Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα

Κρυπτογραφία και Εφαρμογές

Μαριάς Ιωάννης marias@aueb.gr Μαρκάκης Ευάγγελος markakis@gmail.com

Primality Testing

- ✓ Density of primes
- ✓ Eratosthenes' sieve
- ✓ Trial division
- ✓ Fermat test
- ✓ Miller-Rabin test
- Other algorithms: Solovay-strassen, deterministic algorithms

Integer Factorization

✓ Pollard's rho method

In public key cryptography we often need to solve the following problem:

Pick a prime number p within a certain range, e.g. a prime with up to 512 bits

- 1. How many numbers do we need to try till we find a prime?
- 2. Given a number how do we test that it is a prime?

- Density of primes
 - Prime numbers are not sparse.
 - Chebyshev's theorem (1850): there is always a prime between n and 2n
 - ✓ Density function $\pi(n)$ = the number of primes between 2 and n
 - e.g. $\pi(10) = 4 \rightarrow 2,3,5,7$
 - ✓ **Prime number theorem (1896):** The density function $\pi(n)$ satisfies:

 $\lim_{n \to \infty} (\pi(n) / (n / \ln n)) = 1$, or esle $\pi(n) \approx n / \ln n$ for large enough n

- ✓ Example
 - *n* = 10⁹
 - $\pi(n) = 50,847,534$
 - *n*/ ln *n* ≈ 48,254,942
 - Deviation 6%

- Density of primes
 - ✓ By the prime number theorem:
 - Prob(randomly chosen integer between 1 and n is prime) = 1/ ln n
 - Hence if we examine about ln *n* randomly chosen integers between 1 and n, one of them will be prime with high probability
 - ✓ To find a 512-bit prime we can check about ln2⁵¹² ≈ 355 randomly chosen integers of 512-bits
 - ✓ BUT: once we choose a number, how do we really check that this is a prime number?

- The sieve of Eratosthenes (3rd century B.C.)
 - ✓ A method to identify all primes up to a given number n
 - ✓ The algorithm:
 - ✓ Input: An integer $n \ge 2$
 - Output: find all primes < n</p>
 - Idea: Consider a boolean array a of size n representing if a number is prime or not
 - ✓ Initially all entries are true
 - Gradually non-primes will become false
 - ✓ Starting from number 2 and going up to n-1
 - If a[x]=false go to next element
 - Else x is prime and set all its multiples (that are < N) to false</p>

The sieve of Eratosthenes (3rd century B.C.)

1. Why don't we do anything when a[i]= false?

By Euclid's theorem, every number can be written as a product of prime numbers. It suffices to filter out only the multiples of prime numbers.

2. Why does the loop begin from i^2 ?

If x<i² =i*i, and x is not a prime, then x has some prime factor <i-1. Hence a[x] became false in some previous iteration

- From now on we focus on testing whether a particular number n is prime
 - We may assume n is odd
- Trial division
 - ✓ Try to see if any of the numbers 2, 3, 4,...,n-1 divides n
 - ✓ Actually it suffices to try only with the numbers 2, 3, ..., $\lfloor \sqrt{n} \rfloor$
 - If n is composite it has a factor, which is at most \sqrt{n}
 - \checkmark In fact, since n is odd, we can also remove the even numbers
 - ✓ Worst case complexity: $\sqrt{n/2}$, hence O(\sqrt{n})
 - ✓ Exponential since $\sqrt{n} = 2^{\log n/2}$
 - Effective only for small values of n
 - For RSA, n is 512 bits long or even longer

- Pseudo prime numbers
 - ✓ Recall Fermat's little theorem:
 - ✓ If n is prime then $a^{n-1} \equiv 1 \pmod{1}$ for every a∈{1,...,n-1}
 - ✓ For a given a∈{1,...,n-1}, a number n is a base-a pseudoprime if n is composite and :

 $a^{n-1} \equiv 1 \pmod{(*)}$

- Hence if we find a number a for which this does not hold, certainly n is composite
- If we picked an a for which (*) holds , we hope n is prime, i.e., we hope there cannot be too many composites that can satisfy (*)

Fermat Test

- Algorithm PSEUDOPRIME(n) //n is an odd integer
- Pick a positive integer 1≤a<n at random
- if $a^{n-1} \equiv 1 \pmod{n}$ then return PRIME // pass test ■ else return COMPOSITE
- Computing aⁿ⁻¹ (modn) should be done with the algorithm for modular exponentiation
- One can run the algorithm for some fixed a, e.g., a=2
- The algorithm can make errors but only of one kind:
 - \checkmark If it says that n is composite, then it is correct
 - If it says that n is prime then it is wrong only in the case that n is a base-a pseudoprime

