Т μ ท́ $\boldsymbol{\alpha}$ П入прочорьки́ऽ

M $\alpha \rho ı \alpha ́ \varsigma ~ I \omega \alpha ́ v v \eta \varsigma ~$
marias@aueb.gr

Мхрко́кпऽ Eứүү६лоऽ
markakis@gmail.com

- Primality Testing
\checkmark Density of primes
\checkmark Eratosthenes' sieve
\checkmark Trial division
\checkmark Fermat test
\checkmark Miller-Rabin test
\checkmark Other algorithms: Solovay-strassen, deterministic algorithms
- Integer Factorization
\checkmark Pollard's rho method

In public key cryptography we often need to solve the following problem:

- Pick a prime number p within a certain range, e.g. a prime with up to 512 bits

1. How many numbers do we need to try till we find a prime?
2. Given a number how do we test that it is a prime?

- Density of primes

\checkmark Prime numbers are not sparse.
\checkmark Chebyshev's theorem (1850): there is always a prime between n and $2 n$
\checkmark Density function $\pi(n)=$ the number of primes between 2 and n

- e.g. $\pi(10)=4 \rightarrow 2,3,5,7$
\checkmark Prime number theorem (1896): The density function $\pi(n)$ satisfies:
$\lim _{n \rightarrow \infty}(\pi(n) /(n / \ln n))=1$, or esle $\pi(n) \approx n / \ln n$ for large enough n
\checkmark Example
- $n=10^{9}$
- $\quad \pi(n)=50,847,534$
- $n / \ln n \approx 48,254,942$
- Deviation 6\%

- Density of primes

\checkmark By the prime number theorem:
$\checkmark \operatorname{Prob}($ randomly chosen integer between 1 and n is prime) $=1 / \ln n$
\checkmark Hence if we examine about In n randomly chosen integers between 1 and n, one of them will be prime with high probability
\checkmark To find a 512-bit prime we can check about $\ln 2^{512} \approx 355$ randomly chosen integers of 512-bits
\checkmark BUT: once we choose a number, how do we really check that this is a prime number?

Primality Testing

The sieve of Eratosthenes (3 ${ }^{\text {rd }}$ century B.C.)
\checkmark A method to identify all primes up to a given number n
\checkmark The algorithm:
\checkmark Input: An integer $\mathrm{n} \geq 2$
Output: find all primes < n
\checkmark Idea: Consider a boolean array a of size n representing if a number is prime or not
\checkmark Initially all entries are true

- Gradually non-primes will become false
\checkmark Starting from number 2 and going up to n -1
- If $a[x]=f a l s e ~ g o ~ t o ~ n e x t ~ e l e m e n t ~$
- Else x is prime and set all its multiples (that are $<N$) to false

Primality Testing

The sieve of Eratosthenes (3 ${ }^{\text {rd }}$ century B.C.)

```
for (int i = 2; i < N; i++)
    a[i] = true;
for (int i = 2; i < N; i++)
    if (a[i])
        for (int j = i; j*i < N; j++)
        a[i*j] = false;//multiples of i
        //are not prime numbers
```

1. Why don't we do anything when $a[i]=$ false?

By Euclid's theorem, every number can be written as a product of prime numbers. It suffices to filter out only the multiples of prime numbers.
2. Why does the loop begin from i^{2} ?

If $x<i^{2}=i^{*} i$, and x is not a prime, then x has some prime factor <i-1. Hence $a[x]$ became false in some previous iteration

Primality Testing

- From now on we focus on testing whether a particular number n is prime

- We may assume n is odd

Trial division

\checkmark Try to see if any of the numbers $2,3,4, \ldots, n-1$ divides n
\checkmark Actually it suffices to try only with the numbers $2,3, \ldots,\lfloor\sqrt{ } n\rfloor$

- If n is composite it has a factor, which is at most $\sqrt{ } n$
\checkmark In fact, since n is odd, we can also remove the even numbers
\checkmark Worst case complexity: $\sqrt{ } n / 2$, hence $O(\sqrt{ } n)$
\checkmark Exponential since $\sqrt{ } n=2^{\log n / 2}$
- Effective only for small values of n
- For RSA, n is 512 bits long or even longer

