clique algorithm with 240 ciphertexts it takes about 0.3 sec-

onds on a COMPAQ personal computer to �nd the key in 95% of the tests

conducted on DES reduced to six rounds. When 320 ciphertexts are used

the program succeeds in almost all the cases. The program uses about 100K

bytes of memory, most of which is devoted to various preprocessed tables

used to speed up the algorithm.

5 DES reduced to eight rounds

DES reduced to eight rounds can be broken using about 25000 ciphertext

pairs for which the plaintext XOR is P 0 = 40 5C 00 00 04 00 00 00x. The

method �nds 30 bits of K8. 18 additional key bits can be found using similar

manipulations on the pairs. The remaining eight key bits can be found using

exhaustive search.
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The following characteristic is used in this analysis:


P = 40 5C 00 00 04 00 00 00x

A
0 = 40 08 00 00x a

0 = 04 00 00 00x with probability 1
4

= P (0A 00 00 00x)

B
0 = 04 00 00 00x b

0 = 00 54 00 00x with probability 10�16
64�64

= P (00 10 00 00x)

C
0 = 0 c

0 = 0 always

D
0 = 04 00 00 00x d

0 = 00 54 00 00x with probability 10�16
64�64

E
0 = 40 08 00 00x e

0 = 04 00 00 00x with probability 1
4


T = 40 5C 00 00 04 00 00 00x

F

F

F

F

F

This characteristic has probability 1
10485:76

. The input XOR in the sixth

round of a right pair is

f
0 = d

0 � E
0 = b

0 � A
0 = L

0 = 40 5C 00 00x:

Consequently, for �ve S boxes S 0

Ef = S
0

If = 0 and S 0

Of = 0.

Note There is an additional �ve-round characteristic with probability about
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1
33000

. Its plaintext XOR is


P = 04 04 07 80 00 20 20 00x:

In this characteristic only four S boxes in the sixth round satisfy S 0

Ef = 0.

There are other characteristics for which either the probability or the number

of unchanged S boxes in the sixth round are smaller, and thus their use is

less advantageous.

In right pairs the �ve S boxes S2, S5, . . . , S8 satisfy S
0

Ef = S
0

If = 0

and S
0

Of = 0. By H
0 = l

0 � g
0 = l

0 � e
0 � F

0 we can �nd the output

XORs of the corresponding S boxes in the eighth round. The input data

of the eighth round is known from the ciphertexts. Therefore, we can use

the counting method to �nd the 30 subkey bits entering the �ve S boxes

at the eighth round. The signal to noise ratio of this counting scheme is

S=N = 230

45�10485:76
= 100.

Counting on 30 subkey bits demands a huge memory of 230 counters. In

this case the clique method is not recommended since its computation time

grows very fast (more than quadratically) with the number of pairs, while the

computation time of the counting method is linear in the number of pairs.

Nevertheless, we can reduce the amount of memory by counting on fewer

subkey bits entering fewer S boxes. The remaining S boxes can be used for

identi�cation of some of the wrong pairs (in which S 0

Eh 6! S
0

Oh). About 20%

of the entries in the pairs XOR distribution tables are impossible and thus

each remaining S box discards 20% of the wrong pairs. Counting on 24 key

bits thus has S=N = 224

44�0:8�10485:76
� 7:8 and counting on 18 key bits has

S=N = 218

43�0:82�10485:76
� 0:6.

In counting schemes that count on a reduced number of bits we can choose

the reduced set of countable S boxes arbitrarily. In this particular case we

can choose the reduced set with the advantage of increasing the character-

istic's probability and the signal to noise ratio by using a slightly modi�ed

characteristic which ignores output bits that are not counted anyway. The

slightly modi�ed characteristic is similar to the original one except that in

the �fth round only one bit of S20Oe is �xed and all the combinations of the

other three are allowed:

e
0 = 04 00 00 00x ! E

0 = P (0W 00 00 00x) = X0 0Y Z0 00x;
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where W 2 f0; 1; 2; 3; 8; 9; A; Bg, X 2 f0; 4g, Y 2 f0; 8g and Z 2 f0; 4g.

Therefore at the sixth round

f
0 = X0 5V Z0 00x

where V = Y � 4. The only possible combination in which Z = 0 is

04 00 00 00x ! 40 08 00 00x which has probability 16
64
. All the other com-

binations (in which Z = 4) have an overall probability 20
64
. We cannot count

on the subkey bits S5Kh but it is still advisable to check the possibility of

S50Eh ! S50Oh which is satis�ed by 80% of the pairs. Therefore, the proba-

bility of e0 ! E
0 is 16

64
+ 0:820

64
= 32

64
= 1

2
. The probability of the �ve-round

modi�ed characteristic is 16�10�16
643

� 16�10�32
643

� 1
5243

. The signal to noise ratio of

a counting scheme which count on the 24 subkey bits entering S2, S6, S7 and

S8 is S=N = 224

44�0:8�5243
� 15:6. This signal to noise ratio allows to use only

about �ve right pairs. Therefore, it uses a total amount of about 25000 pairs.

The signal to noise ratio of a counting scheme which counts on 18 subkey bits

entering three S boxes out of S2, S6, S7 and S8 is S=N = 218

43�0:82�5243
� 1:2.

This counting scheme which counts on 18 bits needs 150000 pairs and has an

average of about 24 counts for any wrong key value and about 53 counts for

the right key value (53 = 24 + 150000
5243

= 24 + 29).

A summary of this cryptanalytic method using 218 memory cells is as

follows:

1. Set up an array of 218 counters which is initialized by zeroes. The array

corresponds to the 218 values of the 18 key bits of K8 entering S6, S7

and S8.

2. Preprocess the possible values of SI that satisfy each S 0

I ! S
0

O for the

eight S boxes into a table. This table is used to speed up the program.

3. For each ciphertext pair do:

(a) Assume h0 = r
0, H 0 = l

0 and h = r. Calculate S 0

Eh = S
0

Ih and SOh0

for S2, S5, . . . , S8 by h0 and H 0. Calculate SEh for S6, S7 and S8

by h.

(b) For each one of the S boxes S2, S5, S6, S7 and S8 check if S 0

Ih 6!

S
0

Oh. If S
0

Ih 6! S
0

Oh for one of the S boxes then discard the pair as

a wrong pair.
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(c) For each one of the S boxes S6, S7 and S8: fetch from the prepro-

cessed table all the values of SIh which are possible for S
0

Ih ! S
0

Oh.

For each possible value calculate SKh = SIh � SEh. Increment by

one all the counters corresponding to combinations of the possible

values of S6Kh, S7Kh and S8Kh.

4. Find the entry in the array that contains the maximal count. The entry

index is most likely to be the real value of S6Kh, S7Kh and S8Kh which

is the value of the 18 bits 31; : : : ; 48 of K8.

To �nd the other bits, we �lter all the pairs and leave just the pairs with

the expected S 0

O value using the known values of h and the known bits of K8

entering S6, S7 and S8. The expected number of the remaining pairs is 53.

The next bits we are looking for are the twelve bits of K8 that correspond

to S2 and S5. We use a similar counting method (exploiting the enhanced

S=N created by the higher concentration of right pairs) and then �lter more

pairs. A wrong pair is not discarded by either this �lter or its predecessor

with probability 2�20 and thus almost all the remaining pairs are right pairs.

Using the known subkey bits of K8 we can calculate the values of 20 bits

of each of H and H� for each pair and thus 20 bits of each of g and g� (by

g = l
0 � H

0). Table 9 shows the dependence of the g bits and the subkey

bits of K7 at the seventh round on the known and unknown subkey bits of

K8 at the eighth round. The digits 1, 3 and 4 mean that they depend on

the value of the unknown key bits entering the corresponding S box in the

eighth round. `+' means that it depend only on the known bits of K8. Eight

key bits are not used at all in K8 and are marked by `.'.

The expected value of G0 is known by the formula G0 = f
0 � h

0. We can

now look for the 18 missing bits of K8 by exhaustive search of 218 possibilities

for every pair. Thus we know H, H� and g, g� and 40 bits of K7. For each

pair we check that the expected value of G0 holds. For the right value of

those 18 key bits the expected G0 holds for almost all the �ltered pairs. All

the other possible values satisfy the expected G
0 value only for a few pairs

(usually 2{3 pairs while the right value holds for 15 pairs). To save computer

time we search primarily for the 12 key kits entering S1 and S4 in the eighth

round. They su�ce to compute S30Og as seen in table 9. By similar methods
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Into S box g bits Key bits

# SEg SKg

S1 +4++++ 3+..4+

S2 ++3++1 134333

S3 +14+++ +1+41+

S4 ++++31 11..1+

S5 31++4+ +++.++

S6 4++13+ +.+.++

S7 3+4+++ +++.++

S8 ++31+4 ++++++

Table 9. Known bits at the seventh round.

we �nd these 12 bits and then �nd the other eight bits. This completes the

calculation of the 48 bits of K8. Only eight key bits are still missing and they

can be found by exhaustive search of 256 cases, using one pair of ciphertexts,

and verifying that the plaintext XOR is as expected.

To save disk space we can �lter the pairs as soon as they are created and

discard all the identi�able wrong pairs (leaving 0:85 � 1
3
of all the pairs).

Therefore, in the case of counting on 24 bits, the 25000 pairs are reduced

to about 7500 pairs. For the case of counting on 18 bits we devised another

criterion which discards most of the wrong pairs while leaving almost all the

right pairs. This criterion is based on a carefully chosen weighting function

and discards any pair whose weight is lower than a particular threshold.

This criterion is the extension of the �ltering of the identi�able wrong pairs

(where the threshold is actually zero) and is based on the idea that a right

pair typically suggests more possible key values than a wrong pair. The

weighting function is the product of the number of possible keys of each of

the �ve countable S boxes (i.e., the number in the corresponding entry in

the pairs XOR distribution tables). The threshold is chosen to maximize

the amount of discarded pairs, while leaving as many right pairs as possible.

The best threshold value was experimentally found to be 8192 which discards

about 97% of the wrong pairs and leaves almost all the right pairs. This

reduces the number of pairs we actually analyze from 150000 to about 7500,

with a corresponding reduction in the running time of the attack.
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S2I S2�I S2O S2�O
123456 123456 1234 1234

000010 001010 0001 1011

000110 001110 1110 0100

010001 011001 1100 0110

010101 011101 0001 1011

100000 101000 0000 1010

100010 101010 1110 0100

100100 101100 0111 1101

100110 101110 1011 0001

Table 10. The possible instances of 08x ! Ax by S2 (in binary).

The attacking program �nds the key in less than two minutes on a COM-

PAQ personal computer with 95% success rate (using 150000 pairs). Using

250000 pairs the success rate is increased to almost 100%. The program uses

460K bytes of memory, most of it for the counting array (one byte su�ces

for each counter since the maximum count is about 53, and thus the total

array size is 218 bytes), and the preprocessed speed up tables. The program

which counts using 224 memory cells �nds the key using only 25000 pairs.

5.1 Enhanced characteristic's probability

In addition to the statistical behavior of the characteristic we can use the

possible values of individual input and output bits of the S boxes. Lets

look at the �rst round of the characteristic. We have 08x ! Ax by S2 with

probability 16
64
. Table 10 describes the possible input and output values.

We can see that the input bits number 2 and 6 are always equal. In

addition for 12
16

of the input values they are both 0 and for 4
16

of them they

are both 1. If we know the XOR of the key bits entering these two bits

of S2 in the �rst round (i.e., bits 57 and 42 of the key) we can use only

plaintexts whose corresponding bits (i.e., bits 5 and 9) have the same XOR

value (causing bits number 2 and 6 to be equal). Other pairs of plaintexts

cannot satisfy the characteristic. The statistics and the S=N ratio are then
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twice as good, and let us use less than half the number of pairs.

If we know the values of both bits in a key we can choose the two bits in

the plaintexts s.t. the bit values entering S2 are both zero. In this case the

statistics for S2 becomes 12
16
instead of 16

64
. Thus we get a factor of three in the

statistics and the S=N . The higher S=N lets us use less than 1
3
of the pairs

needed originally. A factor of four can be easily obtained by a characteristic

that holds for all the inputs in which bit number 1 has value 1 and both bits

number 2 and 6 have value 0.

5.2 Extension to nine rounds

The �ve-round characteristic can be extended to six rounds by concatenating

it to the following characteristic:


P = 84 41 13 46 40 5C 00 00x

A
0 = 80 41 13 46x a

0 = 40 5C 00 00x with probability about 1
100

= P (30 EF 00 00x)


T = 04 00 00 00 40 5C 00 00x

F

This characteristic has probability 12�14�16
643

� 1
100

and thus the probability

of the concatenated six-round characteristic is about 1
1000000

.

DES reduced to nine rounds can be broken using 30-million pairs by a

method based on this six-round characteristic and using an array of size 230

with S=N = 230

45�1000000
� 1. The �rst part of the algorithm that �nds the �rst

30 key bits is almost the same as in the eight rounds algorithm except that

it counts on all the 30 bits at once. The second part of the algorithm that

uses table 9 is slightly di�erent since the key scheduling at the ninth round
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is based on a shift of one bit instead of two bits. The input part stays the

same.

6 DES with an arbitrary number of rounds

The following iterative characteristic can be used to cryptanalyze (at least

in principle) variants of DES with an arbitrary number of rounds.

Notation The value 19 60 00 00x is denoted by  .

The iterative characteristic is:


P = ( ; 0) = 19 60 00 00 00 00 00 00x

A
0 = 0 a

0 = 0 always

B
0 = 0 b

0 =  = with probability about 1
234

19 60 00 00x


T = (0;  ) = 00 00 00 00 19 60 00 00x

F

F

Due to the importance of this iterative characteristic, throughout this paper

we refer it as the iterative characteristic.

Lemma 2 The iterative characteristic has probability 14�8�10
643

� 1
234

.

Proof S 0

Eb 6= 0 only at three S boxes: S1, S2 and S3, for which:

S10Eb = S10Ib = 03x ! S10Ob = 0 with probability 14
64

S20Eb = S20Ib = 32x ! S20Ob = 0 with probability 8
64

S30Eb = S30Ib = 2Cx ! S30Ob = 0 with probability 10
64

and for the other S boxes (S4, . . . , S8):
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Number of rounds Probability

3 1
234

5 1
55000

7 � 2�24

9 � 2�32

11 � 2�40

13 � 2�48

15 � 2�56

Table 11. The probability of the iterative characteristic versus number of

rounds.

S
0

Eb = S
0

Ib = 0 ! S
0

Ob = 0 always.

Thus B0 = 0 with probability 14�8�10
643

� 1
234

.

Theorem 2 By an iterative concatenation of the iterative characteristic

with itself and with the one-round characteristic with probability 1 (described

in example 9) we get characteristics with probabilities as summarized in ta-

ble 11. In addition the plaintext XORs and the ciphertext XORs of these

characteristics are equal:


P = 
T = 19 60 00 00 00 00 00 00x = ( ; 0)

and for the next round (w.l.g. a �ve-round characteristic)

f
0 =  

and �ve of its S boxes satisfy S 0

Ef = 0.

