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Abstract 

The software industry is one of the largest, wealthiest, and most important industries in the 
modern world.  The software industry is also troubled by very poor quality and very high cost 
structures due to the expense of software development, maintenance, and endemic problems with 
poor quality control. 

Accurate measurements of software development and maintenance costs and accurate 
measurement of quality would be extremely valuable.  But as of 2014 the software industry 
labors under a variety of non-standard and highly inaccurate measures compounded by very 
sloppy measurement practices.  For that matter, there is little empirical data about the efficacy of 
software standards themselves. 

The industry also lacks effective basic definitions for “software productivity” and “software 
quality” and uses a variety of ambiguous definitions that are difficult to predict before software 
is released and difficult to measure after the software is released.  This paper suggests definitions 
for both economic software productivity and software quality that are both predictable and 
measureable. 
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Introduction 

The software industry has become one of the largest and most successful industries in history.  
However software applications are among the most expensive and error-prone manufactured 
objects in history.   

Software needs a careful analysis of economic factors and much better quality control than is 
normally accomplished.  In order to achieve these goals, software also needs accurate and 
reliable metrics and good measurement practices.  Unfortunately the software industry lacks both 
circa 2014. 

This short paper deals with some of the most glaring problems of software metrics and suggests a 
metrics and measurement suite that can actually explore software economics and software 
quality with precision.  The suggested metrics can be predicted prior to development and then 
measured after release. 

Following are descriptions of the more troubling software metrics in alphabetical order: 

Backfiring is a term that refers to mathematical conversion between lines of code and function 
points.  This method was first developed by A.J. Albrecht and colleagues during the original 
creation of function point metrics, since the IBM team had LOC data for the projects they used 
for function points.  IBM used logical code statements for backfiring rather than physical LOC.  
There are no ISO standards for backfiring.  Backfiring is highly ambiguous and varies by over 
500% from language to language and company to company.  A sample of “backfiring” is the 
ratio of about 106.7 statements in the procedure and data divisions of COBOL for one IFPUG 
function point.  Consulting companies sell tables of backfire ratios for over 1000 languages, but 
the tables are not the same from vendor to vendor.  Backfiring is not endorsed by any of the 
function point associations.  Yet probably as many as 100,000 software projects have used 
backfiring because it is quick and inexpensive, even though very inaccurate with huge variances 
from language to language and programmer to programmer. 

Benchmarks in a software context often refer to the effort and costs for developing an 
application.  Benchmarks are expressed in a variety of metrics such as “work hours per function 
point,” “function points per month,” “lines of code per month,” “work hours per KLOC,” “story 
points per month,” and many more.  Benchmarks also vary in scope and range from project 
values, phase values, activity values, and task values.  There are no ISO standards for benchmark 
contents.  Worse, many benchmarks “leak” and omit over 50% of true software effort.  The 
popular benchmark of “design, code, and unit test” termed DCUT contains only about 30% of 
total software effort.  The most common omissions from benchmarks include unpaid overtime, 
management, and the work of part-time specialists such as technical writers and software quality 
assurance.  Thus benchmarks from various sources such as ISBSG, QSM, and others cannot be 
directly compared since they do not contain the same information. 
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Cost estimating for software projects is generally inaccurate and usually optimistic.  About 85% 
of projects circa 2014 use inaccurate manual estimates.  The other 15% use parametric 
estimating tools of which these are the most common estimating tools in 2014, shown in 
alphabetical order:  COCOMO, COCOMO clones, CostXpert, ExcelerPlan, KnowledgePlan, 
SEER, SLIM, Software Risk Master (SRM), and TruePrice.  A study by the author that 
compared 50 manual estimates against 50 parametric estimates found that only 4 of the 50 
manual estimates were within plus or minus 5% and the average was 34% optimistic for costs 
and 27% optimistic for schedules.  For manual estimates, the larger the project the more 
optimistic the results.  By contrast 32 of the 50 parametric estimates were within plus or minus 
5% and the deviations for the others averaged about 12% higher for costs and 6% longer for 
schedules.  Conservatism is the “fail safe” mode for estimates.  The author’s SRM tool has a 
patent-pending early sizing feature based on pattern matching that allows it to be used 30 to 180 
days earlier than the other parametric estimation tools.  It also predicts topics not included in the 
others such as litigation risks, costs of breach of contract litigation for the plaintiff and 
defendant, and document sizes and costs for 20 key document types such as requirements, 
design, user manuals, plans, and others.  The patent-pending early sizing feature of SRM 
produces size in a total of 23 metrics including function points, story points, use case points, 
logical code statements, physical lines of code, and many others. 

