
Κρυπτογραφία και Εφαρµογές, ΠΜΣ, Ο.Π.Α.              

Οικονομικό Πανεπιστήμιο Αθηνών  
Τμήμα Πληροφορικής 

ΠΜΣ στα Πληροφοριακά Συστήματα 
 
 

Κρυπτογραφία και Εφαρμογές  

 

Μαριάς Ιωάννης                   Μαρκάκης Ευάγγελος 

  marias@aueb.gr                       markakis@gmail.com    

 



Κρυπτογραφία και Εφαρµογές, ΠΜΣ, Ο.Π.Α.              

Summary 

 Primality Testing 
 Density of primes 
 Eratosthenes’ sieve 
 Trial division 
 Fermat test 
 Miller-Rabin test 
 Other algorithms: Solovay-strassen, deterministic 

algorithms 

 Integer Factorization  
 Pollard’s rho method  
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Primality Testing 

In public key cryptography we often need to 
solve the following problem: 
  Pick a prime number p within a certain 

range, e.g. a prime with up to 512 bits 

1.  How many numbers do we need to try till 
we find a prime? 

2.  Given a number how do we test that it is a 
prime? 
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Primality Testing 

  Density of primes 
  Prime numbers are not sparse.  
  Chebyshev’s theorem (1850): there is always a prime 

between n and 2n 
  Density function π(n) = the number of primes between 2 and n 

  e.g. π(10) = 4  2,3,5,7 

  Prime number theorem (1896): The density function π(n) 
satisfies: 

     limn∞ (π(n) / (n / lnn)) =1, or esle π(n) ≈ n / lnn for large 
enough n 

  Example 
  n = 109 
  π(n) = 50,847,534  
  n/ ln n ≈ 48,254,942 
  Deviation 6% 
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Primality Testing 

  Density of primes 
  By the prime number theorem: 

  Prob(randomly chosen integer between 1 and n is prime) = 1/ ln n 

  Hence if we examine about ln n randomly chosen integers between 
1 and n, one of them will be prime with high probability  

  To find a 512-bit prime we can check about ln2512 ≈ 355 randomly 
chosen integers of 512-bits  

  BUT: once we choose a number, how do we really check that this is 
a prime number? 
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Primality Testing 

  The sieve of Eratosthenes (3rd century B.C.) 
  A method to identify all primes up to a given number n 
  The algorithm: 
  Input: An integer n ≥ 2 
  Output: find all primes < n   
  Idea: Consider a boolean array a of size n representing 

if a number is prime or not 
  Initially all entries are true 

  Gradually non-primes will become false 
  Starting from number 2 and going up to n-1 

  If  a[x]=false go to next element 
  Else x is prime and set all its multiples (that are < N) to false 
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Primality Testing 

  The sieve of Eratosthenes (3rd century B.C.) 
for (int i = 2; i < N; i++)  

    a[i] = true;  
for (int i = 2; i < N; i++)  

    if (a[i])   

        for (int j = i; j*i < N; j++)  

          a[i*j] = false;//multiples of i 

                         //are not prime numbers 

1.  Why don’t we do anything when a[i]= false? 

By Euclid’s theorem, every number can be written as a product of prime 
numbers. It suffices to filter out only the multiples of prime numbers. 

2.    Why does the loop begin from i2 ? 

If x<i2 =i*i, and x is not a prime, then x has some prime factor <i-1. Hence a[x] 
became false in some previous iteration  
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Primality Testing 

  From now on we focus on testing whether a 
particular number n is prime 

  We may assume n is odd 

  Trial division 
  Try to see if any of the numbers 2, 3, 4,…,n-1 divides n 
  Actually it suffices to try only with the numbers 2, 3, ..., ⎣√n⎦ 

  If n is composite it has a factor, which is at most √n 

  In fact, since n is odd, we can also remove the even numbers 

  Worst case complexity: √n/2, hence O(√n) 
  Exponential since √n = 2logn/2 

  Effective only for small values of n 

  For RSA, n is 512 bits long or even longer 
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Primality Testing 

  Pseudo prime numbers 
  Recall Fermat’s little theorem: 

  If n is prime then an-1 ≡ 1 (modn) for every a∈{1,…,n-1} 

  For a given a∈{1,…,n-1}, a number n is a base-a 
pseudoprime if n is composite and : 

an-1 ≡ 1 (modn)    (*) 
  Hence if we find a number a for which this does not 

hold, certainly n is composite 

  If we picked an a for which (*) holds , we hope n is 
prime, i.e., we hope there cannot be too many 
composites that can satisfy (*) 
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Primality Testing 