Primality Testing

Pseudo prime numbers

\checkmark Recall Fermat's little theorem:
\checkmark If n is prime then $\mathrm{a}^{\mathrm{n}-1} \equiv 1$ (modn) for every $\mathrm{a} \in\{1, \ldots, \mathrm{n}-1\}$
\checkmark For a given $\mathrm{a} \in\{1, \ldots, \mathrm{n}-1\}$, a number n is a base-a pseudoprime if n is composite and :

$$
a^{n-1} \equiv 1(\operatorname{modn}) \quad\left(^{*}\right)
$$

\checkmark Hence if we find a number a for which this does not hold, certainly n is composite
\checkmark If we picked an a for which (*) holds, we hope n is prime, i.e., we hope there cannot be too many composites that can satisfy (${ }^{*}$)

Primality Testing

Fermat Test

```
Algorithm PSEUDOPRIME(n) //n is an odd integer
Pick a positive integer 1\leqa<n at random
if }\mp@subsup{a}{}{n-1}\equiv1 (mod n) then return PRIME // pass tes
else return COMPOSITE
```

- Computing $\mathrm{a}^{\mathrm{n}-1}(\operatorname{modn})$ should be done with the algorithm for modular exponentiation
- One can run the algorithm for some fixed a, e.g., $a=2$
- The algorithm can make errors but only of one kind:
\checkmark If it says that n is composite, then it is correct
\checkmark If it says that n is prime then it is wrong only in the case that n is a base-a pseudoprime

Primality Testing

\checkmark How often is the algorithm wrong?

- Rarely.
- For a=2: there are only 22 values of n in $[1,10,000]$ for which the algorithm fails. The first 4 are 341, 561, 645, кaı 1105.
- $341=11^{*} 31$ and $2^{340} \equiv 1(\bmod 341)$

\checkmark Estimates for base-2 pseudoprimes

- For a 512-bit randomly chosen number that the algorithm thinks it is prime, the probability that the number is a base-2 pseudoprime is roughly $1 / 10^{20}$
- For a 1024-bit randomly chosen number that the algorithm thinks it is prime, the probability that the number is a base-2 pseudoprime is roughly $1 / 10^{41}$

\checkmark Carmichael numbers

- Actually due to Korselt
- They are the composite numbers that pass the test for all a's
- Alternative definition: A number n is a Carmichael number if it is not divisible by the square of a prime (square-free) and for all prime divisors p of n, it is true that $p-1 \mid n-1$
- They are extremely rare (561, 1105, 1729, 2465,...)
- 561 = 3•11•17
- There are only 255 of them less than 10^{8}
- There are 20,138,200 Carmichael numbers between 1 and 10^{21} (approximately one in 50 billion numbers)
- Theorem: if a number n fails the Fermat test for some value of a then n also fails for at least half of the choices of $\mathrm{a}<\mathrm{n}$
- If we ignore Carmichael numbers for now then:
- Pr[PSEUDOPRIME(n) returns PRIME, when n is COMPOSITE] $\leq 1 / 2$
- If we repeat the algorithm k times by choosing k different values for a, say $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$, then
- Pr[PSEUDOPRIME(n) returns PRIME, when n is COMPOSITE] $\leq 1 / 2^{k}$

Primality Testing

Miller-Rabin randomized primality test

\checkmark It modifies and improves PSEUDOPRIME(n)
\checkmark It is also based on Fermat's little theorem
\checkmark Definition: A number $x \in Z_{n}$ is a square root of y modn if $x^{2} \equiv y$ modn
\checkmark Lemma: If n is prime, the only square roots of 1 modn are $+1,-1$ modn
\checkmark If n is an odd number, write $\mathrm{n}-1$ in the form $\mathrm{n}-1=2^{\mathrm{k}} \mathrm{m}$, for some k
\checkmark Then by Fermat's theorem, if n is prime, $a^{(n-1) / 2}$ is a square root of 1 modn (and hence it is either +1 or -1 modn)
\checkmark The algorithm is based on the fact that if we keep taking square roots and n is prime,

- Either we hit a -1 modn at some point
- or we will keep seeing 1 modn till the end ($a^{m}=1$ modn)

- Miller-Rabin randomized primality test

\checkmark MILLER-RABIN (n)

1 Suppose $\mathrm{n}-1=2{ }^{\mathrm{k}} \mathrm{m}$, where $\mathrm{k} \geq 1$ and m is odd
2 Choose a random integer a with $1 \leq a \leq n-1$
3 Compute $\mathrm{b}=\mathrm{a}^{\mathrm{m}}$ modn /*by the algorithm MODULAREXPONENTIATION that we saw in previous lectures*/
4 if $b \equiv 1$ modn then return PRIME
5 for $i=0$ to $k-1$ do
6 if $\mathrm{b} \equiv-1$ modn return PRIME
7 else
$8 \quad \mathrm{~b}=\mathrm{b}^{2} \operatorname{modn}$
9 return COMPOSITE