Cost per defect metrics penalize quality and makes the buggiest software look cheapest.  There 
are no ISO or other standards for calculating cost per defect.  Cost per defect does not measure 
the economic value of software quality.  The urban legend that it costs 100 times as much to fix 
post-release defects as early defects is not true and is based on ignoring fixed costs.  Due to fixed 
costs of writing and running test cases, cost per defect rises steadily because fewer and fewer 
defects are found.  This is caused by a standard rule of manufacturing economics:  “if a process 
has a high percentage of fixed costs and there is a reduction in the units produced, the cost per 
unit will go up.”  This explains why cost per defects seems to go up over time even though actual 
defect repair costs are flat and do not change very much.  There are of course very troubling 
defects that are expensive and time consuming, but these are comparatively rare.  Appendix A 
explains the problems of cost per defect metrics. 

Defect removal efficiency (DRE) was developed by IBM circa 1970.  The original IBM version 
of DRE measured internal defects found by developers and compared them to external defects 
found by clients in the first 90 days following release.  If developers found 90 bugs and clients 
reported 10 bugs, DRE is 90%.  This measure has been in continuous use by hundreds of 
companies since about 1975.  However there are no ISO standards for DRE.  The International 
Software Benchmark Standards Group (ISBSG) unilaterally changed the post-release interval to 
30 days in spite of the fact that the literature on DRE since the 1970’s was based on a 90 day 
time span, such as the author’s 1991 version of Applied Software Measurement and his more 
recent book on The Economics of Software Quality with Olivier Bonsignour.  Those with 
experience in defects and quality tracking can state with certainty that a 30 day time window is 
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too short; major applications sometimes need more than 30 days of preliminary installation and 
training before they are actually used.  Of course bugs will be found long after 90 days; but 
experience indicates that a 90-day interval is sufficient to judge the quality of software 
applications.  A 30 day interval is not sufficient. 

Defect density metrics measure the number of bugs released to clients.  There are no ISO or 
other standards for calculating defect density.  One method counts only code defects released.  A 
more complete method includes bugs originating in requirements and design as well as code 
defects, and also includes “bad fixes” or bugs in defect repairs themselves.  There is more than a 
300% variation between counting only code bugs and counting bugs from all sources. 

Function point metrics were invented by IBM circa 1975 and placed in the public domain circa 
1978.  Function point metrics do measure economic productivity using both “work hours per 
function point” and “function points per month”.  They also are useful for normalizing quality 
data such as “defects per function point”.  However there are numerous function point variations 
and they all produce different results:  Automatic, backfired, COSMIC, Fast, FISMA, IFPUG, 
Mark II, NESMA, Unadjusted, etc.  There are ISO standards for COSMIC, FISMA, IFPUG, and 
NESMA.  However in spite of ISO standards all four produce different counts.  Adherents of 
each function point variant claim “accuracy” as a virtue but there is no cesium atom or 
independent way to ascertain accuracy so these claims are false.  For example COSMIC function 
points produce higher counts than IFPUG function points for many applications but that does not 
indicate “accuracy” since there is no objective way to know accuracy. 

ISO/IEC standards are numerous and cover every industry; not just software.  However these 
standards are issued without any proof of efficacy.  After release some standards have proven to 
be useful, some are not so useful, and a few are being criticized so severely that some software 
consultants and managers are urging a recall such as the proposed ISO/IEC testing standard. ISO 
stands for the International Organization for Standards (in French) and IEC stands for 
International Electrical Commission.  While ISO/IEC standards are the best known, there are 
other standards groups such as the Object Management Group (OMG) which recently published 
a standard on automatic function points.  Here too there is no proof of efficacy prior to release.  
There are also national standards such as ANSI or the American National Standards Institute, 
and also military standards by the U.S. Department of Defense  (DoD) and by similar 
organizations elsewhere.  The entire topic of standards is in urgent need of due diligence and of 
empirical data that demonstrates the value of specific standards after issuance.  In total there are 
probably several hundred standards groups in the world with a combined issuance of over 1000 
standards, of which probably 50 apply to aspects of software.  Of these only a few have solid 
empirical data that demonstrates value and efficacy. 

