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Summary 

 Primality Testing 
 Density of primes 
 Eratosthenes’ sieve 
 Trial division 
 Fermat test 
 Miller-Rabin test 
 Other algorithms: Solovay-strassen, deterministic 

algorithms 

 Integer Factorization  
 Pollard’s rho method  
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Primality Testing 

In public key cryptography we often need to 
solve the following problem: 
  Pick a prime number p within a certain 

range, e.g. a prime with up to 512 bits 

1.  How many numbers do we need to try till 
we find a prime? 

2.  Given a number how do we test that it is a 
prime? 
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Primality Testing 

  Density of primes 
  Prime numbers are not sparse.  
  Chebyshev’s theorem (1850): there is always a prime 

between n and 2n 
  Density function π(n) = the number of primes between 2 and n 

  e.g. π(10) = 4  2,3,5,7 

  Prime number theorem (1896): The density function π(n) 
satisfies: 

     limn∞ (π(n) / (n / lnn)) =1, or esle π(n) ≈ n / lnn for large 
enough n 

  Example 
  n = 109 
  π(n) = 50,847,534  
  n/ ln n ≈ 48,254,942 
  Deviation 6% 
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Primality Testing 

  Density of primes 
  By the prime number theorem: 

  Prob(randomly chosen integer between 1 and n is prime) = 1/ ln n 

  Hence if we examine about ln n randomly chosen integers between 
1 and n, one of them will be prime with high probability  

  To find a 512-bit prime we can check about ln2512 ≈ 355 randomly 
chosen integers of 512-bits  

  BUT: once we choose a number, how do we really check that this is 
a prime number? 
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Primality Testing 

  The sieve of Eratosthenes (3rd century B.C.) 
  A method to identify all primes up to a given number n 
  The algorithm: 
  Input: An integer n ≥ 2 
  Output: find all primes < n   
  Idea: Consider a boolean array a of size n representing 

if a number is prime or not 
  Initially all entries are true 

  Gradually non-primes will become false 
  Starting from number 2 and going up to n-1 

  If  a[x]=false go to next element 
  Else x is prime and set all its multiples (that are < N) to false 
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Primality Testing 

  The sieve of Eratosthenes (3rd century B.C.) 
for (int i = 2; i < N; i++)  

    a[i] = true;  
for (int i = 2; i < N; i++)  

    if (a[i])   

        for (int j = i; j*i < N; j++)  

          a[i*j] = false;//multiples of i 

                         //are not prime numbers 

1.  Why don’t we do anything when a[i]= false? 

By Euclid’s theorem, every number can be written as a product of prime 
numbers. It suffices to filter out only the multiples of prime numbers. 

2.    Why does the loop begin from i2 ? 

If x<i2 =i*i, and x is not a prime, then x has some prime factor <i-1. Hence a[x] 
became false in some previous iteration  
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Primality Testing 

  From now on we focus on testing whether a 
particular number n is prime 

  We may assume n is odd 

  Trial division 
  Try to see if any of the numbers 2, 3, 4,…,n-1 divides n 
  Actually it suffices to try only with the numbers 2, 3, ..., ⎣√n⎦ 

  If n is composite it has a factor, which is at most √n 

  In fact, since n is odd, we can also remove the even numbers 

  Worst case complexity: √n/2, hence O(√n) 
  Exponential since √n = 2logn/2 

  Effective only for small values of n 

  For RSA, n is 512 bits long or even longer 
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Primality Testing 

  Pseudo prime numbers 
  Recall Fermat’s little theorem: 

  If n is prime then an-1 ≡ 1 (modn) for every a∈{1,…,n-1} 

  For a given a∈{1,…,n-1}, a number n is a base-a 
pseudoprime if n is composite and : 

an-1 ≡ 1 (modn)    (*) 
  Hence if we find a number a for which this does not 

hold, certainly n is composite 

  If we picked an a for which (*) holds , we hope n is 
prime, i.e., we hope there cannot be too many 
composites that can satisfy (*) 
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Primality Testing 

  Fermat Test 
  Algorithm PSEUDOPRIME(n) //n is an odd integer 

  Pick a positive integer 1≤a<n at random 

  if   an-1  ≡ 1 (mod n) then return PRIME  // pass test 

           else return COMPOSITE   

  Computing an-1 (modn) should be done with the algorithm for modular 
exponentiation 

  One can run the algorithm for some fixed a, e.g., a=2 
  The algorithm can make errors but only of one kind: 

  If it says that n is composite, then it is correct 
  If it says that n is prime then it is wrong only in the case that n is a 

base-a pseudoprime 

10 



Κρυπτογραφία και Εφαρµογές, ΠΜΣ, Ο.Π.Α.              