Primality Testing

- Analysis
\checkmark Part (a): We first show that when the algorithm says COMPOSITE, it is correct
\checkmark Suppose for the sake of contradiction that n is a prime number and the program answers COMPOSITE
\checkmark Then for every i with $0 \leq i \leq \mathrm{k}-1$, we have that

$$
a^{2^{i} m} \neq-1 \bmod n
$$

\checkmark Since n is prime we also have that

$$
a^{2^{k} m}=1 \bmod n
$$

\checkmark This means that $a^{2^{k-1} m}$ is a square root of 1 modn

Primality Testing

- Analysis

\checkmark By our assumptions it follows that

$$
a^{2^{k-1} m}=1 \bmod n
$$

\checkmark But then $a^{2^{k-2} m}$ is also a square root of 1 modn
\checkmark Continuing by using the same argument we eventually conclude that $a^{m}=1$ modn, a contradiction since then the algorithm would have answered PRIME
\checkmark Part (b): When the program answers PRIME, there is a chance that n is composite.
\checkmark It has been shown that the error chance is at most $1 / 4$
\checkmark Hence by choosing multiple random numbers $\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{s}}$ and repeating the process the error rate falls down to $1 / 4^{\mathrm{s}}$

Example

- Let $n=221, \mathrm{n}-1=2^{2} \cdot 55 \quad(\mathrm{k}=2, \mathrm{~m}=55)$
- Let $a=137$
- $a^{55} \bmod 221=188 \neq 1 \bmod 221$
- $a^{110} \bmod 221=205 \neq-1 \bmod 221$
- Hence the base a=137 is a witness for the compositeness of 221
- Note that a primality testing algorithm does not necessarily reveal the factors of a composite number!
\checkmark Complexity
- The only non-trivial operations are raising to powers modn
- Hence if we use the algorithm of repeated squaring, running time is polynomial $\left(\mathrm{O}(\operatorname{logn})^{3}\right)$

Primality Testing

- Other randomized tests: [Solovay-Strassen '77], MillerRabin perfoms better though
- If Generalized Rieman hypothesis is true, Miller-Rabin can be turned into a deterministic algorithm
- [Agrawal, Kayal, Saxena 2002]: The first deterministic polynomial time primality test (it was an open problem for many years)
- First analysis $\mathrm{O}\left((\operatorname{logn})^{12}\right)$
- Later improved to $\mathrm{O}\left((\operatorname{logn})^{6}\right)$
- Still impractical to use
- Randomized tests still better in practice

Integer Factorization

■ One of the most important problems in Cryptography

- State of the art
\checkmark May 2005: factorization of RSA-200 (663 bits, 200 decimal digits)
\checkmark November 2005: factorization of RSA-640 (640 bits, 193 decimal digits), 5 months on 802.2 GHz processors
\checkmark Dec 2009: factorization of RSA-768 (768 bits, 232 decimal digits), took almost 2 years with hundreds of machines.
Research team: Kleinjung, Aoki, Franke, Lenstra, Thome, Gaudry, Kruppa, Montgomery, Bos, Osvik, te Riele, Timofeev, Zimmerman
\checkmark Up to now, 16 of the 54 challenge numbers have been factored
\checkmark For updates on the RSA factoring challenge (not active any more by the RSA labs) see

http://en.wikipedia.org/wiki/RSA numbers
 http://www.rsa.com/rsalabs/node.asp?id=2092

Integer Factorization

- Statement of the problem:
- Given an odd integer n , find one non-trivial factor of n
\checkmark We may assume that n is composite (e.g. by first running a primality test on n)
\checkmark An efficient algorithm should be polynomial in logn
- The most interesting case for public key cryptography is when $\mathrm{n}=\mathrm{pq}$ for primes p, q of around the same size (512 bits)
- Definition: A composite number of the form $\mathrm{n}=\mathrm{pq}$, where p, q are primes, is called semi-prime
- Up to now we do not know if there exists a polynomial time algorithm for the problem

Integer Factorization

- Factoring algorithms

\checkmark Most naive approach: trial division

- Works in time O($\sqrt{ } n)$
\checkmark Many other approaches have been suggested
\checkmark Here we will only see the rho-heuristic by Pollard (1975)
\checkmark Let p be the smallest prime factor of n
\checkmark Idea:
\checkmark Suppose there exist $x_{i}, x_{j} \in Z_{n}$ such that $x_{i} \neq x_{j}$ but $x_{i} \equiv x_{j}$ modp
\checkmark Then $\operatorname{gcd}\left(x_{i}-x_{j}, n\right)$ is a non-trivial factor
\checkmark How can we find such x_{i}, x_{j} ?

