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Outline 

Part 1: Key Establishment 
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Key Distribution 

How should 2 entities agree on a key?  
  It can be a key for a symmetric cryptosystem, or for 

various other applications  
  Types of keys: 

  Session keys: used only for 1 session 
  Long-lived keys (also known as terminal keys): used for more than 

1 session, need to be securely stored 
  Master keys: A key that can be used for creating a session key or 

a long-lived key. 

  Objectives of the adversary: 
  To fool Alice and Bob into accepting an invalid key as valid 
  To make Alice or Bob believe that they have exchanged a key 

when they have not done so 
  To determine (partial) information about the key being exchanged 
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Key Distribution 

Key establishment 
  It can be implemented in 2 ways 

  Using a Key Distribution Center (KDC), also referred to 
as a Trusted Authority 

  Without the use of a Center: Alice and Bob execute 
some protocol on their own to agree on a key (such 
protocols are then referred to as Key Agreement 
Protocols)  
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Key Distribution 

Key Distribution Centers 
  Suppose that a set of entities want to communicate with each 

other in a single session 
  The session key is produced either by the KDC or by one of the 

communicating entities 
  Each entity is using a long-lived key to communicate with KDC, 

i.e., we use long-lived keys to protect session keys 
 
Main Advantage: 
  Less long-lived keys required: For a total number of n entities 

communicating with each other, we need only n long-lived keys 
instead of O(n2) in the absence of KDC 

Concerns: 
  Security is based on the security of the long-lived keys (they must 

be securely produced and stored) 
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Key Distribution 

Key Distribution Centers 

(1) Alice sends a request for a session key to the center 

(2) KDC generates the session key Ks and sends to Alice ekA(Ks) 
and ekB(Ks) 

(3) Alice decrypts ekA(Ks) and also sends ekB(Ks) to Bob who can 
decrypt it 

We need a secure channel for the exchange of the long-lived keys 
kA, kB between KDC and the entities  

KDC 

Alice Bob 

Suppose Alice and Bob want 
to agree on a session key Ks 

kA, kB: keys shared between 
KDC and Alice (resp. Bob) 

 

(1) 
(2) 

(3) 
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Key Distribution 

Key Distribution Centers 

(1) Alice sends a request for a session key to the center 

(2) KDC generates the session key Ks and sends to Alice ekA(Ks) 

(3) KDC sends to Bob ekB(Ks) 

KDC 

Alice Bob 

Alternatively: 

(1) 
(2) (3) 
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Key Distribution 

Key Distribution Centers 

(1) Alice generates the key Ks and sends ekA(Ks) to KDC 

(2) KDC decrypts using kA, then encrypts using kB and sends to 
Alice ekB(Ks) 

(3) Alice sends ekB(Ks) to Bob who can decrypt it 

In another variation, KDC can send ekB(Ks) directly to Bob  

KDC 

Alice Bob 

And yet another idea: 

(1) 
(2) 

(3) 
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Key Distribution 

Key Distribution Centers 

  Variations used in modern protocols to prevent active attacks: 
  Timestamps: Adding current time to the messages exchanged 

(h:min:sec) 
  Nonce: a unique number used in each transmission of 

information (it sometimes replaces timestamps) 
  Used for message and entity authentication 

  These numbers become part of the message and protect a 
message from being re-used again by an adversary in the 
future 

  Requirements: It should not be easy for the adversary to predict the 
nonce numbers; the algorithm for producing nonce numbers should not 
repeat numbers (or should not do so in an easy to decide pattern)  
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Key Distribution 

Key Distribution Centers 
  Examples: 

  One-Pass Protocols 
(1)  Alice → KDC: IDA || IDB || nA //nA = nonce number derived by Alice        

IDB and nA can be also transmitted in an encrypted form  
(2)  KDC → Alice: ekA(nA || IDB || Ks || ekB(Ks || IDA)) 
(3)  Alice → Bob: ekB(Ks || IDA) 