Primality Testing  
 

  How often is the algorithm wrong?  
  Rarely.  
  For a=2: there are only 22 values of n in [1, 10,000] for which the 

algorithm fails. The first 4 are 341, 561, 645, και 1105.  
  341=11*31  and      2340  ≡  1(mod341) 

  Estimates for base-2 pseudoprimes 
  For a 512-bit randomly chosen number that the algorithm thinks it 

is prime, the probability that the number is a base-2 pseudoprime 
is roughly 1/1020  

  For a 1024-bit randomly chosen number that the algorithm thinks it 
is prime, the probability that the number is a base-2 pseudoprime 
is roughly 1/1041  
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Primality Testing  
 

  Carmichael numbers 
  Actually due to Korselt 
  They are the composite numbers that pass the test for all a’s 
  Alternative definition: A number n is a Carmichael number if it is 

not divisible by the square of a prime (square-free) and for all 
prime divisors p of n, it is true that p−1 | n−1 

  They are extremely rare (561, 1105, 1729, 2465,…) 
  561 = 3⋅11⋅17 
  There are only 255 of them less than 108 

  There are 20,138,200 Carmichael numbers between 1 and 1021 
(approximately one in 50 billion numbers) 
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Primality Testing 

  Theorem: if a number n fails the Fermat test for some 
value of a then n also fails for at least half of the choices 
of a<n 

  If we ignore Carmichael numbers for now then: 
  Pr[PSEUDOPRIME(n) returns PRIME, when n is 

COMPOSITE] ≤ 1/2 

  If we repeat the algorithm k times by choosing k different 
values for a, say  α1, α2,…,αk, then 

  Pr[PSEUDOPRIME(n) returns PRIME, when n is 
COMPOSITE] ≤ 1/2k 
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Primality Testing 

  Miller-Rabin randomized primality test 
  It modifies and improves PSEUDOPRIME(n) 

  It is also based on Fermat’s little theorem 

  Definition: A number x∈Zn is a square root of y modn if x2 ≡ y modn 

  Lemma: If n is prime, the only square roots of 1 modn are +1, -1 modn  

  If n is an odd number, write n-1 in the form n-1 = 2km, for some k 

  Then by Fermat’s theorem, if n is prime, a(n-1)/2 is a square root of 1 
modn (and hence it is either +1 or -1 modn) 

  The algorithm is based on the fact that if we keep taking square roots 
and n is prime,  

  Either we hit a -1 modn at some point 

  or we will keep seeing 1 modn till the end (am = 1 modn)  
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Primality Testing  

  Miller-Rabin randomized primality test 
  MILLER-RABIN(n) 

1  Suppose n-1 = 2km, where k ≥ 1 and m is odd 

2  Choose a random integer a with 1≤a≤n-1  

3  Compute b = am modn /*by the algorithm MODULAR-
EXPONENTIATION that we saw in previous lectures*/ 

4  if b ≡ 1 modn then return PRIME 

5  for i=0 to k-1 do  

6     if b ≡ -1 modn return PRIME 

7     else 
8        b = b2 modn 

9  return COMPOSITE 
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Primality Testing  

  Analysis 
  Part (a): We first show that when the algorithm says 

COMPOSITE, it is correct 

  Suppose for the sake of contradiction that n is a prime number 
and the program answers COMPOSITE 

  Then for every i with 0≤ i ≤ k-1, we have that   

  Since n is prime we also have that 

  This means that              is a square root of 1 modn 

na mi mod12 !"

na mk mod12 =

mk

a
12 !
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Primality Testing  

  Analysis 
  By our assumptions it follows that 

  But then              is also a square root of 1 modn 

  Continuing by using the same argument we eventually conclude 
that am = 1 modn, a contradiction since then the algorithm 
would have answered PRIME 

  Part (b): When the program answers PRIME, there is a chance 
that n is composite. 

  It has been shown that the error chance is at most ¼ 
  Hence by choosing multiple random numbers a1, a2,…,as and 

repeating the process the error rate falls down to 1/4s  

na mk

mod1
12 =
!

mk

a
22 !
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Primality Testing  

  Example  
  Let n = 221, n-1= 22 ·55  (k=2, m=55) 

  Let a = 137  
  a55 mod 221 = 188 ≠ 1mod 221 

  a110 mod 221 = 205 ≠ -1 mod 221  

  Hence the base a=137 is a witness for the compositeness of 221 
  Note that a primality testing algorithm does not necessarily reveal 

the factors of a composite number! 