Integer Factorization

\checkmark We will try to choose a subset $X \subseteq Z_{n}$ and then compute $\operatorname{gcd}\left(x_{i}-x_{j}, n\right)$ for every pair $x_{i}, x_{j} \in X$ (X should not be too large) \checkmark POLLARD-RHO actually helps in reducing the number of required gcd computations
\checkmark Let $f(x)=x^{2}+\alpha$ (usually $a=-1$ or +1)
\checkmark Consider the transformation $x \rightarrow f(x)$ modn
\checkmark Suppose x_{1} is a random element of Z_{n} and consider the sequence $X=\left\{x_{1}, x_{2}, x_{3}, x_{4} \ldots\right\}$ defined by $x_{j}=f\left(x_{j-1}\right)$ modn
\checkmark Since we are in Z_{n}, this is a finite sequence, beyond some point it repeats itself, i.e., $\exists i, j$ such that $x_{i} \equiv x_{j}$ modn, $x_{i+1} \equiv x_{j+1}$ modn,...
\checkmark By birthday paradox X has about $\sqrt{ } n$ elements if f is a random enough function

Integer Factorization

- Consider the graph G with vertices the values x_{i} modn and edges the consecutive pairs in the sequence
- The graph has a tail and a circle (forms a rho)

$$
\checkmark x_{i} \operatorname{modn}->x_{i+1} \operatorname{modn}, \rightarrow \ldots \ldots x_{j} \operatorname{modn} \equiv x_{i} \operatorname{modn}
$$

■ Basic idea of POLLARD-RHO(n) is to find a collision, i.e., a pair x_{i}, x_{j} such that $x_{i} \neq x_{j}$ but $x_{i} \equiv x_{j}$ modp

\checkmark Since we do not know p we may need to check all possible pairs, $\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}$
\checkmark We will end up checking pairs inside the cycle \checkmark Hence we would need to check if

$$
1<\operatorname{gcd}\left(x_{i}-x_{j}, n\right)<n
$$

Pollard's heuristic

```
\(\checkmark\) POLLARD-RHO (n)
    \(1 \quad i \leftarrow 1\)
    \(\mathrm{x}_{1} \leftarrow \operatorname{RANDOM}(0, \mathrm{n}-1)\)
    \(\mathrm{Y} \leftarrow \mathrm{X}_{1}\)
    \(\mathrm{k} \leftarrow 2\)
    while TRUE do
    \(i \leftarrow i+1\)
    \(x_{i}=\left(x_{i-1}^{2}-1\right) \bmod n\)
    \(d \leftarrow \operatorname{gcd}\left(y-x_{i}, n\right)\)
    if \(d \neq 1\) and \(d \neq n\)
        then print \(d\)
    if \(i=k\)
    then \(y \leftarrow x_{i} / / y\) takes only the values \(x_{1}, x_{2}, x_{4}, x_{8} \ldots\)
\(\mathrm{k} \leftarrow 2 \mathrm{k}\)
```


Integer factorization

Analysis

- Note that the algorithm never prints a wrong answer
- But it may keep on going without ever printing something
- The variable y takes only the values $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{4}, \mathrm{x}_{8}, \ldots$
- The gcd computations that we perform are
$\checkmark \operatorname{gcd}\left(x_{1}-x_{2}, n\right)\left(\right.$ when $\left.y=x_{1}\right)$
$\checkmark \operatorname{gcd}\left(x_{2}-x_{3}, n\right), \operatorname{gcd}\left(x_{2}-x_{4}, n\right)\left(\right.$ when $\left.y=x_{2}\right)$
$\checkmark \operatorname{gcd}\left(x_{4}-x_{5}, n\right), \operatorname{gcd}\left(x_{4}-x_{6}, n\right), \operatorname{gcd}\left(x_{4}-x_{7}, n\right), \operatorname{gcd}\left(x_{4}-x_{8}, n\right)$ (when $y=x_{4}$)
- If we wait long enough, y will enter the cycle
\checkmark Birthday paradox cannot really be formally applied to estimate this but it is a good approximation to think that f behaves like a random function