- ✓ How often is the algorithm wrong?
 - Rarely.
 - For a=2: there are only 22 values of *n* in [1, 10,000] for which the algorithm fails. The first 4 are 341, 561, 645, και 1105.
 - 341=11*31 and $2^{340} \equiv 1 \pmod{341}$
- Estimates for base-2 pseudoprimes
 - For a 512-bit randomly chosen number that the algorithm thinks it is prime, the probability that the number is a base-2 pseudoprime is roughly 1/10²⁰
 - For a 1024-bit randomly chosen number that the algorithm thinks it is prime, the probability that the number is a base-2 pseudoprime is roughly 1/10⁴¹

- Carmichael numbers
 - Actually due to Korselt
 - They are the composite numbers that pass the test for all a's
 - Alternative definition: A number n is a Carmichael number if it is not divisible by the square of a prime (square-free) and for all prime divisors p of n, it is true that p-1 | n-1
 - They are extremely rare (561, 1105, 1729, 2465,...)
 - $561 = 3 \cdot 11 \cdot 17$
 - There are only 255 of them less than 10⁸
 - There are 20,138,200 Carmichael numbers between 1 and 10²¹ (approximately one in 50 billion numbers)

- Theorem: if a number n fails the Fermat test for some value of a then n also fails for at least half of the choices of a < n</p>
- If we ignore Carmichael numbers for now then:
- Pr[PSEUDOPRIME(n) returns PRIME, when n is COMPOSITE] ≤ 1/2
- If we repeat the algorithm k times by choosing k different values for a, say α₁, α₂,...,α_k, then
- Pr[PSEUDOPRIME(n) returns PRIME, when n is COMPOSITE] ≤ 1/2^k

Miller-Rabin randomized primality test

- ✓ It modifies and improves PSEUDOPRIME(n)
- ✓ It is also based on Fermat's little theorem
- ✓ **Definition:** A number $x \in Z_n$ is a square root of y modn if $x^2 = y$ modn
- ✓ Lemma: If n is prime, the only square roots of 1 modn are +1, -1 modn
- ✓ If n is an odd number, write n-1 in the form $n-1 = 2^{k}m$, for some k
- ✓ Then by Fermat's theorem, if n is prime, a^{(n-1)/2} is a square root of 1 modn (and hence it is either +1 or -1 modn)
- The algorithm is based on the fact that if we keep taking square roots and n is prime,
 - Either we hit a -1 modn at some point
 - or we will keep seeing 1 modn till the end (a^m = 1 modn)

Miller-Rabin randomized primality test

- ✓ MILLER-RABIN(n)
 - 1 Suppose $n-1 = 2^{k}m$, where $k \ge 1$ and m is odd
 - 2 Choose a random integer a with $1 \le a \le n-1$
 - 3 Compute b = a^m modn /*by the algorithm MODULAR-EXPONENTIATION that we saw in previous lectures*/
 - 4 if $b \equiv 1 \mod then return PRIME$

5 for
$$i=0$$
 to $k-1$ do

- 6 if $b \equiv -1 \mod return PRIME$
- 7 else
- $8 b = b^2 modn$
- 9 return COMPOSITE

- Part (a): We first show that when the algorithm says COMPOSITE, it is correct
- Suppose for the sake of contradiction that n is a prime number and the program answers COMPOSITE
- ✓ Then for every i with $0 \le i \le k-1$, we have that

$$a^{2^i m} \neq -1 \mod n$$

✓ Since n is prime we also have that

$$a^{2^k m} = 1 \mod n$$

✓ This means that $a^{2^{k-1}m}$ is a square root of 1 modn

 \checkmark By our assumptions it follows that

 $a^{2^{k-1}m} = 1 \mod n$

✓ But then $a^{2^{k-2}m}$ is also a square root of 1 modn

- Continuing by using the same argument we eventually conclude that a^m = 1 modn, a contradiction since then the algorithm would have answered PRIME
- Part (b): When the program answers PRIME, there is a chance that n is composite.
- \checkmark It has been shown that the error chance is at most $\frac{1}{4}$
- ✓ Hence by choosing multiple random numbers a₁, a₂,...,a_s and repeating the process the error rate falls down to 1/4^s

✓ Example

- Let n = 221, n-1= $2^2 \cdot 55$ (k=2, m=55)
- Let a = 137
- $a^{55} \mod 221 = 188 \neq 1 \mod 221$
- a¹¹⁰ mod 221 = 205 ≠ -1 mod 221
- Hence the base a=137 is a witness for the compositeness of 221
- Note that a primality testing algorithm does not necessarily reveal the factors of a composite number!

