
Κρυπτογραφία και Εφαρµογές, ΠΜΣ, Ο.Π.Α.

Οικονομικό Πανεπιστήμιο Αθηνών
Τμήμα Πληροφορικής

ΠΜΣ στα Πληροφοριακά Συστήματα

Κρυπτογραφία και Εφαρμογές

Μαριάς Ιωάννης Μαρκάκης Ευάγγελος

 marias@aueb.gr markakis@gmail.com

Κρυπτογραφία και Εφαρµογές, ΠΜΣ, Ο.Π.Α.

Summary

 Primality Testing
 Density of primes
 Eratosthenes’ sieve
 Trial division
 Fermat test
 Miller-Rabin test
 Other algorithms: Solovay-strassen, deterministic

algorithms

 Integer Factorization
 Pollard’s rho method

2

Κρυπτογραφία και Εφαρµογές, ΠΜΣ, Ο.Π.Α.

Primality Testing

In public key cryptography we often need to
solve the following problem:
  Pick a prime number p within a certain

range, e.g. a prime with up to 512 bits

1.  How many numbers do we need to try till
we find a prime?

2.  Given a number how do we test that it is a
prime?

3

Κρυπτογραφία και Εφαρµογές, ΠΜΣ, Ο.Π.Α.

Primality Testing

  Density of primes
  Prime numbers are not sparse.
  Chebyshev’s theorem (1850): there is always a prime

between n and 2n
  Density function π(n) = the number of primes between 2 and n

  e.g. π(10) = 4 2,3,5,7

  Prime number theorem (1896): The density function π(n)
satisfies:

 limn∞ (π(n) / (n / lnn)) =1, or esle π(n) ≈ n / lnn for large
enough n

  Example
  n = 109
  π(n) = 50,847,534
  n/ ln n ≈ 48,254,942
  Deviation 6%

4

Κρυπτογραφία και Εφαρµογές, ΠΜΣ, Ο.Π.Α.

Primality Testing

  Density of primes
  By the prime number theorem:

  Prob(randomly chosen integer between 1 and n is prime) = 1/ ln n

  Hence if we examine about ln n randomly chosen integers between
1 and n, one of them will be prime with high probability

  To find a 512-bit prime we can check about ln2512 ≈ 355 randomly
chosen integers of 512-bits

  BUT: once we choose a number, how do we really check that this is
a prime number?

5

Κρυπτογραφία και Εφαρµογές, ΠΜΣ, Ο.Π.Α.

Primality Testing

  The sieve of Eratosthenes (3rd century B.C.)
  A method to identify all primes up to a given number n
  The algorithm:
  Input: An integer n ≥ 2
  Output: find all primes < n
  Idea: Consider a boolean array a of size n representing

if a number is prime or not
  Initially all entries are true

  Gradually non-primes will become false
  Starting from number 2 and going up to n-1

  If a[x]=false go to next element
  Else x is prime and set all its multiples (that are < N) to false

6

Κρυπτογραφία και Εφαρµογές, ΠΜΣ, Ο.Π.Α.

Primality Testing

  The sieve of Eratosthenes (3rd century B.C.)
for (int i = 2; i < N; i++)

 a[i] = true;
for (int i = 2; i < N; i++)

 if (a[i])

 for (int j = i; j*i < N; j++)

 a[i*j] = false;//multiples of i

 //are not prime numbers

1.  Why don’t we do anything when a[i]= false?

By Euclid’s theorem, every number can be written as a product of prime
numbers. It suffices to filter out only the multiples of prime numbers.

2. Why does the loop begin from i2 ?

If x<i2 =i*i, and x is not a prime, then x has some prime factor <i-1. Hence a[x]
became false in some previous iteration

7

Κρυπτογραφία και Εφαρµογές, ΠΜΣ, Ο.Π.Α.

