
Οικονομικό Πανεπιστήμιο Αθηνών  
Τμήμα Πληροφορικής 

ΠΜΣ στα Πληροφοριακά Συστήματα 
 
 

Κρυπτογραφία και Εφαρμογές  
 

 

   Μαριάς Ιωάννης                      Μαρκάκης Ευάγγελος      

marias@aueb.gr                          markakis@gmail.com    

 



Outline 

  Key Establishment 
  Key Distribution Centers 
 Diffie-Hellman protocol 
  Shamir’s protocol 

  Secret Sharing 
  (t, n)-threshold schemes (Shamir) 
  (t, t)-threshold schemes 

  Secret sharing with more general access structures 
  The Monotone Circuit Construction 

  Bit Commitment Protocols 
 With Symmetric Cryptography 
 With Public-key Cryptography 
 With Hash Functions 

2 Κρυπτογραφία και Εφαρµογές, ΠΜΣ, ΟΠΑ 



Outline 

Part 1: Key Establishment 
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Key Distribution 

How should 2 entities agree on a key?  
  It can be a key for a symmetric cryptosystem, or for 

various other applications  
  Types of keys: 

  Session keys: used only for 1 session 
  Long-lived keys (also known as terminal keys): used for more than 

1 session, need to be securely stored 
  Master keys: A key that can be used for creating a session key or 

a long-lived key. 

  Objectives of the adversary: 
  To fool Alice and Bob into accepting an invalid key as valid 
  To make Alice or Bob believe that they have exchanged a key 

when they have not done so 
  To determine (partial) information about the key being exchanged 
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Key Distribution 

Key establishment 
  It can be implemented in 2 ways 

  Using a Key Distribution Center (KDC), also referred to 
as a Trusted Authority 

  Without the use of a Center: Alice and Bob execute 
some protocol on their own to agree on a key (such 
protocols are then referred to as Key Agreement 
Protocols)  
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Key Distribution 

Key Distribution Centers 
  Suppose that a set of entities want to communicate with each 

other in a single session 
  The session key is produced either by the KDC or by one of the 

communicating entities 
  Each entity is using a long-lived key to communicate with KDC, 

i.e., we use long-lived keys to protect session keys 
 
Main Advantage: 
  Less long-lived keys required: For a total number of n entities 

communicating with each other, we need only n long-lived keys 
instead of O(n2) in the absence of KDC 

Concerns: 
  Security is based on the security of the long-lived keys (they must 

be securely produced and stored) 
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Key Distribution 

Key Distribution Centers 

(1) Alice sends a request for a session key to the center 

(2) KDC generates the session key Ks and sends to Alice ekA(Ks) 
and ekB(Ks) 

(3) Alice decrypts ekA(Ks) and also sends ekB(Ks) to Bob who can 
decrypt it 

We need a secure channel for the exchange of the long-lived keys 
kA, kB between KDC and the entities  

KDC 

Alice Bob 

Suppose Alice and Bob want 
to agree on a session key Ks 

kA, kB: keys shared between 
KDC and Alice (resp. Bob) 

 

(1) 
(2) 

(3) 
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Key Distribution 

Key Distribution Centers 

(1) Alice sends a request for a session key to the center 

(2) KDC generates the session key Ks and sends to Alice ekA(Ks) 

(3) KDC sends to Bob ekB(Ks) 

KDC 

Alice Bob 

Alternatively: 

(1) 
(2) (3) 
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Key Distribution 

Key Distribution Centers 

(1) Alice generates the key Ks and sends ekA(Ks) to KDC 

(2) KDC decrypts using kA, then encrypts using kB and sends to 
Alice ekB(Ks) 

(3) Alice sends ekB(Ks) to Bob who can decrypt it 

In another variation, KDC can send ekB(Ks) directly to Bob  

KDC 

Alice Bob 

And yet another idea: 

(1) 
(2) 

(3) 
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Key Distribution 

Key Distribution Centers 

  Variations used in modern protocols to prevent active attacks: 
  Timestamps: Adding current time to the messages exchanged 

(h:min:sec) 
  Nonce: a unique number used in each transmission of 

information (it sometimes replaces timestamps) 
  Used for message and entity authentication 

  These numbers become part of the message and protect a 
message from being re-used again by an adversary in the 
future 