<u>Complexity</u>

- The only non-trivial operations are raising to powers modn
- Hence if we use the algorithm of repeated squaring, running time is polynomial (O(logn)³)

- Other randomized tests: [Solovay-Strassen '77], Miller-Rabin perfoms better though
- If Generalized Rieman hypothesis is true, Miller-Rabin can be turned into a deterministic algorithm
- [Agrawal, Kayal, Saxena 2002]: The first deterministic polynomial time primality test (it was an open problem for many years)
- First analysis O((logn)¹²)
- Later improved to O((logn)⁶)
- Still impractical to use
- Randomized tests still better in practice

One of the most important problems in Cryptography

State of the art

- ✓ May 2005: factorization of RSA-200 (663 bits, 200 decimal digits)
- November 2005: factorization of RSA-640 (640 bits, 193 decimal digits), 5 months on 80 2.2GHz processors
- Dec 2009: factorization of RSA-768 (768 bits, 232 decimal digits), took almost 2 years with hundreds of machines.
 Research team: Kleinjung, Aoki, Franke, Lenstra, Thome, Gaudry, Kruppa, Montgomery, Bos, Osvik, te Riele, Timofeev, Zimmerman
- ✓ Up to now, 16 of the 54 challenge numbers have been factored
- For updates on the RSA factoring challenge (not active any more by the RSA labs) see

http://en.wikipedia.org/wiki/RSA numbers

http://www.rsa.com/rsalabs/node.asp?id=2092

- Statement of the problem:
- Given an odd integer n, find one non-trivial factor of n
 - We may assume that n is composite (e.g. by first running a primality test on n)
 - $\checkmark\,$ An efficient algorithm should be polynomial in logn
- The most interesting case for public key cryptography is when n = pq for primes p, q of around the same size (512 bits)
- Definition: A composite number of the form n = pq, where p, q are primes, is called semi-prime
- Up to now we do not know if there exists a polynomial time algorithm for the problem

Factoring algorithms

- ✓ Most naive approach: trial division
 - Works in time $O(\sqrt{n})$
- Many other approaches have been suggested
- ✓ Here we will only see the rho-heuristic by Pollard (1975)
- ✓ Let p be the smallest prime factor of n

✓ Idea:

- ✓ Suppose there exist x_i , $x_j \in Z_n$ such that $x_i \neq x_j$ but $x_i = x_j \text{modp}$
- ✓ Then $gcd(x_i-x_i,n)$ is a non-trivial factor
- ✓ How can we find such x_i , x_j ?

✓ We will try to choose a subset $X \subseteq Z_n$ and then compute $gcd(x_i-x_j,n)$ for every pair $x_i, x_j \in X$ (X should not be too large)

✓ POLLARD-RHO actually helps in reducing the number of required gcd computations

✓ Let $f(x)=x^2+\alpha$ (usually a = -1 or +1)

✓ Consider the transformation $x \rightarrow f(x)$ modn

✓ Suppose x_1 is a random element of Z_n and consider the sequence X = { x_1 , x_2 , x_3 , x_4 ...} defined by $x_i = f(x_{i-1}) \mod n$

✓ Since we are in Z_n , this is a finite sequence, beyond some point it repeats itself, i.e., ∃i,j such that $x_i \equiv x_j \mod x_{i+1} \equiv x_{j+1} \mod x_{i-1}$.