  Challenge-and-Response Protocols 
(1)  Alice → KDC: IDA || IDB 
(2)  KDC → Alice: ekA(Ks || IDB || tk || ekB(Ks || IDA || tk)) 
(3)  Alice → Bob: nA || ekB(Ks || IDA || tk) //key tied with timestamp 
(4)  Bob → Alice: nB || eKs(nA) 
(5)  Alice → Bob: eKs(nB) 
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Key Distribution 

Key Distribution Centers 
  Examples in practice: 

  Kerberos: network authentication protocol  
  Developed by MIT 
  Various versions have been made available throughout the years 
  Used by many UNIX or UNIX-like systems 
  Windows 2000 and later also use it as an authentication method 
  Later versions have incorporated more features such as 

•  AES encryption 
•  Public-key cryptography 
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Key Distribution 

Key Distribution without KDC 

  Kerberos as well as many other protocols need a 
KDC 

  Can we eliminate the need for a KDC? 

  [Diffie-Hellman 1976]: ideas of public-key 
cryptography used for key agreement protocols 
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Diffie-Hellman Key Agreement Protocol 
  Recall the Discrete Logarithm Problem (DLP):  

  Given a group Z*p for a prime number p, a generator g of Z*p, 
and an element β є Z*p, find an integer x, 0 ≤ x ≤ p-1, such that 
gx =β modp 

  2 related problems: 
  Computational Diffie-Hellman (CDH): 
  Given a group Z*p for a prime number p, a generator g of Z*p, 

and the elements gx modp and gy modp, find gxy modp 
  Decision Diffie-Hellman (DDH): 
  Given a group Z*p for a prime number p, a generator g of Z*p, 

and the elements gx modp, gy modp, and gz modp, determine 
whether z = xy modp 

  DDH reduces to CDH, which reduces to DLP 

Key Distribution 
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Diffie-Hellman Key Agreement Protocol 
 Assume Alice and Bob communicate through an 

insecure channel 
  Step 1: Alice and Bob agree on a prime number p, and a 

generator g of Z*p  
  Step 2: Random numbers generation 

•  Alice chooses an integer a, 0 < a < p-1 and computes ΥΑ = ga modp  
•  Bob chooses an integer b, 0 < b < p-1 and computes ΥB = gb modp  

  Step 3: Alice and Bob exchange the values ΥΑ and ΥB 

•  The values of a and b are kept secret 
  Step 4: Key generation 

•  Alice computes Κ = (ΥΒ)a modp  
•  Bob computes Κ = (ΥΑ)b modp 

Key Distribution 
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Diffie-Hellman Key Agreement Protocol 

The 2 computations produce the same outcome:  

K = (ΥB)a modp = (gb modp)a modp = (gb)a modp = gab modp 

Key Distribution 

ΥΑ = ga modp  

ΥΒ = gb modp  
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= gab modp = (ga modp)b modp = (ΥA)b modp 



Diffie-Hellman Key Agreement Protocol 
 

Example: Suppose p = 71 

Consider the generator g = 7 

Alice and Bob choose a=5 and b=12 respectively 

The corresponding public quantities are 

 For Alice: ΥA = 75 mod 71 = 51 mod 71   

 For Bob: ΥΒ = 712 mod 71 = 4 mod 71 

After exchanging the quantities YA and YB, they can compute the key K: 

 Αlice: K= (ΥB)a modp = (4  mod 71)5 mod 71 = 45 mod 71 = 30 mod71  

       Βob: K= (ΥΑ)b modp = (51 mod 71)12 mod 71 = 5112 mod71 = 30 mod71  

Key Distribution 
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Diffie-Hellman Key Agreement Protocol 
 Implementation on elliptic curves 

  Step 1: Alice and Bob agree on an elliptic curve mod p,           
say y2 = x3 + ax + b modp and one of its generators, G = (x1, y1) 

•  If the curve itself is not a cyclic group we select a generator for a large cyclic 
subgroup of the elliptic curve  