Proof The results of this theorem are derived from de�nition 11 and lemma 2.

The XOR data during the intermediate rounds looks like:


P = ( ; 0)

a
0 = 0 ! A

0 = 0 always
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b
0 =  ! B

0 = 0 with probability about 1
234

c
0 = a

0 �B
0 = 0 ! C

0 = 0 always

d
0 =  ! D

0 = 0 with probability about 1
234

e
0 = c

0 �D
0 = 0 ! E

0 = 0 always
...

and so forth for any number of rounds.

Note There is another value for which lemma 2 and theorem 2 hold with

the same probabilities. This value is  y = 1B 60 00 00x. There are several

additional values for which the probabilities are smaller. The best of them

is  z = 00 19 60 00x for which the probability is exactly 1
256

. The extension

of this iterative characteristic to 15 rounds has probability 2�56.

There are several possible types of attacks, depending on the number of

additional rounds in the cryptosystem that are not covered by the character-

istic itself. The attack on DES reduced to eight rounds in section 5 uses a

�ve-round characteristic and there were three additional rounds. This kind of

attack is called a 3R-attack. The other kinds of attacks are a 2R-attack with

two additional rounds and a 1R-attack with one additional round (where

the characteristic causes r0 to be �xed). A 0R-attack is also possible but it

can be reduced to a 1R-attack with a better statistics and the same S=N .

A 0R-attack has the advantage that the right pairs can be recognized al-

most without mistakes (the probability of a wrong pair to survive is 2�64)

and thus the memory requirements can become negligible using the clique

method. For a �xed cryptosystem it is advisable to use the shortest possible

characteristic due to its better statistics. Thus, a 3R-attack is advisable over

a 2R-attack and both are advisable over a 1R-attack.

In the following sections the actual attacks on DES reduced to 8{16

rounds are described. All these attacks �nd some bits of the subkey of the

last round. The other bits of the subkey of the last round can be calculated

using these known bits and a reduction of the cryptosystem to a smaller

number of rounds can be done. Only eight bits do not appear in the subkey

of the last round and they can be found by trying all the 256 possible keys.
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6.1 3R-attacks

In 3R-attacks counting can be done on all the bits of the subkey of the last

round entering the S boxes that have zero input XORs at the round that

follows the last round of the characteristic. The four, six, eight and nine-

round attacks described in the previous sections are of this type.

In DES reduced to eight rounds the �rst 30 subkey bits can be found using

the iterative characteristic with �ve rounds (whose probability is about 1
55000

)

by an attack which is similar to the one described in section 5. Using an array

of size 224 we have S=N = 224

44�0:8�55000
= 1:5. We need about 220 pairs. Using

an array of size 230 we have S=N = 230

45�55000
� 19. About 67% (1 � 0:85) of

the pairs can be identi�ed in advance as wrong pairs.

6.2 2R-attacks

In 2R-attacks, counting can be done on all the bits of the subkey of the last

round. Possibility checks can be done for all the previous round S boxes. An

S box whose input XOR is zero should also have an output XOR of zero, i.e.,

the success rate of this check is 1
16
. For the other S boxes the success rate is

about 0:8.

In DES reduced to nine rounds the 48 bits of K9 can be found using 226

pairs using the seven-round characteristic. We know that:


P = ( ; 0)

a
0 = 0 ! A

0 = 0 always

b
0 =  ! B

0 = 0 with probability about 1
234

c
0 = 0 ! C

0 = 0 always
...

g
0 = 0 ! G

0 = 0 always

h
0 =  ! H

0 = i
0 � g

0 = r
0

i
0 = r

0 ! I
0 = h

0 � l
0 = l

0 �  


T = (l0; r0)
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We can check that h0 ! H
0 and i0 ! I

0 and count the possible occurrences

of the key bits. At h0 ! H
0 �ve S boxes satisfy S 0

Eh = S
0

Ih = 0 and thus S 0

Oh

must be zero (which happens for wrong pairs with probability 1
16
), while the

other three S boxes satisfy S 0

Ih ! S
0

Oh (which happens for wrong pairs with

probability 0:8). Therefore the counting on all the 48 bits of K9 has S=N =
248�2�24

48�0:83�( 1

16
)5
� 229 and counting on 18 bits has S=N = 218�2�24

43�0:85�0:83�( 1

16
)5
� 211.

Even a separate counting on the six key bits entering each S box is possible

with S=N = 26�2�24

4�0:87�0:83�( 1

16
)5
� 10. The identi�cation of the wrong pairs leaves

only 0:83 �
�
1
16

�5
� 0:88 � 2�24 of the wrong pairs and thus only about one

wrong pair is left per each right pair. The characteristic's probability is 2�24

and thus we need about 226 pairs for the cryptanalysis. This attack needs

more data than the previous 3R-attack on DES reduced to nine rounds but

needs much less memory. Due to the very good identi�cation of wrong pairs

(only about eight pairs are not discarded, four right pairs and four wrong

pairs) it is possible to use the clique method on all the 48 bits.

Eleven rounds can be broken by using the nine-round characteristic with

an array of size 218 and S=N = 218�2�32

43�0:85�0:83�( 1

16
)5
� 6 using 235 pairs. The clique

method can still be used on 48 subkey bits with S=N = 248�2�32

48�0:83�( 1

16
)5
� 221 with

an identi�cation that leaves 232 � 2�24 = 28 wrong pairs per each right pair.

13 rounds can be broken using the eleven-round characteristic with an

array of size 230 and S=N = 230�2�40

45�0:83�0:83�( 1

16
)5
� 4 using 243 pairs. The clique

method is not possible since 243 �2�24 = 219 pairs are not discarded. Counting

schemes on 18 and 24 bits are not advisable due to the low S=N .

15 rounds can be broken using the 13-round characteristic with an array

of size 242 and S=N = 242�2�48

47�0:8�0:83�( 1

16
)5
� 2:5 using 251 pairs. This is still

faster than exhaustive search, but requires unrealistic amounts of space and

ciphertexts.
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6.3 1R-attacks

In 1R-attacks counting can be done on all the bits of the subkey of the last

round entering the S boxes with non zero input XORs. Veri�cation of the

values of r0 itself and possibility checks on all the other S boxes in the last

round can be done. For those S boxes with a zero input XOR the output XOR

should be zero too, i.e., the check success rate is 1
16
. Since the input XOR is

constant we cannot distinguish between several subkey values. However, the

number of such values is small (eight in all the 1R-attacks described here)

and each can be checked later in parallel by the next part of the algorithm

(either via exhaustive search or by a di�erential cryptanalysis attack).

Ten rounds can be broken using the nine-round characteristic where

h
0 =  ! H

0 = 0 with probability 1
234

i
0 = 0 ! I

0 = 0 always

j
0 =  = r

0 ! J
0 = l

0 � i
0 = l

0
:

We can identify the right pairs easily. Those pairs satisfy r0 =  and the

20 bits in l
0 going out of S4, . . . , S8 are zero. This also holds for 2�52 of

the wrong pairs. For the other three S boxes we count the possible values of

their 18 key bits with S=N = 218�2�32

43�2�52 = 232. Thus we need 234 pairs.

Twelve rounds can be broken using the eleven-round characteristic with

S=N = 218�2�40

43�2�52 = 224 and with 242 pairs.

Fourteen rounds can be broken using the 13-round characteristic with

S=N = 218�2�48

43�2�52 = 216 and with 250 pairs.

For sixteen rounds we get S=N = 218�2�56

43�2�52 = 28 using the 15-round char-

acteristic. This can be broken using 257 pairs. Note that the creation of

257 pairs is more time consuming than exhaustive search for the 256 possible

keys.

6.4 Summary of the cryptanalysis

A summary of the cryptanalytic results appears in table 12. The description
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# of#pairs#pairs#bitsCharacte- S=N Comments

rndsneeded used foundristics

4 23 23 42 1 1 16 [6]

6 27 27 30 3 1
16

216 �

8 215 213 30 5 1
10486

15:6[24]

8 217 213 30 5 1
10486

1:2 [18]

8 220 219 30 5 1
55000

1:5 [24] The iterative characteristic.

9 225 224 30 6 1
1000000

1:0 [30] Extension to six rounds.

9 226 8 48 7 2�24 229 �

10 234 4 18 9 2�32 232 �

11 235 211 48 9 2�32 221 �

12 242 4 18 11 2�40 224 �

13 243 219 48 11 2�40 4 [30]

14 250 4 18 13 2�48 216 �

15 251 227 48 13 2�48 2:5 [42] Needs a huge memory. With

less memory needs 257 pairs.

16 257 25 18 15 2�56 28 � Slower than exhaustive

search.

Table 12. Summary of the cryptanalysis of DES.

of each �eld is as follows:

# of rnds: The number of rounds in the cryptosystem.

#pairs needed: The number of pairs needed to cryptanalyze the cryptosys-

tem. The number of ciphertexts needed is twice the number of pairs.

#pairs used: The number of pairs that are actually used in the attack, ex-

cluding the identi�able wrong pairs that can be easily discarded during

the collection phase.
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S2I S2�I S2O = S2�O
123456 123456 1234

000111 110101 0111

001111 111101 1110

010101 100111 0001

010111 100101 1010

Table 13. Possible inputs and outputs for 32x ! 0 by S2 (in binary).

#bits found: The number of key bits found in the initial attack (using a

single characteristic). The other key bits can be found by auxiliary

techniques.

Characteristic: The number of rounds and the probability of the charac-

teristic used in the attack.

S=N : The signal to noise ratio of the attack. The number in brackets (if any)

denotes the number of initial bits found with that S=N . An asterisk

denotes that the clique method is preferable over the counting method

and then the S=N is on the number of bits found. The other key bits

are found either in parallel or at a second pass.

Comments: Real comments.

6.5 Enhanced characteristic's probability

In addition to the statistical behavior of the iterative characteristic we can

use the individual values of the input and output bits of the S boxes.

In the iterative characteristic we have the following behavior. When

32x ! 0 by S2 the values of the input bits number 4 and 6 are always

both 1 (see table 13). It does not happen in the �rst round and thus it

cannot be used as in section 5.1. Also we have 2Cx ! 0 by S3 where in 8
10

of

the cases bit number 2 equals 0 and in 2
10

of the cases bit number 2 equals 1

(see table 14).
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S3I S3�I S3O = S3�O
123456 123456 1234

000010 101110 0000

000011 101111 0111

000111 101011 1001

001111 100011 1010

010001 111101 0010

Table 14. Possible inputs and outputs for 2Cx ! 0 by S3 (in binary).

The XOR value bit 6 of S2I and bit 2 of S3I equals the XOR value of

the corresponding key bits in S2K and S3K since the corresponding bits in

S2E and S3E are the same bit due to the bit expansion. If their XOR value

is known to be 1 then the probability of the iterative characteristic becomes
14�8�8
642�32

= 7
210
� 1

146
. If their XOR value is known to be 0 then the probability

becomes 14�8�2
642�32

= 7
212
� 1

595
.

The other characteristic described with the same probability has the op-

posite direction. When 36x ! 0 by S2 the value of bit number 6 is always 0

and thus the probabilities are exchanged. If the XOR of the key bits is 0

then the probability is 1
146

and if 1 it is 1
595

.

The attack on DES with 16 rounds is now as follows. There are seven

rounds in which the input XOR is assumed to be  . Suppose that, out of

these seven rounds, we have n rounds (0 � n � 7) whose key bit number 6

of S2K equals key bit number 2 of S3K. In this case, the probability of the

15-round characteristic is

�
7

212

�n � 7

210

�7�n
= 4n

�
7

212

�7
� 1:6

4n

265
:

For the other characteristic it is 1:64
7�n

265
. Table 15 describes the probabilities

for each number of equalities among the key bits and the relative frequency

of such keys.

To increase the probability (especially in the worse cases) we use quartets

based on both characteristics. Since both characteristics allow counting on
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# of keys probability probability sum of # needed

equals ratio �rst char other char probabilities ciphertexts

0 1
128

1:6 � 2�65 1:6 � 2�51 1:6 � 2�51 1:25 � 252

1 7
128

1:6 � 2�63 1:6 � 2�53 1:6 � 2�53 1:25 � 254

2 21
128

1:6 � 2�61 1:6 � 2�55 1:625 � 2�55 1:23 � 256

3 35
128

1:6 � 2�59 1:6 � 2�57 2�56 258

4 35
128

1:6 � 2�57 1:6 � 2�59 2�56 258

5 21
128

1:6 � 2�55 1:6 � 2�61 1:625 � 2�55 1:23 � 256

6 7
128

1:6 � 2�53 1:6 � 2�63 1:6 � 2�53 1:25 � 254

7 1
128

1:6 � 2�51 1:6 � 2�65 1:6 � 2�51 1:25 � 252

Table 15. Probabilities by number of key bits equalities.

the same S boxes we can use them simultaneously. We can see from the table

that even though we can now break 16 rounds with less than 256 encryptions,

it does not work for all the keys but only for a small fraction of them. For

this fraction exhaustive search is still faster. Table 15 shows that although

the knowledge of the speci�c bit values during the rounds of the character-

istics enhances the attack and decreases the number of pairs needed, the

improvement is relatively small and does not a�ect the overall complexity.

7 Variants of DES

This section describes several variants of DES and how the attack works on

them.
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7.1 Modifying the P permutation

All the attacks based on the iterative characteristic are independent of the

choice of the P permutation. Thus any modi�cation of the P permutation

by any other permutation cannot make the attack less successful.

7.2 Modifying the order of the S boxes

The DES cryptosystem speci�es a certain order of the eight S boxes. A

modi�cation of the order of the S boxes can make the cryptosystem much

weaker. Consider for example the case in which S1, S7 and S4 are brought

together in this order (w.l.g. in the �rst three places) and the other S boxes

are set in any order. Then there is a similar iterative characteristic. This

characteristic is denoted by  � = 1D 40 00 00x where

S1: 03x ! 0 with probability 14
64

S7: 3Ax ! 0 with probability 16
64

S4: 28x ! 0 with probability 16
64

and  � ! 0 with probability 14�16�16
643

� 1
73
.

The 15-round characteristic has probability 1
737

� 2�43 and thus the 16-

round cryptosystem can be attacked using 245 pairs with S=N = 218�2�43

43�2�52 =

221.

The 17-round characteristic has probability 1
738

� 2�50 and thus the 18-

round cryptosystem can be attacked using 252 pairs with S=N = 218�2�50

43�2�52 =

214.

In these attacks the clique method can be used due to the excellent iden-

ti�cation of wrong pairs (only 2�53 of them remain). As in the attack based

on the iterative characteristic this attack is independent of the choice of the

P permutation.
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7.3 Modifying XORs by additions

In DES there are two XOR operations in each round. The �rst XORs the

expanded input with the subkey within the F function while the other XORs

the output of the F function with the other half of the input data. The fol-

lowing subsections describe three possible modi�cations which replace some

of the XOR operations by addition operations. The same analysis holds for

modi�cation by subtraction operations.