Lines of code (LOC) metrics penalize high-level languages and make low-level languages look 
better than they are.  LOC metrics also make requirements and design invisible. There are no 
ISO or other standards for counting LOC metrics.  About half of the papers and journal articles 
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use physical LOC and half use logical LOC. The difference between counts of physical and 
logical LOC can top 500%.  LOC metrics make requirements and design invisible and also 
ignore requirements and design defects, which outnumber code defects.  Although there are 
benchmarks based on LOC, the intrinsic errors of LOC metrics make them unreliable.  Due to 
lack of standards for counting LOC, benchmarks from different vendors for the same 
applications can contain widely different results.  Appendix B provides a mathematical proof that 
LOC metrics do not measure economic productivity by showing 79 programming languages with 
function points and LOC in a side-by-side format. 

Story point metrics are widely used for agile projects with “user stories.”  Story points have no 
ISO standard for counting or any other standard.  They are highly ambiguous and vary by as 
much as 400% from company to company and project to project.  There are few useful 
benchmarks using story points.  Obviously story points can’t be used for projects that don’t 
utilize user stories so they are worthless for comparisons against other design methods. 

Technical debt is a new metric and rapidly spreading.  The concept of “technical debt” is that 
topics deferred during development in the interest of schedule speed will cost more after release 
than they would have cost initially.  However there are no ISO standards for technical debt and 
the concept is highly ambiguous.  It can vary by over 500% from company to company and 
project to project.  Worse, technical debt does not include all of the costs associated with poor 
quality and development short cuts.  Technical debt omits canceled projects, consequential 
damages or harm to users, and the costs of litigation for poor quality. 

Use case points are used by projects with designs based on “use cases” which often utilize 
IBM’s Rational Unified Process (RUP).  There are no ISO standards for use cases.  Use cases are 
ambiguous and vary by over 200% from company to company and project to project.  Obviously 
use cases are worthless for measuring projects that don’t utilize use cases, so they have very little 
benchmark data. 

 

Defining Software Productivity and Software Quality 

For more than 200 years the standard economic definition of productivity has been, “Goods or 
services produced per unit of labor or expense.”  This definition is used in all industries, but has 
been hard to use in the software industry.  For software there is ambiguity in what constitutes our 
“goods or services.” 

The oldest unit for software “goods” was a “line of code” or LOC.  More recently software goods 
have been defined as “function points.”   Even more recent definitions of goods include “story 
points” and “use case points.”   The pros and cons of these units have been discussed and some 
will be illustrated in the appendices.   
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Another important topic taken from manufacturing economics has a big impact on software 
productivity that is not yet well understood even in 2014: fixed costs. 

A basic law of manufacturing economics that is valid for all industries including software is the 
following:  “When a development process has a high percentage of fixed costs, and there is a 
decline in the number of units produced, the cost per unit will go up.” 

When a “line of code” is selected as the manufacturing unit and there is a switch from a low-
level language such as assembly to a high level language such as Java, there will be a reduction 
in the number of units developed.   

But the non-code tasks of requirements and design act like fixed costs.  Therefore the cost per 
line of code will go up for high-level languages.  This means that LOC is not a valid metric for 
measuring economic productivity as proven in Appendix B. 

For software there are two definitions of productivity that match standard economic concepts: 

1. Producing a specific quantity of deliverable units for the lowest number of work hours. 
2. Producing the largest number of deliverable units in a standard work period such as an 

hour, month, or year. 

In definition 1 deliverable goods are constant and work hours are variable. 

In definition 2 deliverable goods are variable and work periods are constant. 

The common metric “work hours per function point” is a good example of productivity 
definition 1.  The metrics “function points per month” and “lines of code per month” are 
examples of definition 2.   

However for “lines of code” the fixed costs of requirements and design will cause apparent 
productivity to be reversed, with low-level languages seeming better than high-level languages, 
as shown by the 79 languages listed in Appendix B. 

Definition 2 will also encounter the fact that the number of work hours per month varies widely 
from country to country.  For example India works 190 hours per month while the Netherlands 
work only 116 hours per month.   This means that productivity definitions 1 and 2 will not be the 
same.  A given number of work hours would take fewer calendar months in India than in the 
Netherlands due to the larger number of monthly work hours. 