  Step 2: Random numbers generation 
•  Alice chooses an integer a, 1 < a < p and computes ΥΑ = a⋅G modp  
•  Bob chooses an integer b, 1< b < p and computes ΥB = b⋅G modp  

  Step 3: Alice and Bob exchange the values ΥΑ and ΥB 

•  The values of a and b are kept secret 
  Step 4: Key generation 

•  Alice and Bob compute Κ =a⋅b⋅G modp  

 In general, we can use any other cyclic group 

Key Distribution 
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Diffie-Hellman Key Agreement Protocol 

Security of the protocol to passive attacks:  

•  Either Oscar will attempt to find a (or b) by trying to solve ΥΑ = ga 

modp (DLP)  

•  Or he can try to find the key K = gab modp, given that he knows ga 

modp and gb modp (CDH) 

•  He has to solve either DLP or CDH 

Key Distribution 

ΥΑ = ga modp  

ΥΒ = gb modp  
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Diffie-Hellman Key Agreement Protocol 

Oscar pretends to Alice that he is Bob and to Bob that he is Alice 
•  He establishes the key gac modp between Alice and himself 
•  He establishes the key gbc modp between Bob and himself 
•  Alice and Bob think they talk to each other 

Key Distribution 

g, p, ga modp  

Man-in-the-middle attack (active attack) 

Alice Oscar Bob 
g, p, a c b 

gc modp  gb modp  

g, p, gc modp  
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Shamir’s Key Agreement Protocol 

Key Distribution 

Alice Bob 
k, p, a b 

•  k = agreed key 
•  Last step gives Bob kb modp 
•  Raising to b-1 (mod p-1) yields k (by Fermat’s theorem) 

(kab )a
!1

mod p

(ka )bmod p

kamod p 0 < a, b < p-1 

gcd(a, p-1) = 1  

gcd(b, p-1) = 1  
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Shamir’s Key Agreement Protocol 
 Passive attacks: We are safe, the adversary would have 

to solve DLP in order to find k 
 Active attacks: vulnerable to the man-in-the-middle-

attack, same as Diffie-Hellman  
 Solutions for man-in-the-middle: Protocols that use entity 

authentication during the key generation process (and 
not before) 

Key Distribution 
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Outline 

Part 2: Secret Sharing 
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  Example 1 

  A bank has a vault that must be opened every day 
  The bank has hired 3 senior employees 
  The bank manager wants a system where: 

  no single employee can have access to the combination 
  any 2 of the employees can have access to the vault  

Secret Sharing Schemes 
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 Example 2 
 Suppose the secret is a monetary amount with 6 digits 
 We could break it into 2 parts 
 Agent Α receives the first one, and Β the second. 

  E.g. Α receives 968 and Β receives 345 
  Α realizes immediately that the amount is >968000 and 

<=999999 

  Partial information disclosure is usually not a desirable property in 
secret sharing 

 We usually want to enforce that a secret share makes all possible 
values for the secret equiprobable 

 Hence we should not just distribute segments of the secret 

Secret Sharing Schemes 
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  Example 3 
  Suppose the secret S is a 4-bit string and there are 2 

involved entities 
  E.g. S = 1011  

  Suppose we flip a coin 4 times resulting in HTTH = 
0110 = s1 

  S XOR s1 = 1101 = s2  
  Distribute s1 and s2 to the 2 entities 
  None of s1, s2 can discover S 

  s1 is a random string 
  s2 also behaves like a random string  

  Can both entities together recover S?  
  Yes: s1 XOR s2 

Secret Sharing Schemes 

26 Κρυπτογραφία και Εφαρµογές, ΠΜΣ, ΟΠΑ 



Secret Sharing Schemes 

•  A secret sharing scheme refers to a technique for distributing a 
secret among a group of participants 

–  Each participant is allocated some partial information called a share 

–  The secret is reassembled only when a sufficient number of the shares 
is combined together 

•  Secret sharing is a core cryptographic primitive for developing 
many distributed cryptographic protocols in which certain 
operations require collaboration among several participants 