  Complexity 
  The only non-trivial operations are raising to powers modn 
  Hence if we use the algorithm of repeated squaring, running time 

is polynomial (O(logn)3) 
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Primality Testing 

   Other randomized tests: [Solovay-Strassen ’77], Miller-
Rabin perfoms better though 

   If Generalized Rieman hypothesis is true, Miller-Rabin 
can be turned into a deterministic algorithm 

   [Agrawal, Kayal, Saxena 2002]: The first deterministic 
polynomial time primality test (it was an open problem for 
many years) 

   First analysis O((logn)12) 
   Later improved to O((logn)6) 
   Still impractical to use 
   Randomized tests still better in practice 
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Integer Factorization 

 One of the most important problems in Cryptography 
 State of the art 

 May 2005: factorization of RSA-200 (663 bits, 200 decimal digits) 
 November 2005: factorization of RSA-640 (640 bits, 193 decimal 

digits), 5 months on 80 2.2GHz processors 
 Dec 2009: factorization of RSA-768 (768 bits, 232 decimal digits), took 

almost 2 years with hundreds of machines.       
Research team: Kleinjung, Aoki, Franke, Lenstra, Thome, Gaudry, 
Kruppa, Montgomery, Bos, Osvik, te Riele, Timofeev, Zimmerman 

 Up to now, 16 of the 54 challenge numbers have been factored 
  For updates on the RSA factoring challenge (not active any more by 

the RSA labs) see 

     http://en.wikipedia.org/wiki/RSA_numbers  
  http://www.rsa.com/rsalabs/node.asp?id=2092  
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Integer Factorization 

  Statement of the problem: 
  Given an odd integer n, find one non-trivial factor of n 

  We may assume that n is composite (e.g. by first running a primality 
test on n) 

  An efficient algorithm should be polynomial in logn 

  The most interesting case for public key cryptography is 
when n = pq for primes p, q of around the same size (512 
bits) 

  Definition: A composite number of the form n = pq, where 
p, q are primes, is called semi-prime 

  Up to now we do not know if there exists a polynomial 
time algorithm for the problem 
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Integer Factorization 

  Factoring algorithms 
  Most naive approach: trial division 

  Works in time  O(√n) 

  Many other approaches have been suggested  

  Here we will only see the rho-heuristic by Pollard (1975) 

  Let p be the smallest prime factor of n 

  Idea:  

  Suppose there exist xi ,xj ∈ Ζn such that xi≠xj but xi≡xjmodp  

  Then gcd(xi-xj,n) is a non-trivial factor 

  How can we find such xi ,xj? 
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Integer Factorization 

   We will try to choose a subset X ⊆ Ζn and then compute 
gcd(xi-xj,n) for every pair xi,xj є X (X should not be too large)  

  POLLARD-RHO actually helps in reducing the number of 
required gcd computations 
  Let f(x)=x2+α (usually a = -1 or +1) 

  Consider the transformation  x f(x) modn 

  Suppose x1 is a random element of Ζn and consider the 
sequence X = {x1, x2, x3, x4 ...} defined by xj = f(xj-1)modn 
  Since we are in Ζn, this is a finite sequence, beyond some 
point it repeats itself, i.e., ∃i,j such that xi ≡ xj modn, xi+1 ≡ xj+1 
modn,… 
  By birthday paradox X has about √n elements if f is a 
random enough function  
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Integer Factorization 

  Consider the graph G with vertices the values xi modn and 
edges the consecutive pairs in the sequence 

  The graph has a tail and a circle (forms a rho) 
 xi modn -> xi+1 modn, -> … -> xj modn ≡ xi modn 

  Basic idea of POLLARD-RHO(n) is to find a collision, i.e., a 
pair xi , xj such that xi≠xj but xi ≡ xj modp  

    

     

x1 

x2 

xi-1 

xi=xj 

xi+1 

xj-1 

  Since we do not know p we may need to 
check all possible pairs, xi, xj 

  We will end up checking pairs inside the cycle 

  Hence we would need to check if  

                 1< gcd(xi -xj, n) < n  

 

xi+2 

24 



Κρυπτογραφία και Εφαρµογές, ΠΜΣ, Ο.Π.Α.              