7.3.1 Modifying the XORs within the F function

If we replace the occurrences of the XORs within the F function by addition

operations we get a much weaker cryptosystem. The attack uses the following

iterative characteristic:


P = 00 00 00 00 00 0C 00 00x

A
0 = 0 a

0 = 00 0C 00 00x with probability 1
64

B
0 = 0 b

0 = 0 always


T = 00 0C 00 00 00 00 00 00x

F

F

The 00 0C 00 00x ! 0 should be explained: 00 0C 00 00x is the input XOR of

the F function. The expansion to 48 bits is 000058000000x. The addition of

the key causes the input XOR to become 000028000000x with probability
1
16
.

Thus the input XORs of all the S boxes except S4 is zero, while S40I = 28x.

However, 28x ! 0 by S4 with probability 1
4
.
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The 15-round characteristic has probability ( 1
64
)7 = 2�42. The 1R-attack

counting scheme which �nds the six subkey bits entering S4 in the sixteenth

round has S=N = 26

242�2�32
�2�24

�4
= 218. Thus the attack needs about 244 pairs

of encryptions. The six key bits entering S3 can then be found using the

same encryptions with even higher signal to noise ratio. Exhaustive search

of the 244 possible keys (with 12 �xed bits) recovers the right key. The total

complexity of this attack is thus 245.

7.3.2 Modifying all the XORs

Modifying all the XORs by additions change the probability of this character-

istic from 2�6 to 2�8. This happens because the additional addition operation

(for example c = a+B) does not change the input XOR (c0 = a
0 for B0 = 0)

with probability 1
4
. Thus the 16-round characteristic has probability 2�64,

the 15-round characteristic has probability 2�58, the 14-round characteristic

has probability 2�56 and the 13-round characteristic has probability 2�50.

The analysis of this attack shows that 252 pairs are needed to cryptanal-

ize the 14-round cryptosystem. The attacks on the 15-round and 16-round

cryptosystems are slower than exhaustive search.

7.3.3 Modifying all the XORs in an equivalent DES description

DES has an equivalent description in which the expansion is moved to the

end of the F function and all the calculations are done using 48 bits instead

of 32. The cryptosystem which is the result of modifying all the XORs

in this description by additions is not equivalent to the modi�ed standard

cryptosystem as described in the previous subsection. In this subsection

we show that this cryptosystem is much weaker than the modi�ed standard

cryptosystem. We can save the repeated cancellation of non zero input XORs

entering S3 in the previous characteristic by doing it in the �rst addition,

since during the various rounds the data bits entering each S box are kept

expanded. We get a two-round iterated characteristic with probability 1
16

which is concatenated to a single occurrence of a one-round characteristic
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with probability 1
16

at the �rst round. Thus an n-round characteristic with

an odd n has probability 1
16
� ( 1

16
)
n�1

2 = 2�2�2n.

The 15-round characteristic has probability 2�32. A 1R-attack on the

16-round cryptosystem while counting the six key bits entering S4 in the

last round has S=N = 26

232�2�48
�2�42

�1
= 264. Thus only about 234 pairs are

needed. The other key bits entering the last round can be found using similar

characteristics. The best three characteristics have probabilities between 2�32

and 2�35, and the attacks based on them can �nd 18 key bits. Therefore, 237

pairs are needed to �nd the �rst 18 key bits. The remaining 238 key bits can

be found by exhaustive search. The total complexity of this attack is thus

239.

7.4 Random and modi�ed S boxes

In a random S box there is a very high probability (about 0.998) that there

are two di�erent inputs that di�er in the two middle input bits of an S box

(which do not a�ect the neighboring S boxes) which have the same output.

In this case there is an iterative characteristic which is (w.l.g. the S box is

S1 and S10I = Cx):


P = 60 00 00 00 00 00 00 00x

A
0 = 0 a

0 = 0 always

B
0 = 0 b

0 = 60 00 00 00x with some probability


T = 00 00 00 00 60 00 00 00x

F

F
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Char Prob 8 13 rnds 13 rnds Needed

Prob S boxes char prob S=N Pairs
1
32

1:00000 2�30 2�2

2
32

1:00000 2�24 24 227

3
32

0:99991 2�20:5 27:5 223

4
32

0:97079 2�18 210 220

5
32

0:68375 2�16:1 211:9 218

6
32

0:27330 2�14:5 213:5 217

7
32

0:07240 2�13:2 214:8 215

8
32

0:01499 2�12 216 214

9
32

0:00260 2�11:0 217:0 213

10
32

0:00039 2�10:1 217:9 212

Table 16. Characteristic probabilities with random S boxes.

97% of the sets of eight S boxes have such iterative characteristic with prob-

ability 1
8
or more. The corresponding 13-round characteristics have proba-

bility 2�18 for which the 3R-attack on 42 subkey bits needs 220 pairs with

S=N = 210. Table 16 describes the relationship between the probability of

the characteristics, the number of pairs needed, and the probability that a

set of random S boxes has such a characteristic.

In S boxes chosen as four random permutations (as in the original DES S

boxes) two di�erent inputs that di�er in the private bits of one S box must

have di�erent outputs. But there is a high probability that there are two

di�erent inputs di�ering in the input bits of two S boxes which have the

same output. In this case there is an iterative characteristic which is (w.l.g.

the di�erence is in S1 and S2 and the di�ering bits of the data are by bit
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mask 7D 00 00 00x):


P = 7D 00 00 00 00 00 00 00x

A
0 = 0 a

0 = 0 always

B
0 = 0 b

0 = 7D 00 00 00x with some probability


T = 00 00 00 00 7D 00 00 00x

F

F

In random tests we found several attacks that use 243 to 247 pairs. We

estimate that attacks that use this number of pairs can be found for more

than 90% of the 16-round cryptosystems which use S boxes chosen as four

random permutations.

With a single modi�cation in one entry of one of the original DES S boxes

we can force this S box to have two di�erent inputs with the same output.

For example, such a modi�cation may set the value of S(4) to be equal to

S(0) (i.e., the third value in the �rst line to be equal to the �rst value in the

�rst line). Therefore there are two di�erent inputs (0 and 4) with the same

output (the input XOR is 4 and the output XOR is 0). The probability of

4! 0 by this S box is 1
32
. An iterative characteristic based on this property
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has probability 1
32

and is (w.l.g. the di�erence is in S1):


P = 20 00 00 00 00 00 00 00x

A
0 = 0 a

0 = 0 always

B
0 = 0 b

0 = 20 00 00 00x with probability 1
32


T = 00 00 00 00 20 00 00 00x

F

F

Therefore the probability of the 15-round characteristic is 1
327

= 2�35. Using

a 1R-attack 237 pairs are needed to attack the 16-round modi�ed DES with

S=N = 26�2�35

4�2�60 = 229 in order to �nd two indistinguishable values of the �rst

six key bits.

7.5 Four bits to four bits S boxes

A cryptosystem similar to DES in which the E expansion is eliminated and

the S boxes map four bits to four bits is quite weak. Even the cryptosystems

that use permutations derived from the original S boxes are easily attacked.

For example, using the �rst lines of the original S boxes we can �nd the
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following four-round iterative characteristic with probability 1
256

:


P = B0 00 00 00 00 00 05 00x

A
0 = 10 00 00 00x a

0 = 00 00 05 00x with probability 1
4

B
0 = 00 00 02 00x b

0 = A0 00 00 00x with probability 1
8

C
0 = 10 00 00 00x c

0 = 00 00 07 00x with probability 1
4

= A
0

D
0 = 00 00 02 00x d

0 = B0 00 00 00x with probability 1
2

= B
0


T = 00 00 05 00 B0 00 00 00x

F

F

F

F

Using a 2R-attack only 228 pairs are needed to break the 16-round cryp-

tosystem. There are several additional characteristics that can be used to

attack the cryptosystem with a similar amount of pairs.

8 DES with independent keys

In this section we describe an attack on DES reduced to eight rounds with in-

dependent keys and its application to DES with 16 rounds with independent

keys.
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8.1 Eight rounds

The attack on DES reduced to eight rounds with independent keys is basically

similar to the attack on DES reduced to eight rounds described in section 5.

We start by using the same algorithm to �nd the �rst 30 bits of K8 and

then proceed to �nd the remaining bits of K8 and the bits of all the other

subkeys by variants of this algorithm. The attack uses the same characteristic

as in the attack described in section 5 plus 100 pairs with additional two

characteristics.

After �nding the �rst 30 bits of K8, we �lter the pairs, identify the right

pairs and discard all the wrong pairs (with relatively few errors). The other

18 bits of K8 cannot be found yet since we cannot assume that the subkeys

are related to each other by the key scheduling algorithm. To avoid this

problem we �rst look for bits of K7. Table 9 shows the bits in g that can be

calculated for any given ciphertext (the known key bits there are irrelevant

to our case). For each of the eight S boxes of the seventh round and for

each of its 64 possible key values we count the number of pairs for which

this key value is possible. A key value is possible for an S box in a pair if

there is an input pair to the S box whose computable bits have the calculated

value, the other bits have any value and the output XOR is as expected by

the characteristic and the ciphertexts (by G0 = f
0 � h

0 = f
0 � r

0). The most

frequent key value is likely to be the right key value. Since there is not enough

data to make this key value unique we look for the set of key values with

maximal counts and choose the bits that have the same value in all the set.

Those bits are likely to have the right values. The other bits stay unknown.

Experience has shown that the known bits of S1Kh, S3Kh and S4Kh are at

the locations denoted by `1' bits in 2Fx, 27x and 3Cx respectively. If some of

these bits are unknown it is almost certainly due to a mistaken value of the

known bits of K8.

By the knowledge of the subkey bits of the eighth round we can calculate

several input bits of the seventh round for any ciphertext. The input to the

seventh round g has missing bits that enter all the S boxes. There is one

S box whose input depends just on one missing bit while the inputs of all

the other S boxes depend on two missing bits at least. This S box is S1

whose input bit could be calculated if an output of S4 of the eighth round
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was known. To �nd the key bits of S4Kh we try all the 64 possibilities of

its value for each pair, and �nd the key bits value by the counting method.

Now each of the inputs of S3Eg and S4Eg have one missing bit: S3Eg could

be calculated if S1Oh was known and S4Eg could be calculated if S3Oh was

known. To �nd these subkey bits we try all the 128 possibilities of S1Kh

and the missing bit of S3Kg and then the 128 possibilities of S3Kh and the

missing bit of S4Kg. Now K8 is completely known. To �nd K7 we repeat

the algorithm of �nding K7 described above with the di�erence that now we

know all K8. Only one bit of K7 remains indistinguishable. This bit is bit

number 2 of S1Kg.

So far we used the �ltered pairs. These pairs are assumed to be right

pairs whose f 0 is as expected. They cannot help �nding K6 since the input

XORs of �ve of the S boxes are zero so this part of K6 can not be found

at all. The other three S boxes have constant input XORs so there are two

indistinguishable values for the subkey bits entering each S box. In order to

�nd K6 we have to use wrong pairs for which the characteristic holds in the

�rst three of the �ve rounds. From now on we use all the pairs and �lter

them by a di�erent criterion in each phase of the cryptanalysis.

K6: To �nd K6 we decrypt two rounds of the ciphertexts and get the

values of f and f �. We assume that the �rst three rounds of the characteristic

hold in the chosen pairs so d0 is as expected with zero input XORs entering

six S boxes. Thus we can calculate the output XORs of these S boxes in the

sixth round by F 0 = c
0 � D

0 � g
0. Since c0 = 0 and S 0

Ed is zero in the six S

boxes, we get that F 0 = g
0 in the output bits of these S boxes. The �ltering

chooses all the pairs for which f 0 and F 0 satisfy S 0

Ef ! S
0

Of for S1, S2, S5,

. . . , S8. Using the resultant pairs we count on the 12 subkey bits entering S1

and S2 and the missing bit of K7 (needed for the decryption of the seventh

round).

To �nd the other bits of K6 we �lter the pairs again by using the known

bits of K6 to check the output XOR of S1 and S2, and count on S5Kf , . . . ,

S8Kf , a separate counting for each S box (we have a very good �ltering so

the S=N is high enough). In parallel we count on S3Kf and on S4Kf using

the assumption that e0 is as expected by the characteristic (four rounds hold)

and the �lter that discards any pair for which S
0

Oe 6= 0 for S1, S3, . . . , S8
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(since only S20Ee 6= 0). Several possibilities are found for some of the S boxes'

key bits, and the following phases are run on each one of them in parallel.

K5: We assume c0 = 0 and d
0 = b

0. Then D
0 = e

0 where e and e
� are

calculated by a partial decryption. S 0

Od must be zero in the six S boxes in

which S 0

Ed = 0. We �lter the pairs and leave only those that have S 0

Od = 0.

Then we count on each of the eight S boxes of the �fth round. Several

possibilities can be found for some of the SKe's. A list of all the possibilities

of K5 is created and used to try each one of them in parallel in the following

phases.

K4: At the second round there must be S20Eb = S60Eb = 0 for any pair

(these S box inputs do not depend on the di�ering bits of the plaintexts). d

and d� are found by a partial decryption. In additionD0 = a
0�B0�e0 so S20Od

and S60Od are known and there must be S20Ed ! S20Od and S6
0

Ed ! S60Od. If

it does not hold for even one pair it is not a �ltering problem. It must be a

wrong value of the subkeys K5, . . . , K8. A separate counting is done for each

of the six S boxes S1, S2, S5, . . . , S8. The counting on the other S boxes S3

and S4 is done only for pairs whose d0 is as expected by the characteristic

since otherwise we cannot know the value of S30Od and S40Od because S3
0

Ob

and S40Ob are unknown. Since S30Ed and S40Ed are constants there are two

indistinguishable values for each of their keys. As usual we create a list of

the possible K4 values and try them in parallel.

K3: c and c� can be found by a partial decryption of the following rounds

using K4, . . . , K8. S 0

Ea = 0 in all the S boxes except S2. Thus S 0

Oc can be

found for S1, S3, . . . , S8 by C 0 = L
0 � A

0 � d
0. For every pair there must

be S 0

Ec ! S
0

Oc. Therefore, even if only one S box (S1 or S3, . . . , S8) of one

pair does not match S
0

Ec ! S
0

Oc it must be that the values of K4, . . . , K8

are wrong. If this does not happen, the counting is done in parallel for all

the S boxes except S2 using all the pairs. S20Ea 6= 0, thus the calculation of

S20Oc is impossible without further assumptions. Therefore we assume that

the values of A0 and b
0 are as expected by the characteristic. The �ltering

discards any pair that does not have S 0

Ob = 0 for S1, S2 and S5, . . . , S8 using

B
0 = a

0 � c
0 = R

0 � c
0 (since we assume S 0

Eb = 0 in these S boxes). The

counting of S2Kc is done using the �ltered pairs.