•  Security assurance relies on the assumption that a fraction of 
the participants follow the prescribed protocol honestly 
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 Properties 

  Perfect: If someone has access to less than the specified 
number of secret shares, then all possible values for the 
secret are equiprobable 

  Ideal: Length of a secret share = length of the secret  

  Unlike crypto-systems, the security of the schemes does 
not depend on some (unproven) hypothesis (e.g., 
hardness of factoring) 

 

Secret Sharing Schemes 
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(t, n)-Threshold Schemes 

  (t,	  n)-‐threshold	  schemes	  involve	  a	  sharing	  phase	  and	  a	  reconstruc2on	  phase:	  

i.  The	  sharing	  phase:	  A	  dealer	  D,	  who	  holds	  some	  secret	  M,	  calculates	  n	  ≥	  2	  shares	  
z1,…,zn	  of	  M	  and	  distributes	  them	  privately	  to	  a	  set	  of	  n	  par9cipants	  P	  so	  that	  
  Any	  t	  ≤	  n	  shares	  enable	  one	  to	  recover	  the	  secret	  
  t	  -‐	  1	  shares	  do	  not	  reveal	  any	  informa2on	  about	  the	  secret	  
  The	   sharing	   phase	   usually	   consists	   of	   an	   ini2aliza2on	   phase	   and	   a	   share	  

distribu2on	  phase.	  

ii.  The	  reconstruc9on	  phase:	  A	  subset	  of	  the	  par2cipants	  B	  ⊆	  P	  combine	  their	  shares	  
together	  to	  recover	  the	  secret	  M	  
  If	   t	   or	   more	   par2cipants	   pool	   their	   shares	   together,	   the	   secret	   should	   be	  

recovered	  
  If	  less	  than	  t	  par2cipants	  pool	  their	  shares	  together,	  the	  secret	  should	  not	  be	  

recovered	  
	  
Hence,	   the	   presence	   of	   at	   least	   t	   honest	   par9cipants	   allows	   the	   secret	   to	   be	  

reassembled	  in	  the	  reconstruc9on	  phase	  
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Example:	  Shamir’s	  Threshold	  Scheme	  (1979)	  

The	  sharing	  phase:	  
  Assume	  that	  M	   lies	  in	  a	  finite	  field	  F,	  

where	  |F|	  >	  n	  

•  D	  constructs	  a	  random	  polynomial	  g	  
of	   degree	   t	   -‐	   1,	  where	   the	   constant	  
term	  is	  equal	  to	  M,	  i.e.,	  g(0)	  =	  M	  

•  D	  computes	  n	  points	  z1	  =	  g(a1),…,zn	  =	  
g(an)	  on	  the	  curve,	  where	  a1,…,an	  are	  
arbitrary	  nonzero	  elements	  of	  F	  

•  D	   gives	  share	   (ai,	  zi)	   to	  par2cipant	   i,	  	  
1	  ≤	  i	  ≤	  n	  

The	  reconstruc2on	  phase:	  	  
  Any	  subset	  of	  the	  par2cipants	  B	  ⊆	  P	  

where	  |B|	  ≥	  t	  can	  recover	  M	  

  Any	   set	   of	   t	   points	   suffices	   to	  
reconstruct	  g	  and	  thus	  compute	  g(0)	  
=	   M	   by	   means	   of	   polynomial	  
interpola2on	  

  Any	   set	   of	   t	   -‐	   1	   points	   does	   not	  
reveal	  any	  informa2on	  about	  z	  
  There	   are	   many	   possible	  

choices	   for	   the	   polynomial	   g,	  
making	   every	   value	   for	   M	  
equally	  likely	  

The	  essen2al	  idea:	  t	  points	  suffice	  to	  define	  a	  polynomial	  of	  degree	  t	  -‐	  1	  	  

(t, n)-Threshold Schemes 
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Example:	  Shamir’s	  Threshold	  Scheme	  (1979)	  