  Requirements: It should not be easy for the adversary to predict the 
nonce numbers; the algorithm for producing nonce numbers should not 
repeat numbers (or should not do so in an easy to decide pattern)  
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Key Distribution 

Key Distribution Centers 
  Examples: 

  One-Pass Protocols 
(1)  Alice → KDC: IDA || IDB || nA //nA = nonce number derived by Alice        

IDB and nA can be also transmitted in an encrypted form  
(2)  KDC → Alice: ekA(nA || IDB || Ks || ekB(Ks || IDA)) 
(3)  Alice → Bob: ekB(Ks || IDA) 

  Challenge-and-Response Protocols 
(1)  Alice → KDC: IDA || IDB 
(2)  KDC → Alice: ekA(Ks || IDB || tk || ekB(Ks || IDA || tk)) 
(3)  Alice → Bob: nA || ekB(Ks || IDA || tk) //key tied with timestamp 
(4)  Bob → Alice: nB || eKs(nA) 
(5)  Alice → Bob: eKs(nB) 
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Key Distribution 

Key Distribution Centers 
  Examples in practice: 

  Kerberos: network authentication protocol  
  Developed by MIT 
  Various versions have been made available throughout the years 
  Used by many UNIX or UNIX-like systems 
  Windows 2000 and later also use it as an authentication method 
  Later versions have incorporated more features such as 

•  AES encryption 
•  Public-key cryptography 
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Key Distribution 

Key Distribution without KDC 

  Kerberos as well as many other protocols need a 
KDC 

  Can we eliminate the need for a KDC? 

  [Diffie-Hellman 1976]: ideas of public-key 
cryptography used for key agreement protocols 
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Diffie-Hellman Key Agreement Protocol 
  Recall the Discrete Logarithm Problem (DLP):  

  Given a group Z*p for a prime number p, a generator g of Z*p, 
and an element β є Z*p, find an integer x, 0 ≤ x ≤ p-1, such that 
gx =β modp 

  2 related problems: 
  Computational Diffie-Hellman (CDH): 
  Given a group Z*p for a prime number p, a generator g of Z*p, 

and the elements gx modp and gy modp, find gxy modp 
  Decision Diffie-Hellman (DDH): 
  Given a group Z*p for a prime number p, a generator g of Z*p, 

and the elements gx modp, gy modp, and gz modp, determine 
whether z = xy modp 

  DDH reduces to CDH, which reduces to DLP 

Key Distribution 

14 Κρυπτογραφία και Εφαρµογές, ΠΜΣ, ΟΠΑ 



Diffie-Hellman Key Agreement Protocol 
 Assume Alice and Bob communicate through an 

insecure channel 
  Step 1: Alice and Bob agree on a prime number p, and a 

generator g of Z*p  
  Step 2: Random numbers generation 

•  Alice chooses an integer a, 0 < a < p-1 and computes ΥΑ = ga modp  
•  Bob chooses an integer b, 0 < b < p-1 and computes ΥB = gb modp  

  Step 3: Alice and Bob exchange the values ΥΑ and ΥB 

•  The values of a and b are kept secret 
  Step 4: Key generation 

•  Alice computes Κ = (ΥΒ)a modp  
•  Bob computes Κ = (ΥΑ)b modp 

Key Distribution 
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Diffie-Hellman Key Agreement Protocol 

The 2 computations produce the same outcome:  

K = (ΥB)a modp = (gb modp)a modp = (gb)a modp = gab modp 

Key Distribution 

ΥΑ = ga modp  

ΥΒ = gb modp  
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= gab modp = (ga modp)b modp = (ΥA)b modp 



Diffie-Hellman Key Agreement Protocol 
 

Example: Suppose p = 71 

Consider the generator g = 7 

Alice and Bob choose a=5 and b=12 respectively 

The corresponding public quantities are 

 For Alice: ΥA = 75 mod 71 = 51 mod 71   

 For Bob: ΥΒ = 712 mod 71 = 4 mod 71 

After exchanging the quantities YA and YB, they can compute the key K: 

 Αlice: K= (ΥB)a modp = (4  mod 71)5 mod 71 = 45 mod 71 = 30 mod71  

       Βob: K= (ΥΑ)b modp = (51 mod 71)12 mod 71 = 5112 mod71 = 30 mod71  

Key Distribution 
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Diffie-Hellman Key Agreement Protocol 
 Implementation on elliptic curves 