  Fermat Test 
  Algorithm PSEUDOPRIME(n) //n is an odd integer 

  Pick a positive integer 1≤a<n at random 

  if   an-1  ≡ 1 (mod n) then return PRIME  // pass test 

           else return COMPOSITE   

  Computing an-1 (modn) should be done with the algorithm for modular 
exponentiation 

  One can run the algorithm for some fixed a, e.g., a=2 
  The algorithm can make errors but only of one kind: 

  If it says that n is composite, then it is correct 
  If it says that n is prime then it is wrong only in the case that n is a 

base-a pseudoprime 
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Primality Testing  
 

  How often is the algorithm wrong?  
  Rarely.  
  For a=2: there are only 22 values of n in [1, 10,000] for which the 

algorithm fails. The first 4 are 341, 561, 645, και 1105.  
  341=11*31  and      2340  ≡  1(mod341) 

  Estimates for base-2 pseudoprimes 
  For a 512-bit randomly chosen number that the algorithm thinks it 

is prime, the probability that the number is a base-2 pseudoprime 
is roughly 1/1020  

  For a 1024-bit randomly chosen number that the algorithm thinks it 
is prime, the probability that the number is a base-2 pseudoprime 
is roughly 1/1041  
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Primality Testing  
 

  Carmichael numbers 
  Actually due to Korselt 
  They are the composite numbers that pass the test for all a’s 
  Alternative definition: A number n is a Carmichael number if it is 

not divisible by the square of a prime (square-free) and for all 
prime divisors p of n, it is true that p−1 | n−1 

  They are extremely rare (561, 1105, 1729, 2465,…) 
  561 = 3⋅11⋅17 
  There are only 255 of them less than 108 

  There are 20,138,200 Carmichael numbers between 1 and 1021 
(approximately one in 50 billion numbers) 
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Primality Testing 

  Theorem: if a number n fails the Fermat test for some 
value of a then n also fails for at least half of the choices 
of a<n 

  If we ignore Carmichael numbers for now then: 
  Pr[PSEUDOPRIME(n) returns PRIME, when n is 

COMPOSITE] ≤ 1/2 

  If we repeat the algorithm k times by choosing k different 
values for a, say  α1, α2,…,αk, then 

  Pr[PSEUDOPRIME(n) returns PRIME, when n is 
COMPOSITE] ≤ 1/2k 

13 



Κρυπτογραφία και Εφαρµογές, ΠΜΣ, Ο.Π.Α.              

Primality Testing 

  Miller-Rabin randomized primality test 
  It modifies and improves PSEUDOPRIME(n) 

  It is also based on Fermat’s little theorem 

  Definition: A number x∈Zn is a square root of y modn if x2 ≡ y modn 

  Lemma: If n is prime, the only square roots of 1 modn are +1, -1 modn  

  If n is an odd number, write n-1 in the form n-1 = 2km, for some k 

  Then by Fermat’s theorem, if n is prime, a(n-1)/2 is a square root of 1 
modn (and hence it is either +1 or -1 modn) 

  The algorithm is based on the fact that if we keep taking square roots 
and n is prime,  

  Either we hit a -1 modn at some point 

  or we will keep seeing 1 modn till the end (am = 1 modn)  
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Primality Testing  

  Miller-Rabin randomized primality test 
  MILLER-RABIN(n) 

1  Suppose n-1 = 2km, where k ≥ 1 and m is odd 

2  Choose a random integer a with 1≤a≤n-1  

3  Compute b = am modn /*by the algorithm MODULAR-
EXPONENTIATION that we saw in previous lectures*/ 

4  if b ≡ 1 modn then return PRIME 

5  for i=0 to k-1 do  

6     if b ≡ -1 modn return PRIME 

7     else 
8        b = b2 modn 

9  return COMPOSITE 
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Primality Testing  

  Analysis 
  Part (a): We first show that when the algorithm says 

COMPOSITE, it is correct 

  Suppose for the sake of contradiction that n is a prime number 
and the program answers COMPOSITE 

  Then for every i with 0≤ i ≤ k-1, we have that   

  Since n is prime we also have that 

  This means that              is a square root of 1 modn 

na mi mod12 !"

na mk mod12 =

mk

a
12 !
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Primality Testing  

  Analysis 
  By our assumptions it follows that 

  But then              is also a square root of 1 modn 

  Continuing by using the same argument we eventually conclude 
that am = 1 modn, a contradiction since then the algorithm 
would have answered PRIME 

  Part (b): When the program answers PRIME, there is a chance 
that n is composite. 