K2 and K1: The plaintext XOR used above is useless to �nd K2 and
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K1 since all the pairs have S20Eb = S60Eb = 0 and for all the S boxes of the

�rst round except S2 there is S 0

Ea = 0. The key bits cannot be found at

all for these S boxes. For K1 and K2 we must use another plaintext XOR.

We need only 100 such pairs, which can be obtained without adding new

ciphertexts by arranging some of the original ciphertexts in quartets. This

plaintext XOR and the algorithm of �nding K1 and K2 are very similar to

the case of K1 and K2 in the four round version. See at the end of section 3

for more details.

This attack was implemented in C on a COMPAQ personal computer. It

�nds the key in less than two minutes with 95% success rate using 150000

pairs. Using 250000 pairs the success rate is almost 100%. The program uses

460K bytes of memory, most of it for the counting array (of size 218 bytes)

and the preprocessed optimization tables. The program which counts using

224 memory cells �nds the key using only 25000 pairs. As demonstrated

by these �gures, DES reduced to eight rounds with independent subkeys is

almost as easy to solve as the case of dependent subkeys.

8.2 sixteen rounds

DES with independent keys with any number of rounds is vulnerable to simi-

lar attacks. Lets concentrate on DES with 16 rounds with independent keys.

As we noticed in section 6 we can �nd eight possibilities for 18 bits of K16

using 257 pairs. Three characteristics can be used to cover the subkey bits

entering all the S boxes in the 16th round. The three characteristics are the

iterative characteristic itself, a similar iterative characteristic which is non

zero in the input XORs of S3, S4 and S5 whose 15 round probability is 2�56

and a similar characteristic with non zero input XORs to S6, S7 and S8 whose

15 round probability is about 2�57. Altogether, about 259 pairs are needed

to �nd two possibilities for the six bits entering each of the S boxes, except

S2 whose bits are completely determined by two characteristics. Therefore

27 possibilities for K16 are found. We try in parallel all the 128 possibilities

of the value of K16 and reduce the cryptanalytic problem to a DES reduced

to 15 rounds. Since we know how to attack DES reduced to 15 rounds with

less data in a complexity that is smaller by a factor of 26 then trying the

128 possibilities takes up to twice the time of �nding the possibilities of K16.
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Most of the possibilities are discarded during this reduction and reductions to

fewer rounds are possible with even smaller complexity. Therefore the crypt-

analysis of all the DES with 16 rounds with independent keys takes about

261 steps and use 259 pairs. Even though this is an impractical complexity

bound, it is much faster than the 2768 complexity of exhaustive search.

9 The Generalized DES Scheme (GDES)

The Generalized DES Scheme (GDES) is an attempt to speed up DES which

was suggested by Schaumuller-Bichl[16,18]. The speed up is obtained by

increasing the ratio between the block size and the number of calculations of

the F function.

The GDES blocks are divided into q parts of 32 bits each. The F function

is calculated once per round on the rightmost part, and the result is XORed

into all the other parts, which are then cyclically rotated to the right. After

the last round the order of the parts is exchanged to make the encryption

and decryption di�er only in the order of the subkeys. The scheme is shown

in �gure 4, where n is the number of rounds of the GDES cryptosystem,

B
(j)
i = B

(j�1)
i�1 � F (B

(q)
i�1; Ki) j 2 f2; : : : ; qg; i 2 f1; : : : ; ng

B
(1)
i = B

(q)
i�1 i 2 f1; : : : ; ng,

B0 = (B
(1)
0 ; : : : ; B

(q)
0 ) is the plaintext and Bt

n = (B(q)
n ; : : : ; B

(1)
n ) is the cipher-

text.

9.1 GDES properties

This section describes several properties of GDES.

1. In GDES with n < q,

B
(i)
0 � ' = B

(n+i)
n 8i 2 f1; : : : ; q � ng
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Figure 4. The Generalized DES Scheme.
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where ' =
nL
j=1

F (B
(q)
j�1; Kj).

Thus, the following formulae are satis�ed for any i; j 2 f1; : : : ; q � ng:

B
(i)
0 � B

(j)
0 = B

(n+i)
n �B

(n+j)
n

B
(i)
0 = B

(j)
0 () B

(n+i)
n = B

(n+j)
n

and for pairs of plaintexts for which B
(q�n+1)
0 , . . . , B

(q)
0 are kept con-

stant (i.e., B
0(q�n+1)
0 = : : : = B

0(q)
0 = 0):

B
0(i)
0 = B

0(m+i)
m = B

0(n+i)
n 8i 2 f1; : : : ; q � ng; 8m 2 f0; : : : ; ng:

2. In GDES with n � q, any pair of encryptions in which B
(q�n+2)
0 , . . . ,

B
(q)
0 are kept constant satis�es:

B
0(q�n+1)
0 = B

0(q)
n�1 = B

0(1)
n :

3. For any odd q and any n the following equation is satis�ed:

qM
j=1

B
(j)
0 =

qM
j=1

B
(j)
m =

qM
j=1

B
(j)
n 8m 2 f0; : : : ; ng:

4. In GDES with n = q � 1,

B
0(j)
0 = 0 8j 2 f2; : : : ; qg

implies that

B
0(j)
n = 0 8j 2 f1; : : : ; q � 1g

and

B
0(q)
n = B

0(1)
0 :

5. In GDES with n = 2q � 2,

B
0(1)
0 = �1

B
0(2)
0 = �2

B
0(j)
0 = 0 8j 2 f3; : : : ; qg
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where �1 = 44 08 00 00x and �2 = 04 00 00 00x or �1 = 00 20 04 08x
and �2 = 00 00 04 00x implies that

B
0(j)
n = 0 8j 2 f1; : : : ; q � 2g

B
0(q�1)
n = �2

B
0(q)
n = �1

with probability 1
16

since �2 ! �1 � �2 with probability 1
4
. There are

additional values for �1 and �2 with smaller probabilities.

6. In GDES with n = 2q � 1,

B
0(1)
0 =  

and

B
0(j)
0 = 0 8j 2 f2; : : : ; qg

(where  is the value used in section 6:  = 19 60 00 00x) implies that

B
0(j)
n = 0 8j 2 f1; : : : ; q � 1g

and

B
0(q)
n =  

with probability about 1
234

. GDES with n = lq � 1 satis�es it for any

l � 2 with probability about
�

1
234

�l�1
.

9.2 Cryptanalysis of GDES

This section describes how to cryptanalyze GDES for various values of n and

q. We assume that q is even (as suggested in [16,18]), but note that odd q can

be attacked by variants of our technique. All the attacks �nd the subkeys

and are independent of the key scheduling algorithm. The special case of

q = 8 and n = 16 which is suggested in [16,18] as a faster and more secure

alternative to DES is breakable with just six ciphertexts in a fraction of a

second on a personal computer.
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9.2.1 A known plaintext attack for n = q

Using a known plaintext attack we are given several plaintexts (each one of

the form B0 = (B
(1)
0 ,. . . ,B

(q)
0 )) and the corresponding ciphertexts (each one

of the form B
t
n = (B(q)

n ,. . . ,B(1)
n )). Then

nM
j=1

F (B
(q)
j�1; Kj) =

qM
j=1

�
B

(j)
0 � B

(j)
n

�

and for any i 2 f1; : : : ; ng

nM
j=1

j 6=i

F (B
(q)
j�1; Kj) = B

(q+1�i)
0 �B

(q+1�i)
n :

Thus the output of the F functions is

F (B
(q)
i�1; Ki) = B

(q+1�i)
0 �B

(q+1�i)
n �

qM
j=1

�
B

(j)
0 �B

(j)
n

�

and the input of the F functions is

B
(q)
i�1 = B

(q+1�i)
0 �

i�1M
j=1

F (B
(q)
j�1; Kj):

We thus have SE and SO of each one of the 8n S boxes. As a result we

get only four choices for the six subkey bits of each S box. Using two or three

encryptions the choices can be �ltered by leaving only the ones that appear

in all the encryptions, and thus all the subkey bits can be found.

9.2.2 A chosen plaintext attack for n = q

Using a chosen plaintext attack with pairs whose plaintext XORs are known

we can compute the input and output XORs of the F functions by the same

method used in the known plaintext attack. We can thus �nd all the subkeys

(starting with the subkey of the last round and working backwards towards

the �rst round) using three pairs of ciphertexts with di�erent plaintext XORs.
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9.2.3 A chosen plaintext attack for n = 2q � 1

Using a chosen plaintext attack with pairs satisfying

B
0(j)
0 = 0 8j 2 f2; : : : ; qg

and any B
0(1)
0 6= 0, we get

B
0(j)
q�1 = 0 8j 2 f1; : : : ; q � 1g

and

B
0(q)
q�1 = B

0(1)
0 :

The rest of the encryption is based on q rounds and thus a chosen plaintext

attack similar to the one for n = q can be used to �nd q subkeys by analyzing

three ciphertext pairs.

The other q � 1 subkeys can be found using the above chosen plaintext

attack with two additional ciphertexts.

9.2.4 A chosen plaintext attack for n = 3q � 2

This attack is similar to the previous one, and uses ciphertext pairs satisfying:

B
0(1)
0 = �1

B
0(2)
0 = �2

B
0(j)
0 = 0 8j 2 f3; : : : ; qg:

where �1 and �2 are de�ned in section 9.1. The right pairs are about 1
16
of all

the pairs. We can identify most of the wrong pairs by checking that the input

XOR cannot cause the output XOR. This happens with probability about

0:8 for each S box. Thus only 0:88q = 0:16q of the wrong pairs remain. When

q � 3 this is less than 0:88�3 = 1
250

of the pairs. This excellent identi�cation

makes it possible to consider only 48 pairs, and identify the three expected

occurrences of right pairs among them. We can further decrease this amount

to 24 pairs by using quartets of two XOR values.
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9.2.5 A chosen plaintext attack for n = lq � 1

This attack works for n = lq�1 rounds for l � 3. It is similar to the previous

ones using

B
0(1)
0 =  

B
0(j)
0 = 0 8j 2 f2; : : : ; qg:

The characteristic holds with probability
�

1
234

�l�2
. The identi�cation

leaves 0:88q�5 �
�
1
16

�5
of the wrong pairs. Thus if 0:88q�5 �2�20 �

�
1
234

�l�2
(i.e.,

l <
q

3
+4:7) then the identi�cation is excellent and only three right pairs are

needed (among the 3 � 234l�2 pairs considered) for counting the occurrences

for each S box separately. Otherwise we can count on several S boxes simul-

taneously using more memory and a better S=N . Counting on the 48 bits of

the subkey of the last round has

S=N =
248 � 2�8l

48 � 0:88q�13 � 2�20
� 248�8l+2:5q:

This attack shows that any GDES which is faster than DES is also less

secure than DES. GDES with n = 8q rounds is just as fast as DES. Consider

GDES with n = 8q � 1 which is slightly faster than DES. Then the usable

characteristic has 7q � 1 rounds and six repetitions of the iterative charac-

teristic. Thus its probability is about
�

1
234

�6
� 2�48. Counting on all the 48

bits of the subkey of the last round has

S=N =
248 � 2�48

48 � 0:88q�13 � 2�20
� 22:5q:

Thus about 4{8 right pairs are needed, giving a total of 8 � 248 = 251 pairs.

This complexity decreases rapidly when we try to make GDES even faster

by making n substantially smaller than 8q.

9.2.6 The actual breaking algorithm for n = 2q

The breaking algorithm for the recommended case of n = 2q needs six ci-

phertexts with particular plaintext XOR values. In this section we describe
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an attack on the extension of GDES which uses independent subkeys, which

needs 16 encryptions. Note that for n = 16 and q = 8 the extended attack

uses only 16 � 64 = 1024 ciphertext bits in order to �nd the 16 � 48 = 768 key

bits, giving an almost optimal ratio of 1.33 ciphertext bits per key bit.

The attacker chooses a random plaintext P , encrypts the following 16

plaintexts, and uses only the resultant ciphertexts.

� The plaintext P itself.

� The nine plaintexts obtained from P by XORing 66 00 00 00x,

60 60 00 00x, 60 00 60 00x, 60 00 00 60x, 60 00 00 06x, 9E 5F AC 7Dx,

F7 A5 35 C7x, 7A FA 78 D5x and 21 22 E3 2Cx into B
(1)
0 (the �rst

32 bits of P ).

� The six plaintexts obtained from P by XORing A6 BD EF B7x,

F4 F3 82 3Cx, 4F 5C 37 51x, 2B 76 7A DBx, 5A 19 F9 68x and

33 EE DD FFx into all the B
(i)
0 blocks.

These XOR values are chosen by the following criteria:

1. The �rst plaintext is the randomly chosen basis for the di�erential

attack.

2. Five plaintexts have the maximal number of unchanged inputs to S

boxes in the qth round compared to P and to each other. For the

values chosen at least �ve of the inputs to each S box are unchanged,

which makes it possible to �nd the subkey of the last round.

3. Four other plaintexts have a maximal di�erence in the S boxes of the

q
th round. This is used to �nd the subkeys of the q + 1th and all

the subsequent rounds (There is not enough variability in the previous

values to �nd all those subkeys).

4. Six plaintexts have a maximal di�erence in the S boxes of the �rst q

rounds. This makes it possible to �nd the �rst q subkeys.
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The cryptanalytic algorithm is as follows. At �rst the attacker tries to

�nd the subkey of the last round. Each one of the 15 pairs consisting of P

and the �rst �ve plaintexts has a di�erent set of six S boxes whose input

XORs in B
(1)
0 are zero. All the other B

(i)
0 ; i 2 f2; : : : ; qg have input XORs

which are trivially zero. Thus each one of the �rst q � 1 F functions have

the same input and output values in all the pairs. In each pair the qth F

function has zero input and output XORs in six of the eight S boxes. Using

this knowledge we get the output XOR of these six S boxes in the last (2qth)

round by the formula:

F
0(B

(q)
n�1; Kn) =

qM
j=2

B
0(j)
n :

The input XOR is easily computed as B
0(q)
n�1 = B

0(1)
n and the input itself is

B
(1)
n . Now we try all the possible key bits for each S box separately and

check that for the given input XOR we get the given output XOR value. For

each S box there are at least �ve pairs which can distinguish values of the

key bits. The (almost certainly unique) value suggested by all the pairs is

the key of the corresponding S box. Therefore, the whole subkey of the last

round is found. Now a decryption of the last round can be done reducing the

cryptosystem to 2q � 1 rounds.

Note that if the subkeys are derived by the DES key scheduling algorithm

then 48 bits out of the 56 key bits are known at this point. The others can

be easily found by trying all the 256 possibilities of the missing eight key

bits. We thus proceed to analyze the case of independent subkeys.

In the following q� 1 rounds we get the input and the input XOR of the

F function from the (partially decrypted) ciphertexts. The input XOR is

calculated by the formula:

F
0(B

(q)
r�1; Kr) = B

0(1)
0 �

qM
j=2

B
0(j)
r

where r is the round number (r 2 fq+1; : : : ; 2q�1g). In this case the �rst ten

ciphertexts are used. The additional four ciphertexts are needed primarily

to �nd K(q + 1) since in the �rst six encryptions there are too many zero

XOR bits and more variety is needed. These added ciphertexts do not help
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in the nth round since there we want the output XORs of the S boxes in the

q
th round to be zero.