The	  sharing	  phase:	  
  Let	  F	  =	  F17	  =	  GF(17)	  =	   (Z17,	  +,	  *)	  with	  

addi2on	  and	  mul2plica2on	  mod	  17	  

  Let	  M	  =	  13,	  n	  =	  10,	  t	  =	  6	  

•  D	   constructs	   the	   polynomial	   g(x)	   =	  
3x5	  +	  10x3	  +	  11x2	  +	  5x	  +	  13	  

•  D	   computes	  10	  points	   z1	  =	  g(1),	  …	   ,	  
z10	  =	   g(10)	   and	   gives	   point	   (i,	   zi)	   to	  
par2cipant	  i,	  1	  ≤	  i	  ≤	  n	  

The	  reconstruc2on	  phase:	  	  
  Any	  subset	  of	  the	  par2cipants	  B	  ⊆	  P	  

where	  |B|	  ≥	  6	  can	  recover	  z	  

  Any	   set	   of	   6	   points	   suffices	   to	  
reconstruct	  g	  and	  thus	  compute	  g(0)	  
=	  13	  

  Any	   set	   of	   5	   points	   does	   not	   reveal	  
any	  informa2on	  about	  M	  

The	  essen2al	  idea:	  t	  points	  suffice	  to	  define	  a	  polynomial	  of	  degree	  t	  -‐	  1	  	  

(t, n)-Threshold Schemes 

31 Κρυπτογραφία και Εφαρµογές, ΠΜΣ, ΟΠΑ 



(t, n)-Threshold Schemes 

  A simplified (t, t)-threshold scheme (when the secret lies in Zm for 
some m>0): 

1)  The dealer D chooses independently at random t-1 elements of Zm, 
say y1, y2, …, yt-1  

2)  D computes  
  yt = M -  (y1 + y2 + … + yt-1) mod m  

3)  For i = 1,…,t, D gives the share yi to participant i 
  
 

  The reconstruction phase: 
  If all t participants pool their shares together, the secret can be 

recovered since M = y1 + y2 + … + yt-1 + yt mod m  
  If t-1 participants pool their shares together, the secret cannot be 

recovered 
  For example if everyone except i collaborates, then they can infer 

the value of M – yi  
  But yi is a uniform random variable. Hence so is M – yi  (all values 

are possible for M) 
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Access Structures 

  Sometimes we may want to impose different types of constraints on 
which groups of participants can recover the secret [Ito, Saito, 
Nishizeki ’87] 

  The most general situation: Let Γ be a set of subsets of P. We want 
  every subset of Γ to be able to recover the secret 
  every other subset to not be able to recover the secret 

  Γ is called an access structure, and any subset of Γ is called an 
authorized subset 

 
Definition: A perfect secret sharing scheme realizing the access 

structure Γ is a scheme among n participants so that the following 
hold 

  Any authorized subset S of Γ can determine the value of M if they 
pool their shares together 

  Any unathorized subset can determine nothing about the value of M 
(all possible values for M are equally likely)  

 
Shamir’s (t, n)-threshold scheme realizes the access structure 

                  Γ = {S ⊆ P: |S| ≥ t} 
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Access Structures 

Access structures usually satisfy the monotone property:  
If S ∈ Γ and T is a superset of S (S ⊆ T), then T ∈ Γ 
(if a set of people can recover the secret by pooling their shares 
together, then any set with more people can also recover the 
secret) 
 
  A set S of Γ is a minimal authorized subset if for any A ⊆ S with 
A ≠ S,  A ∉ Γ 
  Γ0 = the set of all minimal authorized subsets of Γ 
   Γ0 is called a basis of Γ (Γ is determined uniquely if we are   
given Γ0) 
 
Examples: 
1. Shamir’s (t, n)-threshold scheme: Γ0 = {S: |S| = t} 
2. If Γ0 = { {1, 2, 4}, {1, 3, 4}, {2, 3} } then 
            Γ = Γ0 ∪  { {1, 2, 3}, {2, 3, 4}, {1, 2, 3, 4} }  
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Monotone Circuits 