Table 1 shows the differences between “work hours per function point” and “function points per 
month” for 52 countries.  The national work hour column is from the Organization of 
International Cooperation and Development.  Table 1 assumes a constant value of 15 work hours 
per function point for an identical application in every country shown. 
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 Table 1:  Comparison of Work Hours per FP and FP per Month 
        
   OECD  Work  Function 
   National  Hours per  Points 
   Work  Function  per 
   hours  Point  Month 
   per month     
        

1 India         190.00            15.00            13.47  
2 Taiwan         188.00            15.00            13.20  
3 Mexico         185.50            15.00            13.17  
4 China         186.00            15.00            12.93  
5 Peru         184.00            15.00            12.67  
6 Colombia         176.00            15.00            12.13  
7 Pakistan         176.00            15.00            12.13  
8 Hong Kong        190.00            15.00            12.01  
9 Thailand         168.00            15.00            11.73  

10 Malaysia         192.00            15.00            11.73  
11 Greece         169.50            15.00            11.70  
12 South Africa        168.00            15.00            11.60  
13 Israel         159.17            15.00            11.14  
14 Viet Nam         160.00            15.00            11.07  
15 Phillipines         160.00            15.00            10.93  
16 Singapore         176.00            15.00            10.92  
17 Hungary         163.00            15.00            10.87  
18 Poland         160.75            15.00            10.85  
19 Turkey         156.42            15.00            10.69  
20 Brazil         176.00            15.00            10.65  
21 Panama         176.00            15.00            10.65  
22 Chile         169.08            15.00            10.51  
23 Estonia         157.42            15.00            10.49  
24 Japan         145.42            15.00            10.49  
25 Switzerland        168.00            15.00            10.45  
26 Czech Republic        150.00            15.00            10.00  
27 Russia         164.42            15.00              9.97  
28 Argentina         168.00            15.00              9.91  
29 Korea - South        138.00            15.00              9.60  
30 United States       149.17            15.00             9.47  
31 Saudi Arabia        160.00            15.00              9.44  
32 Portugal         140.92            15.00              9.39  

33 
United 
Kingdom        137.83            15.00              9.32  

34 Finland         139.33            15.00              9.29  
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35 Ukraine         156.00            15.00              9.20  
36 Venezuela         152.00            15.00              9.10  
37 Austria         134.08            15.00              8.94  
38 Luxembourg        134.08            15.00              8.94  
39 Italy         146.00            15.00              8.75  
40 Belgium         131.17            15.00              8.74  
41 New Zealand        144.92            15.00              8.68  
42 Denmark         128.83            15.00              8.59  
43 Canada         142.50            15.00              8.54  
44 Australia         144.00            15.00              8.50  
45 Ireland         127.42            15.00              8.49  
46 Spain         140.50            15.00              8.42  
47 France         123.25            15.00              8.22  
48 Iceland         142.17            15.00              8.00  
49 Sweden         135.08            15.00              7.97  
50 Norway         118.33            15.00              7.89  
51 Germany         116.42            15.00              7.76  
52 Netherlands        115.08            15.00              7.67  

        
 Average        155.38           15.00           10.13  

 

Of course differences in experience, methodologies, languages, and other variables also impact 
both forms of productivity.  The point of table 1 is that the two forms are not identical from 
country to country due to variations in local work patterns. 

As we all know the topic of “quality” is somewhat ambiguous in every industry.  Definitions for 
quality can encompass subjective aesthetic quality and also precise quantitative units such as 
numbers of defects and their severity levels. 

Over the years software has tried a number of alternate definitions for quality that are not 
actually useful.  For example one definition for software quality has been “conformance to 
requirements.”    

Requirements themselves are filled with bugs or errors that comprise about 20% of the overall 
defects found in software applications.  Defining quality as conformance to a major source of 
errors is circular reasoning and clearly invalid.  We need to include requirements errors in our 
definition of quality. 

Another definition for quality has been “fitness for use.”  But this definition is ambiguous and 
cannot be predicted before the software is released, or even measured well after release.  
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It is obvious that a workable definition for software quality must be unambiguous and capable of 
being predicted before release and then measured after release and should also be quantified and 
not purely subjective. 

Another definition for software quality has been a string of words ending in “…ility” such as 
reliability and maintainability.  However laudable these attributes are, they are all ambiguous and 
difficult to measure.  Further, they are hard to predict before applications are built.   

The quality standard ISO/IEC 9126 includes a list of words such as portability, maintainability, 
reliability, and maintainability.  It is astonishing that there is no discussion of defects or bugs.  
Worse, the ISO/IEC definitions are almost impossible to predict before development and are not 
easy to measure after release nor are they quantified.  It is obvious that an effective quality 
measure needs to be predictable, measurable, and quantifiable.   