  Step 1: Alice and Bob agree on an elliptic curve mod p,           
say y2 = x3 + ax + b modp and one of its generators, G = (x1, y1) 

•  If the curve itself is not a cyclic group we select a generator for a large cyclic 
subgroup of the elliptic curve  

  Step 2: Random numbers generation 
•  Alice chooses an integer a, 1 < a < p and computes ΥΑ = a⋅G modp  
•  Bob chooses an integer b, 1< b < p and computes ΥB = b⋅G modp  

  Step 3: Alice and Bob exchange the values ΥΑ and ΥB 

•  The values of a and b are kept secret 
  Step 4: Key generation 

•  Alice and Bob compute Κ =a⋅b⋅G modp  

 In general, we can use any other cyclic group 

Key Distribution 
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Diffie-Hellman Key Agreement Protocol 

Security of the protocol to passive attacks:  

•  Either Oscar will attempt to find a (or b) by trying to solve ΥΑ = ga 

modp (DLP)  

•  Or he can try to find the key K = gab modp, given that he knows ga 

modp and gb modp (CDH) 

•  He has to solve either DLP or CDH 

Key Distribution 

ΥΑ = ga modp  

ΥΒ = gb modp  
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Diffie-Hellman Key Agreement Protocol 

Oscar pretends to Alice that he is Bob and to Bob that he is Alice 
•  He establishes the key gac modp between Alice and himself 
•  He establishes the key gbc modp between Bob and himself 
•  Alice and Bob think they talk to each other 

Key Distribution 

g, p, ga modp  

Man-in-the-middle attack (active attack) 

Alice Oscar Bob 
g, p, a c b 

gc modp  gb modp  

g, p, gc modp  
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Shamir’s Key Agreement Protocol 

Key Distribution 

Alice Bob 
k, p, a b 

•  k = agreed key 
•  Last step gives Bob kb modp 
•  Raising to b-1 (mod p-1) yields k (by Fermat’s theorem) 

(kab )a
!1

mod p

(ka )bmod p

kamod p 0 < a, b < p-1 

gcd(a, p-1) = 1  

gcd(b, p-1) = 1  
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Shamir’s Key Agreement Protocol 
 Passive attacks: We are safe, the adversary would have 

to solve DLP in order to find k 
 Active attacks: vulnerable to the man-in-the-middle-

attack, same as Diffie-Hellman  
 Solutions for man-in-the-middle: Protocols that use entity 

authentication during the key generation process (and 
not before) 

Key Distribution 
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Outline 

Part 2: Secret Sharing 
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  Example 1 

  A bank has a vault that must be opened every day 
  The bank has hired 3 senior employees 
  The bank manager wants a system where: 

  no single employee can have access to the combination 
  any 2 of the employees can have access to the vault  

Secret Sharing Schemes 
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 Example 2 
 Suppose the secret is a monetary amount with 6 digits 
 We could break it into 2 parts 
 Agent Α receives the first one, and Β the second. 

  E.g. Α receives 968 and Β receives 345 
  Α realizes immediately that the amount is >968000 and 

<=999999 

  Partial information disclosure is usually not a desirable property in 
secret sharing 

 We usually want to enforce that a secret share makes all possible 
values for the secret equiprobable 

 Hence we should not just distribute segments of the secret 

Secret Sharing Schemes 
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  Example 3 
  Suppose the secret S is a 4-bit string and there are 2 

involved entities 
  E.g. S = 1011  

  Suppose we flip a coin 4 times resulting in HTTH = 
0110 = s1 

  S XOR s1 = 1101 = s2  
  Distribute s1 and s2 to the 2 entities 
  None of s1, s2 can discover S 

  s1 is a random string 
  s2 also behaves like a random string  

  Can both entities together recover S?  
  Yes: s1 XOR s2 

Secret Sharing Schemes 
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Secret Sharing Schemes 

•  A secret sharing scheme refers to a technique for distributing a 
secret among a group of participants 

–  Each participant is allocated some partial information called a share 

–  The secret is reassembled only when a sufficient number of the shares 
is combined together 