  Let C be a boolean circuit with  
  n boolean inputs x1, x2,…, xn corresponding to the participants P1, 
P2,…, Pn  
  1 boolean output y 
  only OR and AND gates  
  each gate can have arbitrary fan-in (input wires) but fan-out = 1 (1 
output wire) 

  Such circuits are called monotone circuits 
  changing  any input from 0 to 1 can never cause the output to 
change from 1 to 0  

  For each truth assignment to the boolean variables let     
 S(x1, x2,…, xn) = { Pi : xi = 1} 

 
   Each monotone circuit corresponds to the monotone access 
structure Γ(C) = {S(x1, x2,…, xn) : C(x1, x2,…, xn) = 1 (i.e. y=1)} 

  Follows from the monotonicity of the circuit  
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The Monotone Circuit Construction 

Idea for a secret sharing scheme realizing an access 
structure Γ (due to [Benaloh, Leichter ’90]) 

1. First construct a circuit C such that Γ(C) = Γ 
2. Then starting from the output, implement a secret 
sharing scheme on each gate assuming as “virtual” 
participants the input wires 
3. The share of each participant Pi will be all the values 
calculated for gates that receive xi as an input wire 
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The Monotone Circuit Construction 

Implementing Step 1 
  Consider an access structure Γ 
  Let Γ0 be a basis for Γ 
  The formula ORB∈basis (ANDi∈B Pi) defines the desired circuit 
 
Example: 
Suppose Γ0 = { {P1, P2}, {P2, P3, P4}, {P1, P3, P4} } is a basis of Γ 
Then derive the disjunctive normal form formula: 
     φ = (P1 AND P2) OR (P2 AND P3 AND P4) OR (P1 AND P3 AND P4)  
 
Theorem: The circuit C implementing φ realizes Γ, i.e., Γ(C) = Γ  
 
Observations: 
  C is a circuit of depth 2 
   Any other formula equivalent to φ is good (e.g. we could transform φ to 
conjunctive normal form or any other form we want).  
  The circuit corresponding to the new formula would be equally good.  
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The Monotone Circuit Construction 

Implementing Steps 2-3 
  
  Assign the value of M to the output wire 
  Start from the bottom of the circuit and keep going up 
   For each AND gate encountered, implement the (t, t)-scheme by 
considering  

  the input wires of the gate as the participants of the scheme 
  the value of the output wire as the secret 

  For each OR gate 
  assign to the input wires the value of the output wire  

  The share of participant Pi consists of all the values of input wires that 
start from xi  
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The Monotone Circuit Construction 

∧    ∧    ∧  

∨ 

x1 x2 x3 x4 

M 

M M M 

a1 M-a1 b1 
b2 

M-b1-b2 
c1 

c2 M-c1-c2  

  M is in Zm  

  All calculations are mod m 

  Participant P1 receives (a1, c1) 

  Participant P2 receives (M-a1, b1) 

  Participant P3 receives (b2, c2) 

  Participant P4 receives (M-b1-b2, M-c1-c2) 

  All authorized  subsets can 
compute the secret 

  Unauthorized subsets cannot 
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The Monotone Circuit Construction 

The secret sharing scheme more formally 
  Set f(y) = M 
  For all other wires W, f(W) is initially undefined 
  While there exists a wire W with f(W) undefined { 

  Find a gate G such that f(WG) is defined (WG = output wire of G) but 
f(W) is not defined for all input wires W of G 

  If G is an OR gate 
  Set f(W) = f(WG) 

  If G is an AND gate and it has t input wires W1, W2, …, Wt then 
implement the (t, t)-threshold scheme among these t participants 
and with f(WG) as the secret, i.e.: 
  Choose independently at random t-1 elements from Zm 
  For i = 1,…, t-1, set each f(Wi) to the i-th random element 
  Set f(Wt) = f(WG) – (f(W1) + f(W2) + …+ f(Wt-1)) modm 

  }  
  Give to each participant Pi the values of all input wires that 

receive xi as their input 
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Outline 

Part 3: Bit Commitment Protocols 
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Bit Commitment Protocols 

  Suppose that Alice and Bob want to play rock-paper-scissors by 
email or by phone 

  We want Alice and Bob to commit first to their action before they 
send emails to each other with what they played. 