Integer Factorization 

  Pollard’s heuristic 
  POLLARD-RHO(n) 

 1  i ← 1 
 2  x1 ← RANDOM(0, n - 1)    
 3  y ← x1 
 4  k ← 2 
 5  while TRUE do   
 6       i ← i + 1 
 7       xi=(x2i-1-1)mod n   
 8       d ← gcd(y - xi, n) 
 9       if d ≠ 1 and d ≠ n 
10          then print d 
11       if i = k 
12          then y ← xi//y takes only the values x1, x2, x4, x8 … 
13               k ← 2k   
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Integer factorization 

Analysis 
  Note that the algorithm never prints a wrong answer 
  But it may keep on going without ever printing something 
  
   The variable y takes only the values x1, x2, x4, x8,… 
   The gcd computations that we perform are 

   gcd(x1 - x2, n) (when y = x1) 
   gcd(x2 - x3, n), gcd(x2 - x4, n) (when y = x2)  
   gcd(x4 - x5, n), gcd(x4 - x6, n), gcd(x4 - x7, n), gcd(x4 - x8, n) 

(when y = x4) 
   … 

   If we wait long enough, y will enter the cycle 
  Birthday paradox cannot really be formally applied to estimate this but it is a 

good approximation to think that f behaves like a random function  
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Integer Factorization 

Analysis 
  As soon as we find xi such that xi=xj for some j<i, we are inside the 

cycle modn, since xi+1=xj+1, xi+2=xj+2, κοκ 

   Example: n = 1387 
  xi+1=(x2

i-1)mod1387, with x1=2.  
  Factoring: 1387 =19 · 73.  

  Let p be a non-trivial factor of n 

  We need to identify numbers xi ≠ xj such 
that xi ≡ xj modp 

  Idea: as the algorithm keeps running we 
hope to run into a setting for y such that 

  y ≠ xi modn but  

  y ≡ xi modp 
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Integer Factorization 

Analysis 
  Consider the sequence xi’ = xi modp (remember we do not know p yet) 

  x’i+1 = xi+1 modp = (f(xi) modn) modp = f(xi) modp = ((xi’)2 – 1) modp 

Picture (b) The cycle mod 19. Every 
value xi from (a) is equivalent mod 
19 with x’i from (b). 
e.g. x4 = 63 και x7 = 177 are both 
equivalent to 6 mod 19.  

Picture (c) The cycle mod 73. Every 
value xi from (a) is equivalent mod 
73, with x’’i from (c). 

   The sequence {xi’} also repeats itself 

   The circle modp is typically much smaller than 
modn (about √p) 
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Integer Factorization 
Analysis 

  Observation: once y is in the cycle modp and k is large enough, then the algorithm 
makes an entire loop around the cycle modp  

  Hence we will check y with all other xi values of the cycle modp.  
  For one of them it will hold that y ≡ xi modp ⇒ 1 < gcd(y-xi, n) 

Example: 

n = 1387 = 19 · 73  

  The algorithm will first 
discover the factor 19, when 
we reach the point x7 = 177 
(it has done a loop modp)  

  At that point y = x4 = 63 

   The algorithm will compute 
gcd(63 - 177, 1387) = 19  
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Integer Factorization 

  Properties of POLLARD-RHO 
  It never prints a wrong factor 
  Every integer that gets printed is a non-trivial divisor of n.  
  But there is no guarantee that it will print something 
  The running time depends on various aspects 

  The behavior of the function f(x) modn 
  The random choice we make in the beginning 
  It is also possible that if n=pq, we may keep discovering pairs xi, xj such that xi ≡ xj 

modp and also xi ≡ xj modq. In that case gcd(xi – xj, n) = gcd(0, n) = n, and no non-
trivial factor is found. 

  The last issue is not really a big issue in practice 
  In practice Pollard’s rho method behaves quite well (but not so well as to 

break RSA within a reasonable amount of time) 
  By the birthday paradox, if p is a factor of n, the cycle modp will be of length 

roughly O(√p)  
  Since any composite number has a factor of size at most √n, it follows that on 

average, we expect POLLARD-RHO to produce a factor after around O(n1/4) 
repetitions 

  Exponential of course since n1/4  = 2logn/4, but much better than trial division  
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Integer Factorization 

  Other algorithms 
  Pollard’s p-1 method 

  Dixon’s algorithm and quadratic sieve methods 

  Methods based on elliptic curves 

  The number field sieve: the currently best theoretical 
worst case guarantee. It runs in time 

  With quantum computers, factoring can be done in 
polynomial time using Shor’s algorithm [Shor ’99] 
  But we are still far away from building quantum computers 

( ) ( )( )3/23/1 lnlnln))1(92.1( nnoe +
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