•  Secret sharing is a core cryptographic primitive for developing 
many distributed cryptographic protocols in which certain 
operations require collaboration among several participants 

•  Security assurance relies on the assumption that a fraction of 
the participants follow the prescribed protocol honestly 
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 Properties 

  Perfect: If someone has access to less than the specified 
number of secret shares, then all possible values for the 
secret are equiprobable 

  Ideal: Length of a secret share = length of the secret  

  Unlike crypto-systems, the security of the schemes does 
not depend on some (unproven) hypothesis (e.g., 
hardness of factoring) 

 

Secret Sharing Schemes 
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(t, n)-Threshold Schemes 

  (t,	
  n)-­‐threshold	
  schemes	
  involve	
  a	
  sharing	
  phase	
  and	
  a	
  reconstruc2on	
  phase:	
  

i.  The	
  sharing	
  phase:	
  A	
  dealer	
  D,	
  who	
  holds	
  some	
  secret	
  M,	
  calculates	
  n	
  ≥	
  2	
  shares	
  
z1,…,zn	
  of	
  M	
  and	
  distributes	
  them	
  privately	
  to	
  a	
  set	
  of	
  n	
  par9cipants	
  P	
  so	
  that	
  
  Any	
  t	
  ≤	
  n	
  shares	
  enable	
  one	
  to	
  recover	
  the	
  secret	
  
  t	
  -­‐	
  1	
  shares	
  do	
  not	
  reveal	
  any	
  informa2on	
  about	
  the	
  secret	
  
  The	
   sharing	
   phase	
   usually	
   consists	
   of	
   an	
   ini2aliza2on	
   phase	
   and	
   a	
   share	
  

distribu2on	
  phase.	
  

ii.  The	
  reconstruc9on	
  phase:	
  A	
  subset	
  of	
  the	
  par2cipants	
  B	
  ⊆	
  P	
  combine	
  their	
  shares	
  
together	
  to	
  recover	
  the	
  secret	
  M	
  
  If	
   t	
   or	
   more	
   par2cipants	
   pool	
   their	
   shares	
   together,	
   the	
   secret	
   should	
   be	
  

recovered	
  
  If	
  less	
  than	
  t	
  par2cipants	
  pool	
  their	
  shares	
  together,	
  the	
  secret	
  should	
  not	
  be	
  

recovered	
  
	
  
Hence,	
   the	
   presence	
   of	
   at	
   least	
   t	
   honest	
   par9cipants	
   allows	
   the	
   secret	
   to	
   be	
  

reassembled	
  in	
  the	
  reconstruc9on	
  phase	
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Example:	
  Shamir’s	
  Threshold	
  Scheme	
  (1979)	
  

The	
  sharing	
  phase:	
  
  Assume	
  that	
  M	
   lies	
  in	
  a	
  finite	
  field	
  F,	
  

where	
  |F|	
  >	
  n	
  

•  D	
  constructs	
  a	
  random	
  polynomial	
  g	
  
of	
   degree	
   t	
   -­‐	
   1,	
  where	
   the	
   constant	
  
term	
  is	
  equal	
  to	
  M,	
  i.e.,	
  g(0)	
  =	
  M	
  

•  D	
  computes	
  n	
  points	
  z1	
  =	
  g(a1),…,zn	
  =	
  
g(an)	
  on	
  the	
  curve,	
  where	
  a1,…,an	
  are	
  
arbitrary	
  nonzero	
  elements	
  of	
  F	
  

•  D	
   gives	
  share	
   (ai,	
  zi)	
   to	
  par2cipant	
   i,	
  	
  
1	
  ≤	
  i	
  ≤	
  n	
  

The	
  reconstruc2on	
  phase:	
  	
  
  Any	
  subset	
  of	
  the	
  par2cipants	
  B	
  ⊆	
  P	
  

where	
  |B|	
  ≥	
  t	
  can	
  recover	
  M	
  

  Any	
   set	
   of	
   t	
   points	
   suffices	
   to	
  
reconstruct	
  g	
  and	
  thus	
  compute	
  g(0)	
  