  We should enforce that Alice cannot change what she played 
after she sees Bob’s email. 

   How can Bob be sure about that? 

  Commitment protocols: they enforce Alice to commit to a certain 
value without forcing her to reveal the value. 

  In the future, whenever Bob wants to see the actual value, Alice 
will be able to convince Bob that this was the value she 
committed to 
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Bit Commitment Protocols 

A nice way to think about what we want to achieve: 
  Alice is asked to commit to a message m without revealing it (m 

can be a monetary value, or a piece of text, a contract,…) 
  She puts m in a safe and sends the safe to Bob 
  She does not send Bob the combination (key) for the safe 
  Later, when Bob wants to actually see m, Alice sends the key to 

Bob and he can open the safe 
  Assuming that safes are secure and nobody can change their 

content, Bob sees the message and he is convinced that Alice 
had committed to this exact message in the past 

  Q: Can we implement “virtual” safes by means of protocols? 
  We can think first about committing just 1 bit 
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Bit Commitment Protocols 

 Bit commitment protocols have 2 phases 

 Commit phase: Alice commits to her value (this 
involves some communication between Alice and 
Bob) 

 Reveal phase: Alice reveals her value 
(communication from Alice to Bob, who then 
checks if Alice tells the truth) 
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Bit Commitment Protocols 

Implemetation using symmetric cryptography 

  Let b = bit of Alice that Bob wants her to commit to 
  Commit phase: 

  Bob → Alice: A random message m chosen by him 
  Alice then chooses a key and encrypts m || b 
  Alice → Bob: ek(m || b) 

  Reveal phase: 
  Alice sends the key k to Bob 
  Bob decrypts and checks to see that the first part consists of the 

message m. If yes, then he is convinced that the last bit of what he 
sees is the committed bit 

  If Alice does not send him the right key, the decrypted text will not 
be in the form m || b 
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Bit Commitment Protocols 

Implemetation using ideas from public key cryptography 
A)  Based on quadratic residues 

  A number y is a quadratic residue modn if there exists a number 
x such that y = x2 modn 

  Let b = bit of Alice that Bob wants her to commit to 
  Commit phase: 

  Alice and Bob agree on a large composite number n, and on an 
element y from Z*n such that y is not a quadratic residue modn 

  Alice selects a number x from Z*n 
  Alice → Bob:  

  
  Reveal phase: 

  Alice sends x to Bob 
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Bit Commitment Protocols 

Implemetation using ideas from public key cryptography 
A)  Based on quadratic residues 

  At the commit phase Bob cannot distinguish whether g is a 
quadratic residue 

  He would need to decide if g has a square root modn 
  Finding square roots modn, when n is composite, is equivalent to 

factoring 
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Bit Commitment Protocols 

Implementation using ideas from public key cryptography 
B)    Based on DLP 

  Let b = bit of Alice that Bob wants her to commit to 
  Commit phase: 

  Alice and Bob agree on a large prime number p, on a generator α 
of Z*p, and on an element s from Z*p  

  Alice selects an integer x from Z*p 
  Alice → Bob:  

  
  Reveal phase: 

  Alice sends x to Bob 
  Bob would need to solve DLP in order to distinguish the form of g 

at the commit phase 
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Bit Commitment Protocols 

Implemetation using hash functions 

  Let x be the value of Alice that Bob wants her to commit to 
  Commit phase: 

  Alice and Bob agree on a collision resistant hash function h 
  Alice → Bob: y = h(x) 

  Reveal phase: 
  Alice sends x to Bob 

  If h is collision resistant, it is difficult for Alice to find a value x’ 
such that h(x’) = h(x) 
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