✓ By birthday paradox X has about \sqrt{n} elements if f is a random enough function

Consider the graph G with vertices the values x_i modn and edges the consecutive pairs in the sequence

The graph has a tail and a circle (forms a rho)

 $\checkmark x_i \mod x_{i+1} \mod x_{i+1} \mod x_i \mod x_i \mod x_i \mod x_i$

Basic idea of **POLLARD-RHO(n)** is to find a collision, i.e., a pair x_i , x_j such that $x_i \neq x_j$ but $x_i \equiv x_j \mod p$

 $\int_{4}^{12} \checkmark$ Since we do not know p we may need to check all possible pairs, x_i , x_j

✓ Hence we would need to check if

 X_2

 X_{i+1}

 $X_i = X$

X_{i-1}

Pollard's heuristic

✓ POLLARD-RHO(n)

```
1 i ← 1
 2 x_1 \leftarrow \text{RANDOM}(0, n - 1)
 3 y \leftarrow x_1
 4 \quad k \leftarrow 2
 5 while TRUE do
            i ← i + 1
 6
 7
            x_{i} = (x_{i-1}^{2} - 1) \mod n
 8
            d \leftarrow gcd(y - x_i, n)
 9
            if d \neq 1 and d \neq n
10
                then print d
             if i = k
11
12
                 then y \leftarrow x_i//y takes only the values x_1, x_2, x_4, x_8 \dots
                        k ← 2k
13
```

- Note that the algorithm never prints a wrong answer
- But it may keep on going without ever printing something
- The variable y takes only the values $x_1, x_2, x_4, x_8, \dots$
- The gcd computations that we perform are
 - ✓ $gcd(x_1 x_2, n)$ (when $y = x_1$)
 - ✓ $gcd(x_2 x_3, n)$, $gcd(x_2 x_4, n)$ (when $y = x_2$)
 - ✓ $gcd(x_4 x_5, n)$, $gcd(x_4 x_6, n)$, $gcd(x_4 x_7, n)$, $gcd(x_4 x_8, n)$ (when $y = x_4$)
 - ✓ …
 - If we wait long enough, y will enter the cycle
 - Birthday paradox cannot really be formally applied to estimate this but it is a good approximation to think that f behaves like a random function

✓ As soon as we find x_i such that $x_i=x_j$ for some j<i, we are inside the cycle modn, since $x_{i+1}=x_{j+1}$, $x_{i+2}=x_{j+2}$, кок

- Example: n = 1387
- $x_{i+1} = (x_i^2 1) \mod 1387$, with $x_1 = 2$.
- Factoring: 1387 =19 · 73.
- Let p be a non-trivial factor of n
- We need to identify numbers x_i ≠ x_j such that x_i = x_j modp
- Idea: as the algorithm keeps running we hope to run into a setting for y such that
 - $y \neq x_i \mod but$
 - $y \equiv x_i \mod p$

Integer Factorization

Analysis

- Consider the sequence $x_i' = x_i \mod p$ (remember we do not know p yet)
- ✓ $x'_{i+1} = x_{i+1} \mod p = (f(x_i) \mod n) \mod p = f(x_i) \mod p = ((x_i')^2 1) \mod p$

- Observation: once y is in the cycle modp and k is large enough, then the algorithm makes an entire loop around the cycle modp
- ✓ Hence we will check y with all other x_i values of the cycle modp.
- ✓ For one of them it will hold that $y \equiv x_i \mod p \Rightarrow 1 < gcd(y-x_i, n)$

Properties of POLLARD-RHO

- It never prints a wrong factor
- Every integer that gets printed is a non-trivial divisor of n.
- \checkmark But there is no guarantee that it will print something
- The running time depends on various aspects
 - The behavior of the function f(x) modn
 - The random choice we make in the beginning
 - It is also possible that if n=pq, we may keep discovering pairs x_i , x_j such that $x_i \equiv x_j$ modp and also $x_i \equiv x_j$ modq. In that case $gcd(x_i x_j, n) = gcd(0, n) = n$, and no non-trivial factor is found.
- ✓ The last issue is not really a big issue in practice
- In practice Pollard's rho method behaves quite well (but not so well as to break RSA within a reasonable amount of time)
- ✓ By the birthday paradox, if p is a factor of n, the cycle modp will be of length roughly $O(\sqrt{p})$
- ✓ Since any composite number has a factor of size at most √n, it follows that on average, we expect POLLARD-RHO to produce a factor after around O(n^{1/4}) repetitions
- Exponential of course since $n^{1/4} = 2^{\log n/4}$, but much better than trial division

- Other algorithms
- Pollard's p-1 method
- Dixon's algorithm and quadratic sieve methods
- Methods based on elliptic curves
- The number field sieve: the currently best theoretical worst case guarantee. It runs in time

$$e^{(1.92+o(1))(\ln n)^{1/3}(\ln \ln n)^{2/3})}$$

- ✓ With quantum computers, factoring can be done in polynomial time using Shor's algorithm [Shor '99]
 - But we are still far away from building quantum computers