Analysis

\checkmark As soon as we find x_{i} such that $x_{i}=x_{j}$ for some $j<i$, we are inside the cycle modn, since $x_{i+1}=x_{j+1}, x_{i+2}=x_{j+2}$, KOK

- Example: $\mathrm{n}=1387$
- $x_{i+1}=\left(x_{i}^{2}-1\right) \bmod 1387$, with $x_{1}=2$.
- Factoring: $1387=19 \cdot 73$.
- Let p be a non-trivial factor of n
- We need to identify numbers $x_{i} \neq x_{j}$ such that $\mathrm{x}_{\mathrm{i}} \equiv \mathrm{x}_{\mathrm{j}} \operatorname{modp}$
- Idea: as the algorithm keeps running we hope to run into a setting for y such that
- $y \neq x_{i}$ modn but
- $y \equiv x_{i} \bmod p$

Analysis

\checkmark Consider the sequence $x_{i}{ }^{\prime}=x_{i} \operatorname{modp}$ (remember we do not know p yet)
$\checkmark x_{i+1}^{\prime}=x_{i+1} \operatorname{modp}=\left(f\left(x_{i}\right) \operatorname{modn}\right) \operatorname{modp}=f\left(x_{i}\right) \operatorname{modp}=\left(\left(x_{i}^{\prime}\right)^{2}-1\right) \operatorname{modp}$

Picture (c) The cycle mod 73. Every value x_{i} from (a) is equivalent mod 73 , with $x^{\prime \prime}{ }_{i}$ from (c).

Integer Factorization

Analysis

\checkmark Observation: once y is in the cycle modp and k is large enough, then the algorithm makes an entire loop around the cycle modp
\checkmark Hence we will check y with all other x_{i} values of the cycle modp.
\checkmark For one of them it will hold that $y \equiv x_{i} \operatorname{modp} \Rightarrow 1<\operatorname{gcd}\left(y-x_{i}, n\right)$

Example:
$n=1387=19 \cdot 73$
\checkmark The algorithm will first discover the factor 19, when we reach the point $x_{7}=177$ (it has done a loop modp)
\checkmark At that point $\mathrm{y}=\mathrm{x}_{4}=63$
\checkmark The algorithm will compute $\operatorname{gcd}(63-177,1387)=19$
(b)

Integer Factorization

- Properties of POLLARD-RHO

\checkmark It never prints a wrong factor
\checkmark Every integer that gets printed is a non-trivial divisor of n.
\checkmark But there is no guarantee that it will print something
\checkmark The running time depends on various aspects

- The behavior of the function $f(x)$ modn
- The random choice we make in the beginning
- It is also possible that if $n=p q$, we may keep discovering pairs x_{i}, x_{i} such that $x_{i} \equiv x_{i}$ modp and also $x_{i} \equiv x_{j}$ modq. In that case $\operatorname{gcd}\left(x_{i}-x_{j}, n\right)=\operatorname{gcd}(0, n)=n$, and no nontrivial factor is found.
\checkmark The last issue is not really a big issue in practice
\checkmark In practice Pollard's rho method behaves quite well (but not so well as to break RSA within a reasonable amount of time)
\checkmark By the birthday paradox, if p is a factor of n, the cycle modp will be of length roughly $\mathrm{O}(\sqrt{ } \mathrm{p})$
\checkmark Since any composite number has a factor of size at most $\sqrt{ } \mathrm{n}$, it follows that on average, we expect POLLARD-RHO to produce a factor after around $\mathrm{O}\left(\mathrm{n}^{1 / 4}\right)$ repetitions
\checkmark Exponential of course since $\mathrm{n}^{1 / 4}=2^{\text {logn/4 }}$, but much better than trial division

Integer Factorization

- Other algorithms

\checkmark Pollard's p-1 method
\checkmark Dixon's algorithm and quadratic sieve methods
\checkmark Methods based on elliptic curves
\checkmark The number field sieve: the currently best theoretical worst case guarantee. It runs in time

$$
e^{\left((1.92+o(1))(\ln n)^{1 / 3}(\ln \ln n)^{2 / 3}\right)}
$$

\checkmark With quantum computers, factoring can be done in polynomial time using Shor's algorithm [Shor '99]

- But we are still far away from building quantum computers