=	
   M	
   by	
   means	
   of	
   polynomial	
  
interpola2on	
  

  Any	
   set	
   of	
   t	
   -­‐	
   1	
   points	
   does	
   not	
  
reveal	
  any	
  informa2on	
  about	
  z	
  
  There	
   are	
   many	
   possible	
  

choices	
   for	
   the	
   polynomial	
   g,	
  
making	
   every	
   value	
   for	
   M	
  
equally	
  likely	
  

The	
  essen2al	
  idea:	
  t	
  points	
  suffice	
  to	
  define	
  a	
  polynomial	
  of	
  degree	
  t	
  -­‐	
  1	
  	
  

(t, n)-Threshold Schemes 
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Example:	
  Shamir’s	
  Threshold	
  Scheme	
  (1979)	
  

The	
  sharing	
  phase:	
  
  Let	
  F	
  =	
  F17	
  =	
  GF(17)	
  =	
   (Z17,	
  +,	
  *)	
  with	
  

addi2on	
  and	
  mul2plica2on	
  mod	
  17	
  

  Let	
  M	
  =	
  13,	
  n	
  =	
  10,	
  t	
  =	
  6	
  

•  D	
   constructs	
   the	
   polynomial	
   g(x)	
   =	
  
3x5	
  +	
  10x3	
  +	
  11x2	
  +	
  5x	
  +	
  13	
  

•  D	
   computes	
  10	
  points	
   z1	
  =	
  g(1),	
  …	
   ,	
  
z10	
  =	
   g(10)	
   and	
   gives	
   point	
   (i,	
   zi)	
   to	
  
par2cipant	
  i,	
  1	
  ≤	
  i	
  ≤	
  n	
  

The	
  reconstruc2on	
  phase:	
  	
  
  Any	
  subset	
  of	
  the	
  par2cipants	
  B	
  ⊆	
  P	
  

where	
  |B|	
  ≥	
  6	
  can	
  recover	
  z	
  

  Any	
   set	
   of	
   6	
   points	
   suffices	
   to	
  
reconstruct	
  g	
  and	
  thus	
  compute	
  g(0)	
  
=	
  13	
  

  Any	
   set	
   of	
   5	
   points	
   does	
   not	
   reveal	
  
any	
  informa2on	
  about	
  M	
  

The	
  essen2al	
  idea:	
  t	
  points	
  suffice	
  to	
  define	
  a	
  polynomial	
  of	
  degree	
  t	
  -­‐	
  1	
  	
  

(t, n)-Threshold Schemes 
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(t, n)-Threshold Schemes 

  A simplified (t, t)-threshold scheme (when the secret lies in Zm for 
some m>0): 

1)  The dealer D chooses independently at random t-1 elements of Zm, 
say y1, y2, …, yt-1  

2)  D computes  
  yt = M -  (y1 + y2 + … + yt-1) mod m  

3)  For i = 1,…,t, D gives the share yi to participant i 
  
 

  The reconstruction phase: 
  If all t participants pool their shares together, the secret can be 

recovered since M = y1 + y2 + … + yt-1 + yt mod m  
  If t-1 participants pool their shares together, the secret cannot be 

recovered 
  For example if everyone except i collaborates, then they can infer 

the value of M – yi  
  But yi is a uniform random variable. Hence so is M – yi  (all values 

are possible for M) 
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Access Structures 

  Sometimes we may want to impose different types of constraints on 
which groups of participants can recover the secret [Ito, Saito, 
Nishizeki ’87] 

  The most general situation: Let Γ be a set of subsets of P. We want 
  every subset of Γ to be able to recover the secret 
  every other subset to not be able to recover the secret 

  Γ is called an access structure, and any subset of Γ is called an 
authorized subset 

 
Definition: A perfect secret sharing scheme realizing the access 

structure Γ is a scheme among n participants so that the following 
hold 

  Any authorized subset S of Γ can determine the value of M if they 
pool their shares together 

  Any unathorized subset can determine nothing about the value of M 
(all possible values for M are equally likely)  

 
Shamir’s (t, n)-threshold scheme realizes the access structure 

                  Γ = {S ⊆ P: |S| ≥ t} 
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Access Structures 

Access structures usually satisfy the monotone property:  
If S ∈ Γ and T is a superset of S (S ⊆ T), then T ∈ Γ 
(if a set of people can recover the secret by pooling their shares 
together, then any set with more people can also recover the 
secret) 
 