Primality Testing

  From now on we focus on testing whether a
particular number n is prime

  We may assume n is odd

  Trial division
  Try to see if any of the numbers 2, 3, 4,…,n-1 divides n
  Actually it suffices to try only with the numbers 2, 3, ..., ⎣√n⎦

  If n is composite it has a factor, which is at most √n

  In fact, since n is odd, we can also remove the even numbers

  Worst case complexity: √n/2, hence O(√n)
  Exponential since √n = 2logn/2

  Effective only for small values of n

  For RSA, n is 512 bits long or even longer

8

Κρυπτογραφία και Εφαρµογές, ΠΜΣ, Ο.Π.Α.

Primality Testing

  Pseudo prime numbers
  Recall Fermat’s little theorem:

  If n is prime then an-1 ≡ 1 (modn) for every a∈{1,…,n-1}

  For a given a∈{1,…,n-1}, a number n is a base-a
pseudoprime if n is composite and :

an-1 ≡ 1 (modn) (*)
  Hence if we find a number a for which this does not

hold, certainly n is composite

  If we picked an a for which (*) holds , we hope n is
prime, i.e., we hope there cannot be too many
composites that can satisfy (*)

9

Κρυπτογραφία και Εφαρµογές, ΠΜΣ, Ο.Π.Α.

Primality Testing

  Fermat Test
  Algorithm PSEUDOPRIME(n) //n is an odd integer

  Pick a positive integer 1≤a<n at random

  if an-1 ≡ 1 (mod n) then return PRIME // pass test

  else return COMPOSITE

  Computing an-1 (modn) should be done with the algorithm for modular
exponentiation

  One can run the algorithm for some fixed a, e.g., a=2
  The algorithm can make errors but only of one kind:

  If it says that n is composite, then it is correct
  If it says that n is prime then it is wrong only in the case that n is a

base-a pseudoprime

10

Κρυπτογραφία και Εφαρµογές, ΠΜΣ, Ο.Π.Α.

Primality Testing

  How often is the algorithm wrong?
  Rarely.
  For a=2: there are only 22 values of n in [1, 10,000] for which the

algorithm fails. The first 4 are 341, 561, 645, και 1105.
  341=11*31 and 2340 ≡ 1(mod341)

  Estimates for base-2 pseudoprimes
  For a 512-bit randomly chosen number that the algorithm thinks it

is prime, the probability that the number is a base-2 pseudoprime
is roughly 1/1020

  For a 1024-bit randomly chosen number that the algorithm thinks it
is prime, the probability that the number is a base-2 pseudoprime
is roughly 1/1041

11

Κρυπτογραφία και Εφαρµογές, ΠΜΣ, Ο.Π.Α.

Primality Testing

  Carmichael numbers
  Actually due to Korselt
  They are the composite numbers that pass the test for all a’s
  Alternative definition: A number n is a Carmichael number if it is

not divisible by the square of a prime (square-free) and for all
prime divisors p of n, it is true that p−1 | n−1

  They are extremely rare (561, 1105, 1729, 2465,…)
  561 = 3⋅11⋅17
  There are only 255 of them less than 108

  There are 20,138,200 Carmichael numbers between 1 and 1021
(approximately one in 50 billion numbers)

12

Κρυπτογραφία και Εφαρµογές, ΠΜΣ, Ο.Π.Α.

Primality Testing

  Theorem: if a number n fails the Fermat test for some
value of a then n also fails for at least half of the choices
of a<n

  If we ignore Carmichael numbers for now then:
  Pr[PSEUDOPRIME(n) returns PRIME, when n is

COMPOSITE] ≤ 1/2

  If we repeat the algorithm k times by choosing k different
values for a, say α1, α2,…,αk, then

  Pr[PSEUDOPRIME(n) returns PRIME, when n is
COMPOSITE] ≤ 1/2k

13

Κρυπτογραφία και Εφαρµογές, ΠΜΣ, Ο.Π.Α.