In the remaining q rounds we use all the 16 ciphertexts. The additional

ciphertexts have non zero di�erences in all the S boxes in all the rounds,

whereas the �rst ten had a constant value during the �rst q� 1 rounds. The

input XOR is calculated by the formula:

F
0(B

(q)
r�1; Kr) = '�

qM
j=2

B
0(j)
r

where r is the round number (r 2 f1; : : : ; qg) and ' is

' =

(
B

0(1)
0 ; if r < q;

B
0(2)
0 ; if r = q.

9.2.7 Conclusions

GDES with n = q = 8 is breakable using a known plaintext attack with three

ciphertexts. With a key scheduling similar to DES, GDES is vulnerable to a

known plaintext attack when n = q + 1 as well.

GDES with q = 8 and n = 16 was suggested in [16,18]. The 15-round

variant is easily breakable using the n = 2q�1 attack with three ciphertexts.

The 16-round version is breakable using the extension to n = 2q with six

ciphertexts in 0.2 seconds on a COMPAQ personal computer. If independent

keys are used then it is breakable with 16 ciphertexts in three seconds on the

same computer.

GDES with q = 8 and n = 22 is breakable using the n = 3q � 2 attack

with 48 ciphertexts (24 pairs). GDES with q = 8 and n = 31 is breakable

using the n = 4q�1 attack with 250000 pairs and S=N = 218

2342 �0:813
� 27 with

memory of size 218. Even GDES with q = 8 and n = 63 is weaker than DES

and is breakable using 252 ciphertexts. In general, any GDES which is faster

than DES is also less secure than DES.
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10 Non-di�erential attacks on DES reduced

to few rounds

In this section we describe several novel attacks on DES reduced to 3{6

rounds which are not based on the ciphertext pair paradigm. These attacks

are of three kinds: ciphertext only attacks, known plaintext attacks and

statistical known plaintext attacks.

10.1 Ciphertext only attacks

10.1.1 A three-round attack

This attack assumes that the eight plaintext bytes are ASCII characters

whose most signi�cant bits are zeroes. The Initial Permutation (IP ) moves

the most signi�cant bits of all these bytes into a single byte. This byte is the

�fth byte of the permuted plaintext which is the �rst byte of the right half.

Given a ciphertext T = (l; r) we can easily calculate eight bits of the output

of the second round by B = a� c = R� r. From table 26 we see that these

eight bits are the output of seven S boxes in the second round (where two of

them come from S5). The attack is as follows:

1. We try all the possibilities of the key bits entering S5 in the second

round and all the key bits entering the six S boxes S1, S2, S3, S4, S6

and S8 in the third round. Their output bits are XORed with the data

bits entering S5 in the second round. Three bits are counted in both

rounds and thus 39 bits are exhaustively tried.

2. Using the tried key bits and any ciphertext we �nd the output of the

six S boxes in the third round and the input and output of S5 in the

second round.

3. We compare the two computed output bits of S5 in the second round

to their expected value. If they are di�erent then the 39 key bits are

wrong. A quarter of the tried keys have the expected value. By trying
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additional ciphertexts we can discard more key values. We stop when

one candidate remains.

Since we start with 239 possible keys and only 1
4
of them survive each test,

we need about log4 2
39 = 19:5 ciphertexts. When the correct 39 key bits are

determined, we can exhaustively try all the possible values of the remaining

17 bits by checking whether the decoded plaintexts are ASCII characters.

The attack thus needs a total of 239 steps and 20 ciphertexts to break DES

reduced to three rounds.

10.1.2 Another three-round attack

In this attack we assume that the plaintext bytes belong to a smaller set in

which the three most signi�cant bits are constant. Such sets are the ASCII

capital letters, the ASCII lower case letters and the ASCII digits. The three

most signi�cant bits of all the eight plaintext bytes are moved to three bytes

by the initial permutation. These three bytes are the �rst byte of the left half

and the �rst and second bytes of the right half. Since the �rst and second

bytes of the right half are constant in all the plaintext blocks, the inputs of

S2 and S3 in the �rst round are constant and thus their outputs are constant

as well. We can calculate the output bits of the third round by the equation:

C = L� A� l: (2)

Two bits of the eight constant bits in L have corresponding constant bits

in A: one of them is an output of S2 and the other is an output of S3 (see

table 26). Since l is known, the two bits in C are known up to a XOR with a

constant. These bits are outputs of S2 and S3. Trying all the 64 possibilities

of the key bits entering S2 in the third round, we can check that in any pair

of ciphertexts the output bit of S2 satis�es C1 � l1 = C2 � l2. Since half the

keys satisfy this condition, we need about 1 + log2 64 = 7 ciphertexts to �nd

the six key bits entering S2 in the third round. The same ciphertexts can be

used to �nd the six key bits entering S3 in the third round. This leaves 44

unknown key bits, which can be found in 244 steps with seven ciphertexts.
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10.1.3 A four-round attack

This attack is an extension of the previous three-round attack and assumes

(as there) that the three most signi�cant bits of each plaintext byte are

constant. In this attack two bits of C are found by the equation:

C = L� A� d = L� A� r

which is similar to equation 2. Then two output bits (one in S2 and one in S3

in the third round) are known up to a constant. We try all the possible key

values of the six key bits of S2 (or similarly S3) in the third round and all the

possible key values of the six S boxes in the fourth round whose output bits

are XORed with the data bits entering S2 (or S3) in the third round. We

try a total of 36 key bits entering the fourth round and six key bits entering

the third round, but �ve bits are common (six when using S3) and thus we

have to try 237 possible key values. We need about 1+ log2 2
37 = 1+37 = 38

ciphertexts to make the computed key unique.

10.2 Known plaintext attacks

10.2.1 A three-round attack

The DES key scheduling algorithm divides the 56 key bits into two halves.

Each half has 28 bits, and supplies the key bits to four S boxes.

Consider DES reduced to three rounds with a single known plaintext/ciphertext

pair. The exclusive-or value of the output of the �rst round and the third

round is known by the equation:

A� C = L� l:

We �rst try all the 228 possibilities of one half of the key. Each candidate

makes it possible to compute the output of four S boxes in the �rst round

and the output of the same S boxes in the third round. We know their

expected exclusive-or value. Since the value has 16 bits, only about 2�16 of

the candidates survive this test. Thus we get about 212 possibilities for the
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�rst 28 bits of the key. In a similar way we get about 212 possibilities for the

other 28 bits of the key. Therefore we �nd about 212 � 212 = 224 possibilities

for the full key, which can be exhaustively searched. The complexity of this

algorithm is about 229, and can be reduced to about 221 by choosing the key

bits entering each S box sequentially rather than in parallel, and discarding

partial keys as soon as they lead to a contradiction.

10.3 Statistical known plaintext attacks

10.3.1 A three-round attack

In this attack we use the fact that in a pairs XOR distribution table, if

we know that the output XOR is zero then the input XOR is zero with

probability 1
4
. Given the plaintext and the ciphertext of an encryption we

can easily calculate A � C = L � l. Then the following algorithm is used

for each S box. Choose only the encryptions whose output XOR from this S

box is zero ( 1
16

of the encryptions): SOa� SOc = 0. If SIa� SIc = 0 then the

corresponding bits of a�c = R�r equal SKa�SKc. We count the number of

occurrences of each such XOR value. The right value is suggested by about
1
4
of the encryptions. Each other value is suggested by about 3

4
� 1
63

of the

encryptions. The value that appears most frequently is likely to be the value

of SKa�SKc. This algorithm is used for each S box and thus we �nd 8�6 = 48

bits that are XORs of the actual key bits. Then trying 28 possibilities we

can �nd the full 56 bit key. We need about four occurrences of the right

value of the key XOR for each S box, i.e., total of about 4 � 4 � 16 = 256

plaintext/ciphertext pairs.

10.3.2 A four-round attack

In this attack we use the fact that for all the S boxes there is a weak correla-

tion between the value of the XOR of the four output bits and the value of bit

number 2 of the input. In particular, for every two inputs of an S box, if the

XOR of the four output bits of the �rst input equals the corresponding value

of the second input then both bits 2 of the input are equal with a certain
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probability. This probability is di�erent for each S box and varies between

0.56 and 0.70.

Given the plaintext and the ciphertext of an encryption we can easily

calculate SOa � SOc by

A� C = L� l:

Then the following algorithm is used separately for each S box. For every

encryption calculate the (single bit) XOR of the four output bits of the �rst

round and the four output bits of the third round by the above equation.

This value is likely to be equal to the XOR of bit number 2 of the inputs

of the S box in these two rounds. SIa is known up to a XOR with the key

(by the plaintext) and thus bit number 2 of the input in the third round is

known up to a XOR with a constant with a high probability. This constant

is the XOR of the corresponding bit number 2 in SKa � SKc. Thus by

D = l � c we �nd the corresponding output bit in the fourth round up to

that constant with a high probability. We try all the 64 possibilities of the

key bits entering the corresponding S box in the fourth round and the two

possibilities of the constant and verify that the speci�c output bit of the S

box equals its expected value. The right key value is counted in about 56%{

70% of the encryptions, depending on the exact S box. Any wrong key value

is counted in about half of the encryptions. The key value which is counted

most frequently is likely to be the right value. This attack �nds a total of

seven bits: six of them are actual key bits and the seventh is a XOR of two

key bits.

The attack obtains the best results when the probability is as high as

possible. To increase the probability we use only encryptions with speci�c

values of SOa � SOc which maximize this probability. For instance, when

S5Oa � S5Oc = 0 this probability is about 0.81. There is a tradeo� be-

tween the number of allowed values and the corresponding probability. As

the number of allowed values increases, the probability decreases so we need

more data to carry out the attack. However, as the number of allowed values

decreases we need more data to make the occurrence of these values suf-

�ciently probable. Table 17 describes the best tradeo� achievable by this

attack. To make the best use of this attack it is advisable to use about

200 plaintext/ciphertext pairs, for which we can �nd almost 28 key bit, and

search exhaustively for the (about 228) remaining possibilities of the key. Us-
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By Finding Average Best tradeo�

S box Bits of Probability Values Encryptions

S1 S4 66% 16 75

S2 S8 57% 8 195

S3 S1 58% 7 240

S4 S2 56% 9 370

S5 S1 70% 16 50

S6 S8 61% 8 135

S7 S5 60% 14 210

S8 S6 63% 12 120

Table 17. Number of encryptions needed to �nd SKd for each S box.

ing about 370 plaintext/ciphertext pairs we can �nd almost 42 key bits and

search exhaustively for the (about 214) remaining possibilities of the key.

10.3.3 A �ve-round attack

This �ve-round attack is similar to the previous algorithm. We can calculate

B � D = R � r. Then an input XOR bit of the S box in the second and

fourth round is known with probability between 0.56 and 0.70. As a result,

an output bit of A�E is known up to a XOR with a constant by L�A = b

and d� E = l and thus

A� E = b� d� L� l:

Using a counting method that counts on the key bits entering the same S

box in the �rst round, the key bits entering the corresponding S box in the

�fth round, and the constant, we can �nd 13 bits of the key: six of them

are actual key bits from the �rst round, six are actual key bits from the �fth

round, and the thirteenth is a XOR of two key bits. The amount of data

needed to �nd these 13 key bits is about the same as in the previous attack.

84



10.3.4 A six-round attack

This attack is again similar to the attack on �ve rounds, but we also have

to count all the possibilities of the 36 subkey bits of the sixth round which

enter S boxes whose output bits enter the counted S box in the �fth round

by the P permutation. In total we count on 49 bits. The total complexity

of this attack is about 255{256 but the basic operation (which is similar to

a single application of the F function) is much simpler than an encryption,

and thus the time needed is marginally faster than exhaustive search.
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A DES tables
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14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7

0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8

4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

Table 18. S1 table.

15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10

3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5

0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15

13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

Table 19. S2 table.

10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8

13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1

13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7

1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

Table 20. S3 table.

7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15

13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9

10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4

3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

Table 21. S4 table.
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2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9

14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6

4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14

11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

Table 22. S5 table.

12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11

10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8

9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6

4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

Table 23. S6 table.

4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1

13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6

1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2

6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

Table 24. S7 table.

13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7

1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2

7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8

2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

Table 25. S8 table.
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From To

Bit S box Bit Mask Bit S box Bit Mask Missing

no. & bit (hex) no. & bit (hex) S box

1 S1 1 80 00 00 00 9 S2.6 S3.2 00 80 00 00 S7

2 2 40 00 00 00 17 S4.6 S5.2 00 00 80 00

3 3 20 00 00 00 23 S6.4 00 00 02 00

4 4 10 00 00 00 31 S8.4 00 00 00 02

5 S2 1 08 00 00 00 13 S3.6 S4.2 00 08 00 00 S6

6 2 04 00 00 00 28 S7.5 S8.1 00 00 00 10

7 3 02 00 00 00 2 S1.3 40 00 00 00

8 4 01 00 00 00 18 S5.3 00 00 40 00

9 S3 1 00 80 00 00 24 S6.5 S7.1 00 00 01 00 S1

10 2 00 40 00 00 16 S4.5 S5.1 00 01 00 00

11 3 00 20 00 00 30 S8.3 00 00 00 04

12 4 00 10 00 00 6 S2.3 04 00 00 00

13 S4 1 00 08 00 00 26 S7.3 00 00 00 40 S2

14 2 00 04 00 00 20 S5.5 S6.1 00 00 10 00

15 3 00 02 00 00 10 S3.3 00 40 00 00

16 4 00 01 00 00 1 S8.6 S1.2 80 00 00 00

17 S5 1 00 00 80 00 8 S2.5 S3.1 01 00 00 00 S8

18 2 00 00 40 00 14 S4.3 00 04 00 00

19 3 00 00 20 00 25 S6.6 S7.2 00 00 00 80

20 4 00 00 10 00 3 S1.4 20 00 00 00

21 S6 1 00 00 08 00 4 S1.5 S2.1 10 00 00 00 S4

22 2 00 00 04 00 29 S7.6 S8.2 00 00 00 08

23 3 00 00 02 00 11 S3.4 00 20 00 00

24 4 00 00 01 00 19 S5.4 00 00 20 00

25 S7 1 00 00 00 80 32 S8.5 S1.1 00 00 00 01 S5

26 2 00 00 00 40 12 S3.5 S4.1 00 10 00 00

27 3 00 00 00 20 22 S6.3 00 00 04 00

28 4 00 00 00 10 7 S2.4 02 00 00 00

29 S8 1 00 00 00 08 5 S1.6 S2.2 08 00 00 00 S3

30 2 00 00 00 04 27 S7.4 00 00 00 20

31 3 00 00 00 02 15 S4.4 00 02 00 00

32 4 00 00 00 01 21 S5.6 S6.2 00 00 08 00

Table 26. The P permutation table.
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B The pairs XOR distribution tables of the