  It has been shown that the error chance is at most ¼ 
  Hence by choosing multiple random numbers a1, a2,…,as and 

repeating the process the error rate falls down to 1/4s  

na mk

mod1
12 =
!

mk

a
22 !
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Primality Testing  

  Example  
  Let n = 221, n-1= 22 ·55  (k=2, m=55) 

  Let a = 137  
  a55 mod 221 = 188 ≠ 1mod 221 

  a110 mod 221 = 205 ≠ -1 mod 221  

  Hence the base a=137 is a witness for the compositeness of 221 
  Note that a primality testing algorithm does not necessarily reveal 

the factors of a composite number! 

  Complexity 
  The only non-trivial operations are raising to powers modn 
  Hence if we use the algorithm of repeated squaring, running time 

is polynomial (O(logn)3) 
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Primality Testing 

   Other randomized tests: [Solovay-Strassen ’77], Miller-
Rabin perfoms better though 

   If Generalized Rieman hypothesis is true, Miller-Rabin 
can be turned into a deterministic algorithm 

   [Agrawal, Kayal, Saxena 2002]: The first deterministic 
polynomial time primality test (it was an open problem for 
many years) 

   First analysis O((logn)12) 
   Later improved to O((logn)6) 
   Still impractical to use 
   Randomized tests still better in practice 
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Integer Factorization 

 One of the most important problems in Cryptography 
 State of the art 

 May 2005: factorization of RSA-200 (663 bits, 200 decimal digits) 
 November 2005: factorization of RSA-640 (640 bits, 193 decimal 

digits), 5 months on 80 2.2GHz processors 
 Dec 2009: factorization of RSA-768 (768 bits, 232 decimal digits), took 

almost 2 years with hundreds of machines.       
Research team: Kleinjung, Aoki, Franke, Lenstra, Thome, Gaudry, 
Kruppa, Montgomery, Bos, Osvik, te Riele, Timofeev, Zimmerman 

 Up to now, 16 of the 54 challenge numbers have been factored 
  For updates on the RSA factoring challenge (not active any more by 

the RSA labs) see 

     http://en.wikipedia.org/wiki/RSA_numbers  
  http://www.rsa.com/rsalabs/node.asp?id=2092  
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Integer Factorization 

  Statement of the problem: 
  Given an odd integer n, find one non-trivial factor of n 

  We may assume that n is composite (e.g. by first running a primality 
test on n) 

  An efficient algorithm should be polynomial in logn 

  The most interesting case for public key cryptography is 
when n = pq for primes p, q of around the same size (512 
bits) 

  Definition: A composite number of the form n = pq, where 
p, q are primes, is called semi-prime 

  Up to now we do not know if there exists a polynomial 
time algorithm for the problem 
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Integer Factorization 

  Factoring algorithms 
  Most naive approach: trial division 

  Works in time  O(√n) 

  Many other approaches have been suggested  

  Here we will only see the rho-heuristic by Pollard (1975) 

  Let p be the smallest prime factor of n 

  Idea:  

  Suppose there exist xi ,xj ∈ Ζn such that xi≠xj but xi≡xjmodp  

  Then gcd(xi-xj,n) is a non-trivial factor 

  How can we find such xi ,xj? 
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Integer Factorization 

   We will try to choose a subset X ⊆ Ζn and then compute 
gcd(xi-xj,n) for every pair xi,xj є X (X should not be too large)  

  POLLARD-RHO actually helps in reducing the number of 
required gcd computations 
  Let f(x)=x2+α (usually a = -1 or +1) 

  Consider the transformation  x f(x) modn 

  Suppose x1 is a random element of Ζn and consider the 
sequence X = {x1, x2, x3, x4 ...} defined by xj = f(xj-1)modn 
  Since we are in Ζn, this is a finite sequence, beyond some 
point it repeats itself, i.e., ∃i,j such that xi ≡ xj modn, xi+1 ≡ xj+1 
modn,… 
  By birthday paradox X has about √n elements if f is a 
random enough function  
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Integer Factorization 

  Consider the graph G with vertices the values xi modn and 
edges the consecutive pairs in the sequence 

  The graph has a tail and a circle (forms a rho) 
 xi modn -> xi+1 modn, -> … -> xj modn ≡ xi modn 

  Basic idea of POLLARD-RHO(n) is to find a collision, i.e., a 
pair xi , xj such that xi≠xj but xi ≡ xj modp  

    

     

x1 

x2 

xi-1 

xi=xj 

xi+1 

xj-1 

  Since we do not know p we may need to 
check all possible pairs, xi, xj 

  We will end up checking pairs inside the cycle 

  Hence we would need to check if  

                 1< gcd(xi -xj, n) < n  

 

xi+2 
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Integer Factorization 

  Pollard’s heuristic 
  POLLARD-RHO(n) 