Primality Testing

  Miller-Rabin randomized primality test
  It modifies and improves PSEUDOPRIME(n)

  It is also based on Fermat’s little theorem

  Definition: A number x∈Zn is a square root of y modn if x2 ≡ y modn

  Lemma: If n is prime, the only square roots of 1 modn are +1, -1 modn

  If n is an odd number, write n-1 in the form n-1 = 2km, for some k

  Then by Fermat’s theorem, if n is prime, a(n-1)/2 is a square root of 1
modn (and hence it is either +1 or -1 modn)

  The algorithm is based on the fact that if we keep taking square roots
and n is prime,

  Either we hit a -1 modn at some point

  or we will keep seeing 1 modn till the end (am = 1 modn)

14

Κρυπτογραφία και Εφαρµογές, ΠΜΣ, Ο.Π.Α.

Primality Testing

  Miller-Rabin randomized primality test
  MILLER-RABIN(n)

1 Suppose n-1 = 2km, where k ≥ 1 and m is odd

2 Choose a random integer a with 1≤a≤n-1

3 Compute b = am modn /*by the algorithm MODULAR-
EXPONENTIATION that we saw in previous lectures*/

4 if b ≡ 1 modn then return PRIME

5 for i=0 to k-1 do

6 if b ≡ -1 modn return PRIME

7 else
8 b = b2 modn

9 return COMPOSITE

15

Κρυπτογραφία και Εφαρµογές, ΠΜΣ, Ο.Π.Α.

Primality Testing

  Analysis
  Part (a): We first show that when the algorithm says

COMPOSITE, it is correct

  Suppose for the sake of contradiction that n is a prime number
and the program answers COMPOSITE

  Then for every i with 0≤ i ≤ k-1, we have that

  Since n is prime we also have that

  This means that is a square root of 1 modn

na mi mod12 !"

na mk mod12 =

mk

a
12 !

16

Κρυπτογραφία και Εφαρµογές, ΠΜΣ, Ο.Π.Α.

Primality Testing

  Analysis
  By our assumptions it follows that

  But then is also a square root of 1 modn

  Continuing by using the same argument we eventually conclude
that am = 1 modn, a contradiction since then the algorithm
would have answered PRIME

  Part (b): When the program answers PRIME, there is a chance
that n is composite.

  It has been shown that the error chance is at most ¼
  Hence by choosing multiple random numbers a1, a2,…,as and

repeating the process the error rate falls down to 1/4s

na mk

mod1
12 =
!

mk

a
22 !

17

Κρυπτογραφία και Εφαρµογές, ΠΜΣ, Ο.Π.Α.

Primality Testing

  Example
  Let n = 221, n-1= 22 ·55 (k=2, m=55)

  Let a = 137
  a55 mod 221 = 188 ≠ 1mod 221

  a110 mod 221 = 205 ≠ -1 mod 221

  Hence the base a=137 is a witness for the compositeness of 221
  Note that a primality testing algorithm does not necessarily reveal

the factors of a composite number!

  Complexity
  The only non-trivial operations are raising to powers modn
  Hence if we use the algorithm of repeated squaring, running time

is polynomial (O(logn)3)

18

Κρυπτογραφία και Εφαρµογές, ΠΜΣ, Ο.Π.Α.

Primality Testing

  Other randomized tests: [Solovay-Strassen ’77], Miller-
Rabin perfoms better though

  If Generalized Rieman hypothesis is true, Miller-Rabin
can be turned into a deterministic algorithm

  [Agrawal, Kayal, Saxena 2002]: The first deterministic
polynomial time primality test (it was an open problem for
many years)

  First analysis O((logn)12)
  Later improved to O((logn)6)
  Still impractical to use
  Randomized tests still better in practice

19

Κρυπτογραφία και Εφαρµογές, ΠΜΣ, Ο.Π.Α.

Integer Factorization

 One of the most important problems in Cryptography
 State of the art

 May 2005: factorization of RSA-200 (663 bits, 200 decimal digits)
 November 2005: factorization of RSA-640 (640 bits, 193 decimal

digits), 5 months on 80 2.2GHz processors
 Dec 2009: factorization of RSA-768 (768 bits, 232 decimal digits), took

almost 2 years with hundreds of machines.
Research team: Kleinjung, Aoki, Franke, Lenstra, Thome, Gaudry,
Kruppa, Montgomery, Bos, Osvik, te Riele, Timofeev, Zimmerman

 Up to now, 16 of the 54 challenge numbers have been factored
  For updates on the RSA factoring challenge (not active any more by

the RSA labs) see

 http://en.wikipedia.org/wiki/RSA_numbers
 http://www.rsa.com/rsalabs/node.asp?id=2092

20

Κρυπτογραφία και Εφαρµογές, ΠΜΣ, Ο.Π.Α.