  A set S of Γ is a minimal authorized subset if for any A ⊆ S with 
A ≠ S,  A ∉ Γ 
  Γ0 = the set of all minimal authorized subsets of Γ 
   Γ0 is called a basis of Γ (Γ is determined uniquely if we are   
given Γ0) 
 
Examples: 
1. Shamir’s (t, n)-threshold scheme: Γ0 = {S: |S| = t} 
2. If Γ0 = { {1, 2, 4}, {1, 3, 4}, {2, 3} } then 
            Γ = Γ0 ∪  { {1, 2, 3}, {2, 3, 4}, {1, 2, 3, 4} }  
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Monotone Circuits 

  Let C be a boolean circuit with  
  n boolean inputs x1, x2,…, xn corresponding to the participants P1, 
P2,…, Pn  
  1 boolean output y 
  only OR and AND gates  
  each gate can have arbitrary fan-in (input wires) but fan-out = 1 (1 
output wire) 

  Such circuits are called monotone circuits 
  changing  any input from 0 to 1 can never cause the output to 
change from 1 to 0  

  For each truth assignment to the boolean variables let     
 S(x1, x2,…, xn) = { Pi : xi = 1} 

 
   Each monotone circuit corresponds to the monotone access 
structure Γ(C) = {S(x1, x2,…, xn) : C(x1, x2,…, xn) = 1 (i.e. y=1)} 

  Follows from the monotonicity of the circuit  
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The Monotone Circuit Construction 

Idea for a secret sharing scheme realizing an access 
structure Γ (due to [Benaloh, Leichter ’90]) 

1. First construct a circuit C such that Γ(C) = Γ 
2. Then starting from the output, implement a secret 
sharing scheme on each gate assuming as “virtual” 
participants the input wires 
3. The share of each participant Pi will be all the values 
calculated for gates that receive xi as an input wire 
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The Monotone Circuit Construction 

Implementing Step 1 
  Consider an access structure Γ 
  Let Γ0 be a basis for Γ 
  The formula ORB∈basis (ANDi∈B Pi) defines the desired circuit 
 
Example: 
Suppose Γ0 = { {P1, P2}, {P2, P3, P4}, {P1, P3, P4} } is a basis of Γ 
Then derive the disjunctive normal form formula: 
     φ = (P1 AND P2) OR (P2 AND P3 AND P4) OR (P1 AND P3 AND P4)  
 
Theorem: The circuit C implementing φ realizes Γ, i.e., Γ(C) = Γ  
 
Observations: 
  C is a circuit of depth 2 
   Any other formula equivalent to φ is good (e.g. we could transform φ to 
conjunctive normal form or any other form we want).  
  The circuit corresponding to the new formula would be equally good.  
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The Monotone Circuit Construction 

Implementing Steps 2-3 
  
  Assign the value of M to the output wire 
  Start from the bottom of the circuit and keep going up 
   For each AND gate encountered, implement the (t, t)-scheme by 
considering  

  the input wires of the gate as the participants of the scheme 
  the value of the output wire as the secret 

  For each OR gate 
  assign to the input wires the value of the output wire  

  The share of participant Pi consists of all the values of input wires that 
start from xi  
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The Monotone Circuit Construction 

∧    ∧    ∧  

∨ 

x1 x2 x3 x4 

M 

M M M 

a1 M-a1 b1 
b2 

M-b1-b2 
c1 

c2 M-c1-c2  

  M is in Zm  

  All calculations are mod m 

  Participant P1 receives (a1, c1) 

  Participant P2 receives (M-a1, b1) 

  Participant P3 receives (b2, c2) 

  Participant P4 receives (M-b1-b2, M-c1-c2) 

  All authorized  subsets can 
compute the secret 

  Unauthorized subsets cannot 
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The Monotone Circuit Construction 

The secret sharing scheme more formally 
  Set f(y) = M 
  For all other wires W, f(W) is initially undefined 
  While there exists a wire W with f(W) undefined { 

  Find a gate G such that f(WG) is defined (WG = output wire of G) but 
f(W) is not defined for all input wires W of G 

  If G is an OR gate 
  Set f(W) = f(WG) 

  If G is an AND gate and it has t input wires W1, W2, …, Wt then 
implement the (t, t)-threshold scheme among these t participants 
and with f(WG) as the secret, i.e.: 
  Choose independently at random t-1 elements from Zm 
  For i = 1,…, t-1, set each f(Wi) to the i-th random element 
  Set f(Wt) = f(WG) – (f(W1) + f(W2) + …+ f(Wt-1)) modm 

  }  
  Give to each participant Pi the values of all input wires that 

receive xi as their input 
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Outline 

Part 3: Bit Commitment Protocols 
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Bit Commitment Protocols 

  Suppose that Alice and Bob want to play rock-paper-scissors by 
email or by phone 

  We want Alice and Bob to commit first to their action before they 
send emails to each other with what they played. 