 1  i ← 1 
 2  x1 ← RANDOM(0, n - 1)    
 3  y ← x1 
 4  k ← 2 
 5  while TRUE do   
 6       i ← i + 1 
 7       xi=(x2i-1-1)mod n   
 8       d ← gcd(y - xi, n) 
 9       if d ≠ 1 and d ≠ n 
10          then print d 
11       if i = k 
12          then y ← xi//y takes only the values x1, x2, x4, x8 … 
13               k ← 2k   
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Integer factorization 

Analysis 
  Note that the algorithm never prints a wrong answer 
  But it may keep on going without ever printing something 
  
   The variable y takes only the values x1, x2, x4, x8,… 
   The gcd computations that we perform are 

   gcd(x1 - x2, n) (when y = x1) 
   gcd(x2 - x3, n), gcd(x2 - x4, n) (when y = x2)  
   gcd(x4 - x5, n), gcd(x4 - x6, n), gcd(x4 - x7, n), gcd(x4 - x8, n) 

(when y = x4) 
   … 

   If we wait long enough, y will enter the cycle 
  Birthday paradox cannot really be formally applied to estimate this but it is a 

good approximation to think that f behaves like a random function  
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Integer Factorization 

Analysis 
  As soon as we find xi such that xi=xj for some j<i, we are inside the 

cycle modn, since xi+1=xj+1, xi+2=xj+2, κοκ 

   Example: n = 1387 
  xi+1=(x2

i-1)mod1387, with x1=2.  
  Factoring: 1387 =19 · 73.  

  Let p be a non-trivial factor of n 

  We need to identify numbers xi ≠ xj such 
that xi ≡ xj modp 

  Idea: as the algorithm keeps running we 
hope to run into a setting for y such that 

  y ≠ xi modn but  

  y ≡ xi modp 
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Integer Factorization 

Analysis 
  Consider the sequence xi’ = xi modp (remember we do not know p yet) 

  x’i+1 = xi+1 modp = (f(xi) modn) modp = f(xi) modp = ((xi’)2 – 1) modp 

Picture (b) The cycle mod 19. Every 
value xi from (a) is equivalent mod 
19 with x’i from (b). 
e.g. x4 = 63 και x7 = 177 are both 
equivalent to 6 mod 19.  

Picture (c) The cycle mod 73. Every 
value xi from (a) is equivalent mod 
73, with x’’i from (c). 

   The sequence {xi’} also repeats itself 

   The circle modp is typically much smaller than 
modn (about √p) 

 

28 



Κρυπτογραφία και Εφαρµογές, ΠΜΣ, Ο.Π.Α.              

Integer Factorization 
Analysis 

  Observation: once y is in the cycle modp and k is large enough, then the algorithm 
makes an entire loop around the cycle modp  

  Hence we will check y with all other xi values of the cycle modp.  
  For one of them it will hold that y ≡ xi modp ⇒ 1 < gcd(y-xi, n) 

Example: 

n = 1387 = 19 · 73  

  The algorithm will first 
discover the factor 19, when 
we reach the point x7 = 177 
(it has done a loop modp)  

  At that point y = x4 = 63 

   The algorithm will compute 
gcd(63 - 177, 1387) = 19  
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Integer Factorization 

  Properties of POLLARD-RHO 
  It never prints a wrong factor 
  Every integer that gets printed is a non-trivial divisor of n.  
  But there is no guarantee that it will print something 
  The running time depends on various aspects 

  The behavior of the function f(x) modn 
  The random choice we make in the beginning 
  It is also possible that if n=pq, we may keep discovering pairs xi, xj such that xi ≡ xj 

modp and also xi ≡ xj modq. In that case gcd(xi – xj, n) = gcd(0, n) = n, and no non-
trivial factor is found. 

  The last issue is not really a big issue in practice 
  In practice Pollard’s rho method behaves quite well (but not so well as to 

break RSA within a reasonable amount of time) 
  By the birthday paradox, if p is a factor of n, the cycle modp will be of length 

roughly O(√p)  
  Since any composite number has a factor of size at most √n, it follows that on 

average, we expect POLLARD-RHO to produce a factor after around O(n1/4) 
repetitions 

  Exponential of course since n1/4  = 2logn/4, but much better than trial division  
30 
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Integer Factorization 

  Other algorithms 
  Pollard’s p-1 method 

  Dixon’s algorithm and quadratic sieve methods 

  Methods based on elliptic curves 

  The number field sieve: the currently best theoretical 
worst case guarantee. It runs in time 

  With quantum computers, factoring can be done in 
polynomial time using Shor’s algorithm [Shor ’99] 
  But we are still far away from building quantum computers 

( ) ( )( )3/23/1 lnlnln))1(92.1( nnoe +
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