Integer Factorization

  Statement of the problem:
  Given an odd integer n, find one non-trivial factor of n

  We may assume that n is composite (e.g. by first running a primality
test on n)

  An efficient algorithm should be polynomial in logn

  The most interesting case for public key cryptography is
when n = pq for primes p, q of around the same size (512
bits)

  Definition: A composite number of the form n = pq, where
p, q are primes, is called semi-prime

  Up to now we do not know if there exists a polynomial
time algorithm for the problem

21

Κρυπτογραφία και Εφαρµογές, ΠΜΣ, Ο.Π.Α.

Integer Factorization

  Factoring algorithms
  Most naive approach: trial division

  Works in time O(√n)

  Many other approaches have been suggested

  Here we will only see the rho-heuristic by Pollard (1975)

  Let p be the smallest prime factor of n

  Idea:

  Suppose there exist xi ,xj ∈ Ζn such that xi≠xj but xi≡xjmodp

  Then gcd(xi-xj,n) is a non-trivial factor

  How can we find such xi ,xj?

22

Κρυπτογραφία και Εφαρµογές, ΠΜΣ, Ο.Π.Α.

Integer Factorization

  We will try to choose a subset X ⊆ Ζn and then compute
gcd(xi-xj,n) for every pair xi,xj є X (X should not be too large)

  POLLARD-RHO actually helps in reducing the number of
required gcd computations
  Let f(x)=x2+α (usually a = -1 or +1)

  Consider the transformation x f(x) modn

  Suppose x1 is a random element of Ζn and consider the
sequence X = {x1, x2, x3, x4 ...} defined by xj = f(xj-1)modn
  Since we are in Ζn, this is a finite sequence, beyond some
point it repeats itself, i.e., ∃i,j such that xi ≡ xj modn, xi+1 ≡ xj+1
modn,…
  By birthday paradox X has about √n elements if f is a
random enough function

23

Κρυπτογραφία και Εφαρµογές, ΠΜΣ, Ο.Π.Α.

Integer Factorization

  Consider the graph G with vertices the values xi modn and
edges the consecutive pairs in the sequence

  The graph has a tail and a circle (forms a rho)
 xi modn -> xi+1 modn, -> … -> xj modn ≡ xi modn

  Basic idea of POLLARD-RHO(n) is to find a collision, i.e., a
pair xi , xj such that xi≠xj but xi ≡ xj modp

x1

x2

xi-1

xi=xj

xi+1

xj-1

  Since we do not know p we may need to
check all possible pairs, xi, xj

  We will end up checking pairs inside the cycle

  Hence we would need to check if

 1< gcd(xi -xj, n) < n

xi+2

24

Κρυπτογραφία και Εφαρµογές, ΠΜΣ, Ο.Π.Α.

Integer Factorization

  Pollard’s heuristic
  POLLARD-RHO(n)

 1 i ← 1
 2 x1 ← RANDOM(0, n - 1)
 3 y ← x1
 4 k ← 2
 5 while TRUE do
 6 i ← i + 1
 7 xi=(x2i-1-1)mod n
 8 d ← gcd(y - xi, n)
 9 if d ≠ 1 and d ≠ n
10 then print d
11 if i = k
12 then y ← xi//y takes only the values x1, x2, x4, x8 …
13 k ← 2k

25

Κρυπτογραφία και Εφαρµογές, ΠΜΣ, Ο.Π.Α.