S boxes
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Input Output XOR
XOR 0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx

0x 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1x 0 0 0 6 0 2 4 4 0 10 12 4 10 6 2 4
2x 0 0 0 8 0 4 4 4 0 6 8 6 12 6 4 2
3x 14 4 2 2 10 6 4 2 6 4 4 0 2 2 2 0
4x 0 0 0 6 0 10 10 6 0 4 6 4 2 8 6 2
5x 4 8 6 2 2 4 4 2 0 4 4 0 12 2 4 6
6x 0 4 2 4 8 2 6 2 8 4 4 2 4 2 0 12
7x 2 4 10 4 0 4 8 4 2 4 8 2 2 2 4 4
8x 0 0 0 12 0 8 8 4 0 6 2 8 8 2 2 4
9x 10 2 4 0 2 4 6 0 2 2 8 0 10 0 2 12
Ax 0 8 6 2 2 8 6 0 6 4 6 0 4 0 2 10
Bx 2 4 0 10 2 2 4 0 2 6 2 6 6 4 2 12
Cx 0 0 0 8 0 6 6 0 0 6 6 4 6 6 14 2
Dx 6 6 4 8 4 8 2 6 0 6 4 6 0 2 0 2
Ex 0 4 8 8 6 6 4 0 6 6 4 0 0 4 0 8
Fx 2 0 2 4 4 6 4 2 4 8 2 2 2 6 8 8
10x 0 0 0 0 0 0 2 14 0 6 6 12 4 6 8 6
11x 6 8 2 4 6 4 8 6 4 0 6 6 0 4 0 0
12x 0 8 4 2 6 6 4 6 6 4 2 6 6 0 4 0
13x 2 4 4 6 2 0 4 6 2 0 6 8 4 6 4 6
14x 0 8 8 0 10 0 4 2 8 2 2 4 4 8 4 0
15x 0 4 6 4 2 2 4 10 6 2 0 10 0 4 6 4
16x 0 8 10 8 0 2 2 6 10 2 0 2 0 6 2 6
17x 4 4 6 0 10 6 0 2 4 4 4 6 6 6 2 0
18x 0 6 6 0 8 4 2 2 2 4 6 8 6 6 2 2
19x 2 6 2 4 0 8 4 6 10 4 0 4 2 8 4 0
1Ax 0 6 4 0 4 6 6 6 6 2 2 0 4 4 6 8
1Bx 4 4 2 4 10 6 6 4 6 2 2 4 2 2 4 2
1Cx 0 10 10 6 6 0 0 12 6 4 0 0 2 4 4 0
1Dx 4 2 4 0 8 0 0 2 10 0 2 6 6 6 14 0
1Ex 0 2 6 0 14 2 0 0 6 4 10 8 2 2 6 2
1Fx 2 4 10 6 2 2 2 8 6 8 0 0 0 4 6 4
20x 0 0 0 10 0 12 8 2 0 6 4 4 4 2 0 12
21x 0 4 2 4 4 8 10 0 4 4 10 0 4 0 2 8
22x 10 4 6 2 2 8 2 2 2 2 6 0 4 0 4 10
23x 0 4 4 8 0 2 6 0 6 6 2 10 2 4 0 10
24x 12 0 0 2 2 2 2 0 14 14 2 0 2 6 2 4
25x 6 4 4 12 4 4 4 10 2 2 2 0 4 2 2 2
26x 0 0 4 10 10 10 2 4 0 4 6 4 4 4 2 0
27x 10 4 2 0 2 4 2 0 4 8 0 4 8 8 4 4
28x 12 2 2 8 2 6 12 0 0 2 6 0 4 0 6 2
29x 4 2 2 10 0 2 4 0 0 14 10 2 4 6 0 4
2Ax 4 2 4 6 0 2 8 2 2 14 2 6 2 6 2 2
2Bx 12 2 2 2 4 6 6 2 0 2 6 2 6 0 8 4
2Cx 4 2 2 4 0 2 10 4 2 2 4 8 8 4 2 6
2Dx 6 2 6 2 8 4 4 4 2 4 6 0 8 2 0 6
2Ex 6 6 2 2 0 2 4 6 4 0 6 2 12 2 6 4
2Fx 2 2 2 2 2 6 8 8 2 4 4 6 8 2 4 2
30x 0 4 6 0 12 6 2 2 8 2 4 4 6 2 2 4
31x 4 8 2 10 2 2 2 2 6 0 0 2 2 4 10 8
32x 4 2 6 4 4 2 2 4 6 6 4 8 2 2 8 0
33x 4 4 6 2 10 8 4 2 4 0 2 2 4 6 2 4
34x 0 8 16 6 2 0 0 12 6 0 0 0 0 8 0 6
35x 2 2 4 0 8 0 0 0 14 4 6 8 0 2 14 0
36x 2 6 2 2 8 0 2 2 4 2 6 8 6 4 10 0
37x 2 2 12 4 2 4 4 10 4 4 2 6 0 2 2 4
38x 0 6 2 2 2 0 2 2 4 6 4 4 4 6 10 10
39x 6 2 2 4 12 6 4 8 4 0 2 4 2 4 4 0
3Ax 6 4 6 4 6 8 0 6 2 2 6 2 2 6 4 0
3Bx 2 6 4 0 0 2 4 6 4 6 8 6 4 4 6 2
3Cx 0 10 4 0 12 0 4 2 6 0 4 12 4 4 2 0
3Dx 0 8 6 2 2 6 0 8 4 4 0 4 0 12 4 4
3Ex 4 8 2 2 2 4 4 14 4 2 0 2 0 8 4 4
3Fx 4 8 4 2 4 0 2 4 4 2 4 8 8 6 2 2

Table 27. The pairs XOR distribution table of S1.
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Input Output XOR
XOR 0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx

0x 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1x 0 0 0 4 0 2 6 4 0 14 8 6 8 4 6 2
2x 0 0 0 2 0 4 6 4 0 0 4 6 10 10 12 6
3x 4 8 4 8 4 6 4 2 4 2 2 4 6 2 0 4
4x 0 0 0 0 0 6 0 14 0 6 10 4 10 6 4 4
5x 2 0 4 8 2 4 6 6 2 0 8 4 2 4 10 2
6x 0 12 6 4 6 4 6 2 2 10 2 8 2 0 0 0
7x 4 6 6 4 2 4 4 2 6 4 2 4 4 6 0 6
8x 0 0 0 4 0 4 0 8 0 10 16 6 6 0 6 4
9x 14 2 4 10 2 8 2 6 2 4 0 0 2 2 2 4
Ax 0 6 6 2 10 4 10 2 6 2 2 4 2 2 4 2
Bx 6 2 2 0 2 4 6 2 10 2 0 6 6 4 4 8
Cx 0 0 0 4 0 14 0 10 0 6 2 4 4 8 6 6
Dx 6 2 6 2 10 2 0 4 0 10 4 2 8 2 2 4
Ex 0 6 12 8 0 4 2 0 8 2 4 4 6 2 0 6
Fx 0 8 2 0 6 6 8 2 4 4 4 6 8 0 4 2
10x 0 0 0 8 0 4 10 2 0 2 8 10 0 10 6 4
11x 6 6 4 6 4 0 6 4 8 2 10 2 2 4 0 0
12x 0 6 2 6 2 4 12 4 6 4 0 4 4 6 2 2
13x 4 0 4 0 8 6 6 0 0 2 0 6 4 8 2 14
14x 0 6 6 4 10 0 2 12 6 2 2 2 4 4 2 2
15x 6 8 2 0 8 2 0 2 2 2 2 2 2 14 10 2
16x 0 8 6 4 2 2 4 2 6 4 6 2 6 0 6 6
17x 6 4 8 6 4 4 0 4 6 2 4 4 4 2 4 2
18x 0 6 4 6 10 4 0 2 4 8 0 0 4 8 2 6
19x 2 4 6 4 4 2 4 2 6 4 6 8 0 6 4 2
1Ax 0 6 8 4 2 4 2 2 8 2 2 6 2 4 4 8
1Bx 0 6 4 4 0 12 6 4 2 2 2 4 4 2 10 2
1Cx 0 4 6 6 12 0 4 0 10 2 6 2 0 0 10 2
1Dx 0 6 2 2 6 0 4 16 4 4 2 0 0 4 6 8
1Ex 0 4 8 2 10 6 6 0 8 4 0 2 4 4 0 6
1Fx 4 2 6 6 2 2 2 4 8 6 10 6 4 0 0 2
20x 0 0 0 2 0 12 10 4 0 0 0 2 14 2 8 10
21x 0 4 6 8 2 10 4 2 2 6 4 2 6 2 0 6
22x 4 12 8 4 2 2 0 0 2 8 8 6 0 6 0 2
23x 8 2 0 2 8 4 2 6 4 8 2 2 6 4 2 4
24x 10 4 0 0 0 4 0 2 6 8 6 10 8 0 2 4
25x 6 0 12 2 8 6 10 0 0 8 2 6 0 0 2 2
26x 2 2 4 4 2 2 10 14 2 0 4 2 2 4 6 4
27x 6 0 0 2 6 4 2 4 4 4 8 4 8 0 6 6
28x 8 0 8 2 4 12 2 0 2 6 2 0 6 2 0 10
29x 0 2 4 10 2 8 6 4 0 10 0 2 10 0 2 4
2Ax 4 0 4 8 6 2 4 4 6 6 2 6 2 2 4 4
2Bx 2 2 6 4 0 2 2 6 2 8 8 4 4 4 8 2
2Cx 10 6 8 6 0 6 4 4 4 2 4 4 0 0 2 4
2Dx 2 2 2 4 0 0 0 2 8 4 4 6 10 2 14 4
2Ex 2 4 0 2 10 4 2 0 2 2 6 2 8 8 10 2
2Fx 12 4 6 8 2 6 2 8 0 4 0 2 0 8 2 0
30x 0 4 0 2 4 4 8 6 10 6 2 12 0 0 0 6
31x 0 10 2 0 6 2 10 2 6 0 2 0 6 6 4 8
32x 8 4 6 0 6 4 4 8 4 6 8 0 2 2 2 0
33x 2 2 6 10 2 0 0 6 4 4 12 8 4 2 2 0
34x 0 12 6 4 6 0 4 4 4 0 4 6 4 2 4 4
35x 0 12 4 6 2 4 4 0 10 0 0 8 0 8 0 6
36x 8 2 4 0 4 0 4 2 0 8 4 2 6 16 2 2
37x 6 2 2 2 6 6 4 8 2 2 6 2 2 2 4 8
38x 0 8 8 10 6 2 2 0 4 0 4 2 4 0 4 10
39x 0 2 0 0 8 0 10 4 10 0 8 4 4 4 4 6
3Ax 4 0 2 8 4 2 2 2 4 8 2 0 4 10 10 2
3Bx 16 4 4 2 8 2 2 6 4 4 4 2 0 2 2 2
3Cx 0 2 6 2 8 4 6 0 10 2 2 4 4 10 4 0
3Dx 0 16 10 2 4 2 4 2 8 0 0 8 0 6 2 0
3Ex 4 4 0 10 2 4 2 14 4 2 6 6 0 0 6 0
3Fx 4 0 0 2 0 8 2 4 0 2 4 4 4 14 10 6

Table 28. The pairs XOR distribution table of S2.
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Input Output XOR
XOR 0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx

0x 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1x 0 0 0 2 0 4 2 12 0 14 0 4 8 2 6 10
2x 0 0 0 2 0 2 0 8 0 4 12 10 4 6 8 8
3x 8 6 10 4 8 6 0 6 4 4 0 0 0 4 2 2
4x 0 0 0 4 0 2 4 2 0 12 8 4 6 8 10 4
5x 6 2 4 8 6 10 6 2 2 8 2 0 2 0 4 2
6x 0 10 6 6 10 0 4 12 2 4 0 0 6 4 0 0
7x 2 0 0 4 4 4 4 2 10 4 4 8 4 4 4 6
8x 0 0 0 10 0 4 4 6 0 6 6 6 6 0 8 8
9x 10 2 0 2 10 4 6 2 0 6 0 4 6 2 4 6
Ax 0 10 6 0 14 6 4 0 4 6 6 0 4 0 2 2
Bx 2 6 2 10 2 2 4 0 4 2 6 0 2 8 14 0
Cx 0 0 0 8 0 12 12 4 0 8 0 4 2 10 2 2
Dx 8 2 8 0 0 4 2 0 2 8 14 2 6 2 4 2
Ex 0 4 4 2 4 2 4 4 10 4 4 4 4 4 2 8
Fx 4 6 4 6 2 2 4 8 6 2 6 2 0 6 2 4
10x 0 0 0 4 0 12 4 8 0 4 2 6 2 14 0 8
11x 8 2 2 6 4 0 2 0 8 4 12 2 10 0 2 2
12x 0 2 8 2 4 8 0 8 8 0 2 2 4 2 14 0
13x 4 4 12 0 2 2 2 10 2 2 2 2 4 4 4 8
14x 0 6 4 4 6 4 6 2 8 6 6 2 2 0 0 8
15x 4 8 2 8 2 4 8 0 4 2 2 2 2 6 8 2
16x 0 6 10 2 8 4 2 0 2 2 2 8 4 6 4 4
17x 0 6 6 0 6 2 4 4 6 2 2 10 6 8 2 0
18x 0 8 4 6 6 0 6 2 4 0 4 2 10 0 6 6
19x 4 2 4 8 4 2 10 2 2 2 6 8 2 6 0 2
1Ax 0 8 6 4 4 0 6 4 4 8 0 10 2 2 2 4
1Bx 4 10 2 0 2 4 2 4 8 2 2 8 4 2 8 2
1Cx 0 6 8 8 4 2 8 0 12 0 10 0 4 0 2 0
1Dx 0 2 0 6 2 8 4 6 2 0 4 2 4 10 0 14
1Ex 0 4 8 2 4 6 0 4 10 0 2 6 4 8 4 2
1Fx 0 6 8 0 10 6 4 6 4 2 2 10 4 0 0 2
20x 0 0 0 0 0 4 4 8 0 2 2 4 10 16 12 2
21x 10 8 8 0 8 4 2 4 0 6 6 6 0 0 2 0
22x 12 6 4 4 2 4 10 2 0 4 4 2 4 4 0 2
23x 2 2 0 6 0 2 4 0 4 12 4 2 6 4 8 8
24x 4 8 2 12 6 4 2 10 2 2 2 4 2 0 4 0
25x 6 0 2 0 8 2 0 2 8 8 2 2 4 4 10 6
26x 6 2 0 4 4 0 4 0 4 2 14 0 8 10 0 6
27x 0 2 4 16 8 6 6 6 0 2 4 4 0 2 2 2
28x 6 2 10 0 6 4 0 4 4 2 4 8 2 2 8 2
29x 0 2 8 4 0 4 0 6 4 10 4 8 4 4 4 2
2Ax 2 6 0 4 2 4 4 6 4 8 4 4 4 2 4 6
2Bx 10 2 6 6 4 4 8 0 4 2 2 0 2 4 4 6
2Cx 10 4 6 2 4 2 2 2 4 10 4 4 0 2 6 2
2Dx 4 2 4 4 4 2 4 16 2 0 0 4 4 2 6 6
2Ex 4 0 2 10 0 6 10 4 2 6 6 2 2 0 2 8
2Fx 8 2 0 0 4 4 4 2 6 4 6 2 4 8 4 6
30x 0 10 8 6 2 0 4 2 10 4 4 6 2 0 6 0
31x 2 6 2 0 4 2 8 8 2 2 2 0 2 12 6 6
32x 2 0 4 8 2 8 4 4 8 4 2 8 6 2 0 2
33x 4 4 6 8 6 6 0 2 2 2 6 4 12 0 0 2
34x 0 6 2 2 16 2 2 2 12 2 4 0 4 2 0 8
35x 4 6 0 10 8 0 2 2 6 0 0 6 2 10 2 6
36x 4 4 4 4 0 6 6 4 4 4 4 4 0 6 2 8
37x 4 8 2 4 2 2 6 0 2 4 8 4 10 0 6 2
38x 0 8 12 0 2 2 6 6 2 10 2 2 0 8 0 4
39x 2 6 4 0 6 4 6 4 8 0 4 4 2 4 8 2
3Ax 6 0 2 2 4 6 4 4 4 2 2 6 12 2 6 2
3Bx 2 2 6 0 0 10 4 8 4 2 4 8 4 4 0 6
3Cx 0 2 4 2 12 2 0 6 2 0 2 8 4 6 4 10
3Dx 4 6 8 6 2 2 2 2 10 2 6 6 2 4 2 0
3Ex 8 6 4 4 2 10 2 0 2 2 4 2 4 2 10 2
3Fx 2 6 4 0 0 10 8 2 2 8 6 4 6 2 0 4