  We should enforce that Alice cannot change what she played 
after she sees Bob’s email. 

   How can Bob be sure about that? 

  Commitment protocols: they enforce Alice to commit to a certain 
value without forcing her to reveal the value. 

  In the future, whenever Bob wants to see the actual value, Alice 
will be able to convince Bob that this was the value she 
committed to 
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Bit Commitment Protocols 

A nice way to think about what we want to achieve: 
  Alice is asked to commit to a message m without revealing it (m 

can be a monetary value, or a piece of text, a contract,…) 
  She puts m in a safe and sends the safe to Bob 
  She does not send Bob the combination (key) for the safe 
  Later, when Bob wants to actually see m, Alice sends the key to 

Bob and he can open the safe 
  Assuming that safes are secure and nobody can change their 

content, Bob sees the message and he is convinced that Alice 
had committed to this exact message in the past 

  Q: Can we implement “virtual” safes by means of protocols? 
  We can think first about committing just 1 bit 
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Bit Commitment Protocols 

 Bit commitment protocols have 2 phases 

 Commit phase: Alice commits to her value (this 
involves some communication between Alice and 
Bob) 

 Reveal phase: Alice reveals her value 
(communication from Alice to Bob, who then 
checks if Alice tells the truth) 
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Bit Commitment Protocols 

Implemetation using symmetric cryptography 

  Let b = bit of Alice that Bob wants her to commit to 
  Commit phase: 

  Bob → Alice: A random message m chosen by him 
  Alice then chooses a key and encrypts m || b 
  Alice → Bob: ek(m || b) 

  Reveal phase: 
  Alice sends the key k to Bob 
  Bob decrypts and checks to see that the first part consists of the 

message m. If yes, then he is convinced that the last bit of what he 
sees is the committed bit 

  If Alice does not send him the right key, the decrypted text will not 
be in the form m || b 
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Bit Commitment Protocols 

Implemetation using ideas from public key cryptography 
A)  Based on quadratic residues 

  A number y is a quadratic residue modn if there exists a number 
x such that y = x2 modn 

  Let b = bit of Alice that Bob wants her to commit to 
  Commit phase: 

  Alice and Bob agree on a large composite number n, and on an 
element y from Z*n such that y is not a quadratic residue modn 

  Alice selects a number x from Z*n 
  Alice → Bob:  

  
  Reveal phase: 

  Alice sends x to Bob 
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Bit Commitment Protocols 

Implemetation using ideas from public key cryptography 
A)  Based on quadratic residues 

  At the commit phase Bob cannot distinguish whether g is a 
quadratic residue 

  He would need to decide if g has a square root modn 
  Finding square roots modn, when n is composite, is equivalent to 

factoring 
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Bit Commitment Protocols 

Implementation using ideas from public key cryptography 
B)    Based on DLP 

  Let b = bit of Alice that Bob wants her to commit to 
  Commit phase: 

  Alice and Bob agree on a large prime number p, on a generator α 
of Z*p, and on an element s from Z*p  

  Alice selects an integer x from Z*p 
  Alice → Bob:  

  
  Reveal phase: 

  Alice sends x to Bob 
  Bob would need to solve DLP in order to distinguish the form of g 

at the commit phase 
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Bit Commitment Protocols 

Implemetation using hash functions 

  Let x be the value of Alice that Bob wants her to commit to 
  Commit phase: 

  Alice and Bob agree on a collision resistant hash function h 
  Alice → Bob: y = h(x) 

  Reveal phase: 
  Alice sends x to Bob 

  If h is collision resistant, it is difficult for Alice to find a value x’ 
such that h(x’) = h(x) 
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