Integer factorization

Analysis
  Note that the algorithm never prints a wrong answer
  But it may keep on going without ever printing something

  The variable y takes only the values x1, x2, x4, x8,…
  The gcd computations that we perform are

  gcd(x1 - x2, n) (when y = x1)
  gcd(x2 - x3, n), gcd(x2 - x4, n) (when y = x2)
  gcd(x4 - x5, n), gcd(x4 - x6, n), gcd(x4 - x7, n), gcd(x4 - x8, n)

(when y = x4)
  …

  If we wait long enough, y will enter the cycle
  Birthday paradox cannot really be formally applied to estimate this but it is a

good approximation to think that f behaves like a random function

26

Κρυπτογραφία και Εφαρµογές, ΠΜΣ, Ο.Π.Α.

Integer Factorization

Analysis
  As soon as we find xi such that xi=xj for some j<i, we are inside the

cycle modn, since xi+1=xj+1, xi+2=xj+2, κοκ

  Example: n = 1387
  xi+1=(x2

i-1)mod1387, with x1=2.
  Factoring: 1387 =19 · 73.

  Let p be a non-trivial factor of n

  We need to identify numbers xi ≠ xj such
that xi ≡ xj modp

  Idea: as the algorithm keeps running we
hope to run into a setting for y such that

  y ≠ xi modn but

  y ≡ xi modp

27

Κρυπτογραφία και Εφαρµογές, ΠΜΣ, Ο.Π.Α.

Integer Factorization

Analysis
  Consider the sequence xi’ = xi modp (remember we do not know p yet)

  x’i+1 = xi+1 modp = (f(xi) modn) modp = f(xi) modp = ((xi’)2 – 1) modp

Picture (b) The cycle mod 19. Every
value xi from (a) is equivalent mod
19 with x’i from (b).
e.g. x4 = 63 και x7 = 177 are both
equivalent to 6 mod 19.

Picture (c) The cycle mod 73. Every
value xi from (a) is equivalent mod
73, with x’’i from (c).

  The sequence {xi’} also repeats itself

  The circle modp is typically much smaller than
modn (about √p)

28

Κρυπτογραφία και Εφαρµογές, ΠΜΣ, Ο.Π.Α.

Integer Factorization
Analysis

  Observation: once y is in the cycle modp and k is large enough, then the algorithm
makes an entire loop around the cycle modp

  Hence we will check y with all other xi values of the cycle modp.
  For one of them it will hold that y ≡ xi modp ⇒ 1 < gcd(y-xi, n)

Example:

n = 1387 = 19 · 73

  The algorithm will first
discover the factor 19, when
we reach the point x7 = 177
(it has done a loop modp)

  At that point y = x4 = 63

  The algorithm will compute
gcd(63 - 177, 1387) = 19

29

Κρυπτογραφία και Εφαρµογές, ΠΜΣ, Ο.Π.Α.

Integer Factorization

  Properties of POLLARD-RHO
  It never prints a wrong factor
  Every integer that gets printed is a non-trivial divisor of n.
  But there is no guarantee that it will print something
  The running time depends on various aspects

  The behavior of the function f(x) modn
  The random choice we make in the beginning
  It is also possible that if n=pq, we may keep discovering pairs xi, xj such that xi ≡ xj

modp and also xi ≡ xj modq. In that case gcd(xi – xj, n) = gcd(0, n) = n, and no non-
trivial factor is found.

  The last issue is not really a big issue in practice
  In practice Pollard’s rho method behaves quite well (but not so well as to

break RSA within a reasonable amount of time)
  By the birthday paradox, if p is a factor of n, the cycle modp will be of length

roughly O(√p)
  Since any composite number has a factor of size at most √n, it follows that on

average, we expect POLLARD-RHO to produce a factor after around O(n1/4)
repetitions

  Exponential of course since n1/4 = 2logn/4, but much better than trial division
30

Κρυπτογραφία και Εφαρµογές, ΠΜΣ, Ο.Π.Α.

Integer Factorization

  Other algorithms
  Pollard’s p-1 method

  Dixon’s algorithm and quadratic sieve methods

  Methods based on elliptic curves

  The number field sieve: the currently best theoretical
worst case guarantee. It runs in time

  With quantum computers, factoring can be done in
polynomial time using Shor’s algorithm [Shor ’99]
  But we are still far away from building quantum computers

() ()()3/23/1 lnlnln))1(92.1(nnoe +

31