Table 29. The pairs XOR distribution table of S3.
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Input Output XOR
XOR 0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx

0x 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1x 0 0 0 0 0 16 16 0 0 16 16 0 0 0 0 0
2x 0 0 0 8 0 4 4 8 0 4 4 8 8 8 8 0
3x 8 6 2 0 2 4 8 2 6 0 4 6 0 6 2 8
4x 0 0 0 8 0 0 12 4 0 12 0 4 8 4 4 8
5x 4 2 2 8 2 12 0 2 2 0 12 2 8 2 2 4
6x 0 8 8 4 8 8 0 0 8 0 8 0 4 0 0 8
7x 4 2 6 4 6 0 16 6 2 0 0 2 4 2 6 4
8x 0 0 0 4 0 8 4 8 0 4 8 8 4 8 8 0
9x 8 4 4 4 4 0 8 4 4 0 0 4 4 4 4 8
Ax 0 6 6 0 6 4 4 6 6 4 4 6 0 6 6 0
Bx 0 12 0 8 0 0 0 0 12 0 0 12 8 12 0 0
Cx 0 0 0 4 0 8 4 8 0 4 8 8 4 8 8 0
Dx 8 4 4 4 4 0 0 4 4 8 0 4 4 4 4 8
Ex 0 6 6 4 6 0 4 6 6 4 0 6 4 6 6 0
Fx 0 6 6 4 6 4 0 6 6 0 4 6 4 6 6 0
10x 0 0 0 0 0 8 12 4 0 12 8 4 0 4 4 8
11x 4 2 2 16 2 4 0 2 2 0 4 2 16 2 2 4
12x 0 0 0 8 0 4 4 8 0 4 4 8 8 8 8 0
13x 8 2 6 0 6 4 0 6 2 8 4 2 0 2 6 8
14x 0 8 8 0 8 0 8 0 8 8 0 0 0 0 0 16
15x 8 4 4 0 4 8 0 4 4 0 8 4 0 4 4 8
16x 0 8 8 4 8 8 0 0 8 0 8 0 4 0 0 8
17x 4 6 2 4 2 0 0 2 6 16 0 6 4 6 2 4
18x 0 8 8 8 8 4 0 0 8 0 4 0 8 0 0 8
19x 4 4 4 0 4 4 16 4 4 0 4 4 0 4 4 4
1Ax 0 6 6 4 6 0 4 6 6 4 0 6 4 6 6 0
1Bx 0 6 6 4 6 4 0 6 6 0 4 6 4 6 6 0
1Cx 0 8 8 8 8 4 0 0 8 0 4 0 8 0 0 8
1Dx 4 4 4 0 4 4 0 4 4 16 4 4 0 4 4 4
1Ex 0 6 6 0 6 4 4 6 6 4 4 6 0 6 6 0
1Fx 0 0 12 8 12 0 0 12 0 0 0 0 8 0 12 0
20x 0 0 0 8 0 0 0 12 0 0 0 12 8 12 12 0
21x 0 4 8 0 8 4 8 8 4 0 4 4 0 4 8 0
22x 8 2 2 0 2 4 8 6 2 8 4 6 0 6 6 0
23x 4 6 2 8 2 4 0 2 6 0 4 6 8 6 2 4
24x 0 6 6 4 6 4 0 6 6 0 4 6 4 6 6 0
25x 0 8 4 4 4 0 0 4 8 8 0 8 4 8 4 0
26x 0 6 6 0 6 4 8 2 6 8 4 2 0 2 2 8
27x 4 6 2 8 2 4 0 2 6 0 4 6 8 6 2 4
28x 16 4 4 0 4 4 4 4 4 4 4 4 0 4 4 0
29x 0 6 2 8 2 4 0 2 6 8 4 6 8 6 2 0
2Ax 0 2 2 16 2 4 4 2 2 4 4 2 16 2 2 0
2Bx 8 0 4 0 4 8 16 4 0 0 8 0 0 0 4 8
2Cx 8 4 4 4 4 0 8 4 4 8 0 4 4 4 4 0
2Dx 4 2 6 4 6 8 0 6 2 0 8 2 4 2 6 4
2Ex 16 0 0 0 0 16 0 0 0 0 16 0 0 0 0 16
2Fx 16 0 0 0 0 0 16 0 0 16 0 0 0 0 0 16
30x 0 6 6 4 6 4 0 6 6 0 4 6 4 6 6 0
31x 0 8 4 4 4 0 0 4 8 8 0 8 4 8 4 0
32x 16 6 6 4 6 0 4 2 6 4 0 2 4 2 2 0
33x 0 2 6 4 6 8 8 6 2 0 8 2 4 2 6 0
34x 0 12 12 8 12 0 0 0 12 0 0 0 8 0 0 0
35x 0 4 8 0 8 4 8 8 4 0 4 4 0 4 8 0
36x 0 2 2 4 2 0 4 6 2 4 0 6 4 6 6 16
37x 0 2 6 4 6 8 8 6 2 0 8 2 4 2 6 0
38x 0 4 4 0 4 4 4 4 4 4 4 4 0 4 4 16
39x 0 6 2 8 2 4 0 2 6 8 4 6 8 6 2 0
3Ax 0 4 4 0 4 8 8 4 4 8 8 4 0 4 4 0
3Bx 16 4 4 0 4 0 0 4 4 0 0 4 0 4 4 16
3Cx 0 4 4 4 4 0 8 4 4 8 0 4 4 4 4 8
3Dx 4 2 6 4 6 8 0 6 2 0 8 2 4 2 6 4
3Ex 0 2 2 8 2 12 4 2 2 4 12 2 8 2 2 0
3Fx 8 4 0 8 0 0 0 0 4 16 0 4 8 4 0 8

Table 30. The pairs XOR distribution table of S4.
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Input Output XOR
XOR 0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx

0x 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1x 0 0 0 4 0 10 8 6 0 4 2 2 12 10 2 4
2x 0 0 0 4 0 10 6 4 0 6 4 2 4 8 10 6
3x 8 2 4 6 4 4 2 2 6 8 6 4 4 0 2 2
4x 0 0 0 8 0 4 10 6 0 6 6 4 8 6 0 6
5x 12 2 0 4 0 4 8 2 4 0 16 2 0 2 0 8
6x 0 8 4 6 4 6 2 2 4 4 6 0 6 0 2 10
7x 2 0 4 8 4 2 6 6 2 8 6 2 2 0 6 6
8x 0 0 0 2 0 8 10 4 0 4 10 4 8 4 4 6
9x 8 6 0 4 0 6 6 2 2 10 2 8 6 2 0 2
Ax 0 6 8 6 0 8 0 0 8 10 4 2 8 0 0 4
Bx 4 2 2 4 8 10 6 4 2 6 2 2 6 2 2 2
Cx 0 0 0 10 0 2 10 2 0 6 10 6 6 6 2 4
Dx 10 4 2 2 0 6 16 0 0 2 10 2 2 4 0 4
Ex 0 6 4 8 4 6 10 2 4 4 4 2 4 0 2 4
Fx 4 4 0 8 0 2 0 2 8 2 4 2 8 4 4 12
10x 0 0 0 0 0 4 4 12 0 2 8 10 4 6 12 2
11x 6 6 10 10 4 0 2 6 2 4 0 6 2 4 2 0
12x 0 2 4 2 10 4 0 10 8 6 0 6 0 6 6 0
13x 0 0 6 2 8 0 0 4 4 6 2 8 2 8 10 4
14x 0 12 2 6 4 0 4 4 8 4 4 4 6 2 4 0
15x 4 8 0 2 8 0 2 4 2 2 4 2 4 8 8 6
16x 0 6 10 2 14 0 2 2 4 4 0 6 0 4 6 4
17x 0 6 8 4 8 4 0 2 8 4 0 2 2 8 6 2
18x 0 10 8 0 6 4 0 4 4 4 6 4 4 4 0 6
19x 0 4 6 2 4 4 2 6 4 2 2 4 12 2 10 0
1Ax 0 2 16 2 12 2 0 6 4 0 0 4 0 4 4 8
1Bx 2 8 12 0 0 2 2 6 8 4 0 6 0 0 8 6
1Cx 0 10 2 6 6 6 6 4 8 2 0 4 4 4 2 0
1Dx 4 6 2 0 8 2 4 6 6 0 8 6 2 4 2 4
1Ex 0 2 6 2 4 0 0 2 12 2 2 6 2 10 10 4
1Fx 0 6 8 4 8 8 0 6 6 2 0 6 0 6 2 2
20x 0 0 0 8 0 8 2 6 0 4 4 4 6 6 8 8
21x 0 0 0 6 6 2 6 4 6 10 14 4 0 0 4 2
22x 14 4 0 10 0 2 12 2 2 2 10 2 0 0 2 2
23x 2 0 0 4 2 2 10 4 0 8 8 2 6 8 0 8
24x 6 2 8 4 4 4 6 2 2 6 6 2 6 2 2 2
25x 6 0 0 8 2 8 2 6 6 4 2 2 4 2 6 6
26x 12 0 0 4 0 4 4 4 0 8 4 0 12 8 0 4
27x 12 2 0 2 0 12 2 2 4 4 8 4 8 2 2 0
28x 2 8 4 6 2 4 6 0 6 6 4 0 2 2 2 10
29x 6 4 6 8 8 4 6 2 0 0 2 2 10 0 2 4
2Ax 4 4 0 2 2 4 6 2 0 0 6 4 10 4 4 12
2Bx 4 6 2 6 0 0 12 2 0 4 12 2 6 4 0 4
2Cx 8 6 2 6 4 8 6 0 4 4 0 2 6 0 6 2
2Dx 4 4 0 4 0 6 4 2 4 12 0 4 4 6 4 6
2Ex 6 0 2 4 0 6 6 4 2 10 6 10 6 2 0 0
2Fx 10 4 0 2 2 6 10 2 0 2 2 4 6 2 2 10
30x 0 4 8 4 6 4 0 6 10 4 2 4 2 6 4 0
31x 0 6 6 4 10 2 0 0 4 4 0 0 4 6 12 6
32x 4 6 0 2 6 4 6 0 6 0 4 6 4 10 6 0
33x 8 10 0 14 8 0 0 8 2 0 2 4 0 4 4 0
34x 0 4 4 2 14 4 0 8 6 8 2 2 0 4 6 0
35x 0 4 16 0 8 4 0 4 4 4 0 8 0 4 4 4
36x 4 4 4 6 2 2 2 12 2 4 4 8 2 4 4 0
37x 4 2 2 2 4 2 0 8 2 2 2 12 6 2 8 6
38x 0 4 8 4 12 0 0 8 10 2 0 0 0 4 2 10
39x 0 8 12 0 2 2 2 2 12 4 0 8 0 4 4 4
3Ax 0 14 4 0 4 6 0 0 6 2 10 8 0 0 4 6
3Bx 0 2 2 2 4 4 8 6 8 2 2 2 6 14 2 0
3Cx 0 0 10 2 6 0 0 2 6 2 2 10 2 4 10 8
3Dx 0 6 12 2 4 8 0 8 8 2 2 0 2 2 4 4
3Ex 4 4 10 0 2 4 8 8 2 2 0 2 6 8 4 0
3Fx 8 6 6 0 4 2 2 4 4 2 8 6 2 4 6 0

Table 31. The pairs XOR distribution table of S5.
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Input Output XOR
XOR 0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx

0x 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1x 0 0 0 6 0 2 6 2 0 4 2 4 6 16 14 2
2x 0 0 0 2 0 10 6 10 0 2 4 8 6 6 8 2
3x 0 8 0 8 0 6 4 6 4 4 4 12 2 4 2 0
4x 0 0 0 8 0 0 8 0 0 6 8 10 2 4 10 8
5x 10 2 4 4 4 8 8 4 2 2 0 4 0 8 0 4
6x 0 8 4 4 8 4 2 2 12 0 2 6 6 2 2 2
7x 6 6 4 0 2 10 2 2 2 2 6 6 8 0 6 2
8x 0 0 0 6 0 2 16 4 0 2 6 2 4 12 6 4
9x 10 4 2 6 0 2 6 2 4 0 8 6 4 4 2 4
Ax 0 14 4 4 0 2 2 2 10 4 4 4 6 4 2 2
Bx 4 6 2 0 2 2 12 8 2 2 2 6 8 2 0 6
Cx 0 0 0 12 0 10 4 6 0 8 4 4 2 12 2 0
Dx 12 0 2 10 6 4 4 2 4 2 6 0 2 6 0 4
Ex 0 6 4 0 4 4 10 8 6 2 4 6 2 0 6 2
Fx 2 2 2 2 6 2 6 2 10 4 8 2 6 4 4 2
10x 0 0 0 8 0 8 0 12 0 4 2 6 8 4 6 6
11x 6 2 6 4 6 2 6 4 6 6 4 2 4 0 6 0
12x 0 8 4 2 0 4 2 0 4 10 6 2 8 6 4 4
13x 6 6 12 0 12 2 0 6 6 2 0 4 0 2 4 2
14x 0 4 6 2 8 6 0 2 6 10 4 0 2 4 6 4
15x 2 2 6 6 4 4 2 6 2 6 8 4 4 0 4 4
16x 0 4 14 6 8 4 2 6 2 0 2 0 4 2 0 10
17x 2 6 8 0 0 2 0 2 2 6 0 8 8 2 12 6
18x 0 4 6 6 8 4 2 2 6 4 6 4 2 4 2 4
19x 2 6 0 2 4 4 4 6 4 8 6 4 2 2 6 4
1Ax 0 6 6 0 8 2 4 6 4 2 4 6 2 0 4 10
1Bx 0 4 10 2 4 4 2 6 6 6 2 2 6 6 2 2
1Cx 0 0 8 2 12 2 6 2 8 6 6 2 4 0 4 2
1Dx 2 4 0 6 8 6 0 2 6 8 6 0 2 4 0 10
1Ex 0 10 8 2 8 2 0 2 6 4 2 4 6 4 2 4
1Fx 0 6 6 8 6 4 2 4 4 2 2 0 2 4 2 12
20x 0 0 0 0 0 6 6 4 0 4 8 8 4 6 10 8
21x 2 8 6 8 4 4 6 6 8 4 0 4 0 2 2 0
22x 16 2 4 6 2 4 2 0 6 4 8 2 0 2 2 4
23x 0 4 0 4 4 6 10 4 2 2 6 2 4 6 6 4
24x 10 8 0 6 12 6 10 4 8 0 0 0 0 0 0 0
25x 0 2 4 2 0 4 4 0 4 0 10 10 4 10 6 4
26x 2 2 0 12 2 2 6 2 4 4 8 0 6 6 8 0
27x 8 4 0 8 2 4 2 4 0 6 2 4 4 8 2 6
28x 6 8 4 6 0 4 2 2 4 8 2 6 4 2 2 4
29x 2 4 4 0 8 8 6 8 6 4 0 4 4 4 2 0
2Ax 6 0 0 6 6 4 6 8 2 4 0 2 2 4 6 8
2Bx 12 0 4 0 0 4 2 2 2 6 10 6 10 2 4 0
2Cx 4 2 6 0 0 6 8 6 4 2 2 8 4 6 4 2
2Dx 6 2 2 6 6 4 4 2 6 2 4 8 4 2 4 2
2Ex 4 6 2 4 2 4 4 2 4 2 4 6 4 10 4 2
2Fx 10 0 4 8 0 6 6 2 0 4 4 2 6 2 2 8
30x 0 12 8 2 0 6 0 0 6 6 0 2 8 2 6 6
31x 2 6 10 4 2 2 2 4 6 0 2 6 0 2 4 12
32x 4 2 2 8 10 8 8 6 0 2 2 4 4 2 2 0
33x 4 2 2 2 6 0 4 0 10 6 6 4 0 4 8 6
34x 0 4 4 2 6 4 0 4 6 2 6 4 2 8 0 12
35x 6 12 4 2 4 2 2 4 8 2 2 0 6 4 4 2
36x 0 2 2 4 4 4 4 0 2 10 12 4 0 10 4 2
37x 10 2 2 6 14 2 2 6 2 0 4 6 2 0 4 2
38x 0 4 14 0 8 2 0 4 4 4 2 0 8 2 4 8
39x 2 4 8 0 6 2 0 6 2 6 4 2 8 6 2 6
3Ax 8 4 0 4 6 2 0 4 6 8 6 0 6 0 4 6
3Bx 0 4 6 6 2 2 2 14 0 12 0 4 2 2 8 0
3Cx 0 6 16 0 2 2 2 8 4 2 0 12 6 2 2 0
3Dx 0 6 2 2 2 6 8 2 4 2 6 2 6 2 4 10
3Ex 4 2 2 4 4 0 6 10 4 2 4 6 6 2 6 2
3Fx 0 4 6 6 4 8 4 0 4 8 4 0 4 8 2 2

Table 32. The pairs XOR distribution table of S6.
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Input Output XOR
XOR 0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx

0x 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1x 0 0 0 2 0 4 4 14 0 12 4 6 2 6 6 4
2x 0 0 0 0 0 12 2 2 0 4 0 4 8 12 6 14
3x 8 2 12 2 6 8 6 0 6 4 4 2 2 0 0 2
4x 0 0 0 8 0 4 4 8 0 8 8 12 2 6 2 2
5x 6 0 0 2 8 0 8 4 0 2 6 0 10 6 6 6
6x 0 2 12 0 8 4 8 2 4 4 4 2 6 0 6 2
7x 4 6 4 12 0 4 2 0 0 14 2 6 4 0 0 6
8x 0 0 0 8 0 0 6 10 0 4 12 4 6 6 0 8
9x 10 8 4 8 6 2 2 0 2 6 8 2 0 6 0 0
Ax 0 10 6 2 12 2 4 0 4 4 6 4 4 0 0 6
Bx 0 2 2 2 4 8 6 4 4 0 4 2 6 4 2 14
Cx 0 0 0 4 0 4 8 4 0 2 6 0 14 12 8 2
Dx 6 6 2 4 2 6 4 6 6 4 8 8 0 2 0 0
Ex 0 12 10 10 0 2 4 2 8 6 4 2 0 0 2 2
Fx 2 0 0 0 6 8 8 0 6 2 4 6 8 0 6 8
10x 0 0 0 4 0 2 8 6 0 6 4 10 8 4 8 4
11x 6 10 10 4 4 2 0 4 4 0 2 8 4 2 2 2
12x 0 0 8 8 2 8 2 8 6 4 2 8 0 0 8 0
13x 4 4 2 2 8 6 0 2 2 2 0 4 6 8 14 0
14x 0 8 6 2 8 8 2 6 4 2 0 2 8 6 0 2
15x 4 4 8 2 4 0 4 10 8 2 4 4 4 2 0 4
16x 0 6 10 2 2 2 2 4 10 8 2 2 0 4 10 0
17x 8 2 4 2 6 4 0 6 4 4 2 2 0 4 8 8
18x 0 16 2 2 6 0 6 0 6 2 8 0 6 0 2 8
19x 0 8 0 2 4 4 10 4 8 0 6 4 2 6 2 4
1Ax 0 2 4 8 12 4 0 6 4 4 0 2 0 6 4 8
1Bx 0 6 2 6 4 2 4 4 6 4 8 4 2 0 10 2
1Cx 0 8 4 4 2 6 6 6 6 4 6 8 0 2 0 2
1Dx 4 4 4 0 0 2 4 2 4 2 2 4 10 10 8 4
1Ex 0 0 2 2 12 6 2 0 12 2 2 4 2 6 8 4
1Fx 2 2 10 14 2 4 2 4 4 6 0 2 4 8 0 0
20x 0 0 0 14 0 8 4 2 0 4 2 8 2 6 0 14
21x 4 2 6 2 12 2 4 0 6 4 10 2 4 2 2 2
22x 10 6 0 2 4 4 10 0 4 0 12 2 8 0 0 2
23x 0 6 2 2 2 4 6 10 0 4 8 2 2 6 0 10
24x 4 2 0 6 8 2 6 0 8 2 2 0 8 2 12 2
25x 2 0 2 16 2 4 6 4 6 8 2 4 0 6 0 2
26x 6 10 0 10 0 6 4 4 2 2 4 6 2 4 2 2
27x 4 0 2 0 2 2 14 0 4 6 6 2 12 2 4 4
28x 14 4 6 4 4 6 2 0 6 6 2 2 4 0 2 2
29x 2 2 0 2 0 8 4 2 4 6 4 4 6 4 12 4
2Ax 2 4 0 0 0 2 8 12 0 8 2 4 8 4 4 6
2Bx 16 6 2 4 6 10 2 2 2 2 2 2 4 2 2 0
2Cx 2 6 6 8 2 2 0 6 0 8 4 2 2 6 8 2
2Dx 6 2 4 2 8 8 2 8 2 4 4 0 2 0 8 4
2Ex 2 4 8 0 2 2 2 4 0 2 8 4 14 6 0 6
2Fx 2 2 2 8 0 2 2 6 4 6 8 8 6 2 0 6
30x 0 6 8 2 8 4 4 0 10 4 4 6 0 0 2 6
31x 0 8 4 0 6 2 2 6 6 0 0 2 6 4 8 10
32x 2 4 0 0 6 4 10 6 6 4 6 2 4 6 2 2
33x 0 16 6 8 2 0 2 2 4 2 8 4 0 4 6 0
34x 0 4 14 8 2 2 2 4 16 2 2 2 0 2 0 4
35x 0 6 0 0 10 8 2 2 6 0 0 8 6 4 4 8
36x 2 0 2 2 4 6 4 4 2 2 4 2 4 16 10 0
37x 6 6 6 8 4 2 4 4 4 0 6 8 2 4 0 0
38x 0 2 2 2 8 8 0 2 2 2 0 6 6 4 10 10
39x 4 4 16 8 0 6 4 2 4 4 2 6 0 2 2 0
3Ax 16 6 4 0 2 0 2 6 0 4 8 10 0 0 4 2
3Bx 2 0 0 2 0 4 4 4 2 6 2 6 6 12 12 2
3Cx 0 0 8 0 12 8 2 6 6 4 0 2 2 4 6 4
3Dx 2 4 12 2 2 2 0 4 6 10 2 6 4 2 0 6
3Ex 4 6 6 6 2 0 4 8 2 10 4 6 0 4 2 0
3Fx 14 0 0 0 8 0 6 8 4 2 0 0 4 8 4 6

Table 33. The pairs XOR distribution table of S7.
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Input Output XOR
XOR 0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx

0x 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1x 0 0 0 6 0 16 10 0 0 0 6 0 14 6 2 4
2x 0 0 0 8 0 10 4 2 0 10 2 4 8 8 6 2
3x 6 0 2 8 2 6 4 0 6 6 6 2 2 0 8 6
4x 0 0 0 2 0 4 6 12 0 6 8 4 10 4 8 0
5x 4 10 6 0 0 2 6 0 4 10 4 6 8 2 0 2
6x 0 0 10 4 6 4 4 8 2 6 4 2 4 2 2 6
7x 6 2 8 2 8 10 6 6 4 2 0 4 0 0 0 6
8x 0 0 0 4 0 6 4 2 0 8 6 10 8 2 2 12
9x 8 4 0 6 0 4 4 6 2 4 6 2 12 2 0 4
Ax 0 0 16 4 6 6 4 0 4 6 4 2 2 0 0 10
Bx 2 8 0 6 2 6 0 4 4 10 0 2 10 2 6 2
Cx 0 0 0 2 0 10 10 6 0 6 6 6 2 6 10 0
Dx 6 0 4 10 2 0 8 6 2 2 6 10 2 2 2 2
Ex 0 0 6 8 4 8 0 2 10 6 2 4 6 2 4 2
Fx 8 0 4 2 2 4 2 2 2 6 4 6 0 2 14 6
10x 0 0 0 4 0 0 8 12 0 0 8 8 2 10 6 6
11x 0 6 4 6 2 2 6 6 4 6 4 6 0 4 4 4
12x 0 4 0 8 6 2 8 4 2 4 4 6 2 4 10 0
13x 4 2 2 6 8 6 2 2 14 2 2 4 2 2 2 4
14x 0 16 4 2 6 0 2 6 4 0 4 6 4 6 4 0
15x 0 10 6 0 6 0 2 8 2 2 0 8 2 6 6 6
16x 0 12 6 4 6 0 0 0 8 6 6 2 2 6 4 2
17x 0 6 8 0 6 2 4 6 6 0 2 6 4 4 2 8
18x 0 12 2 2 8 0 8 0 10 4 4 2 4 2 0 6
19x 6 4 8 0 8 0 4 2 0 0 12 2 4 6 2 6
1Ax 0 4 6 2 8 8 0 4 8 0 0 0 6 2 0 16
1Bx 2 4 8 10 2 4 2 8 2 4 8 2 0 2 4 2
1Cx 0 12 6 4 6 4 2 2 6 0 4 4 2 10 2 0
1Dx 8 6 0 0 10 0 0 8 10 4 2 2 2 8 4 0
1Ex 0 4 8 6 8 2 4 4 10 2 2 4 2 0 6 2
1Fx 4 2 4 2 6 2 4 0 2 6 2 2 2 16 8 2
20x 0 0 0 16 0 4 0 0 0 14 6 4 2 0 4 14
21x 0 0 2 10 2 8 10 0 0 6 6 0 10 2 2 6
22x 8 0 6 0 6 4 10 2 0 6 8 0 4 4 2 4
23x 4 8 0 6 0 4 8 6 2 2 10 4 8 0 0 2
24x 4 0 4 8 4 6 2 4 8 6 2 0 0 4 4 8
25x 0 4 6 8 2 8 8 0 4 2 4 4 2 2 6 4
26x 2 6 0 6 4 4 4 6 6 0 4 4 10 4 2 2
27x 6 6 0 0 2 2 6 2 4 4 6 10 2 6 2 6
28x 10 2 6 2 4 12 12 0 2 2 4 0 0 0 2 6
29x 4 0 0 14 2 10 4 2 8 6 4 0 4 2 2 2
2Ax 8 8 0 2 0 2 4 0 2 6 8 14 2 8 0 0
2Bx 2 2 0 0 4 2 10 4 6 2 4 0 6 4 8 10
2Cx 2 6 6 2 4 6 2 0 2 6 4 0 6 4 10 4
2Dx 8 0 4 4 6 2 0 0 6 8 2 4 6 4 4 6
2Ex 6 2 2 4 2 2 6 12 4 0 4 2 8 8 0 2
2Fx 8 12 4 6 6 4 2 2 2 2 4 2 2 4 0 4
30x 0 4 6 2 10 2 2 2 4 8 0 0 8 4 6 6
31x 4 6 8 0 4 6 0 4 4 6 10 2 2 4 4 0
32x 6 6 6 2 4 6 0 2 0 6 8 2 2 6 6 2
33x 6 6 4 2 4 0 0 10 2 2 0 6 8 4 0 10
34x 0 2 12 4 10 4 0 4 12 0 2 4 2 2 2 4
35x 6 4 4 0 10 0 0 4 10 0 0 4 2 8 8 4
36x 4 6 2 2 2 2 6 8 6 4 2 6 0 4 10 0
37x 2 2 8 2 4 4 4 2 6 2 0 10 6 10 2 0
38x 0 4 8 4 2 6 6 2 4 2 2 4 6 4 4 6
39x 4 4 4 8 0 6 0 6 4 8 2 2 2 4 8 2
3Ax 8 8 0 4 2 0 10 4 0 0 0 4 8 6 8 2
3Bx 8 2 6 4 4 4 4 0 6 4 4 6 4 4 4 0
3Cx 0 6 6 6 6 0 0 8 8 2 4 8 4 2 4 0
3Dx 2 2 8 0 10 0 2 12 0 4 0 8 0 2 6 8
3Ex 6 4 0 0 4 4 0 10 6 2 6 12 2 4 0 4
3Fx 0 6 6 0 4 4 6 10 0 6 8 2 0 4 8 0

Table 34. The pairs XOR distribution table of S8.
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