An effective definition for software quality that can be both predicted before applications are 
built and then measured after applications are delivered is:  “Software quality is the absence of 
defects which would either cause the application to stop working, or cause it to produce 
incorrect results.”   

This definition has the advantage of being applicable to all software deliverables including 
requirements, architecture, design, code, documents, and even test cases. 

If software quality focuses on the prevention or elimination of defects, there are some effective 
corollary metrics that are quite useful. 

The “defect potential” of a software application is defined as the sum total of bugs or defects that 
are likely to be found in requirements, architecture, design, source code, documents, and “bad 
fixes” or secondary bugs found in bug repairs themselves.   The “defect potential” metric 
originated in IBM circa 1973 and is fairly widely used among technology companies. 

The “defect detection efficiency” (DDE) is the percentage of bugs found prior to release of the 
software to customers. 

The “defect removal efficiency” (DRE) is the percentage of bugs found and repaired prior to 
release of the software to customers. 

DDE and DRE were developed in IBM circa 1973 but are widely used by technology companies 
in every country.  As of 2014 the average DRE for the United States is just over 90%.   

(DRE is normally measured by comparing internal bugs against customer reported bugs for the 
first 90 days of use.  If developers found 90 bugs and users reported 10 bugs, the total is 100 
bugs and DRE would be 90%.) 

Another corollary metric is that of “defect severity.”  This is a very old metric dating back to 
IBM in the early 1960’s.  IBM uses four severity levels:  
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• Severity 1 Software is inoperable     <    1% 
• Severity 2 Major feature disabled or incorrect   <  15%  
• Severity 3 Minor error; software is usable   <  40% 
• Severity 4 Cosmetic error that does not affect results  <  35% 

To clarify these various terms, table 2 shows defect potentials, and DRE for an application of 
1000 function points coded in the Java language using Agile development.  (Table 2 uses even 
numbers to simplify the math.  The author’s Software Risk Master (SRM) tool predicts the same 
kinds of values for actual projects.). 

Table 2: Software Quality for 1000 Function Points, 
Java, and Agile Development  
      
Defect Potentials  Number  Defects 
   of Bugs  Per FP 
      

Requirements defects               750   
           

0.75  

Architecture defects               150   
           

0.15  

Design defects            1,000   
           

1.00  

Code defects            1,350   
           

1.35  

Document defects               250   
           

0.25  

 Sub Total           3,500   
          

3.50  
      

Bad fixes   150  
           

0.15  
      

 TOTAL           3,650   
          

3.65  
      
Defect removal Efficiency (DRE) 97.00%  97.00% 
      

Defects removed            3,540   
           

3.54  
      

Defects delivered              110   
          

0.11  
	   	   	   	   	   	  

High-severity delivered                15   
          

0.02  
 

All of the values shown in Table 2 can be predicted before applications are developed and then 
measured after the applications are released.  Thus software quality can move from an 
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ambiguous and subjective term to a rigorous and quantitative set of measures that can even be 
included in software contracts.  Note that bugs from requirements and design cannot be 
quantified using lines of code or KLOC, which is why function points are the best choice for 
quality measurements.  It is possible to retrofit LOC after the fact, but in real life LOC is not 
used for requirements, architecture, and design bug predictions. 

 

Patterns of Successful Software Measurements and Metrics 

Since the majority of software projects are either not measured at all, only partially measured, or 
measured with metrics that violate standard economic assumptions, what does work?  Following 
are discussions of the most successful combinations of software metrics available today in 2014. 

Ten Successful Software Measurement and Metric Patterns 

1. Function points for normalizing productivity data 
2. Function points for normalizing quality data 
3. Defect potentials based on all defect types 
4. Defect removal efficiency (DRE) based on all defect types 
5. Defect removal efficiency (DRE) including inspections and static analysis 
6. Defect removal efficiency (DRE) based on a 90-day post release period 
7. Activity-based benchmarks for development 
8. Activity-based benchmarks for maintenance 
9. Cost of quality (COQ) for quality economics 
10. Total cost of ownership (TCO) for software economics 

Let us consider these 10 patterns of successful metrics. 

Function points for normalizing productivity data 

It is obvious that software projects are built by a variety of occupations and use a variety of 
activities including 

1. Requirements 
2. Design 
3. Coding 
4. Testing 
5. Integration 
6. Documentation 
7. Management 
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The older lines of code or LOC metric is worthless for estimating or measuring non-code work.  
Function points can measure every activity individually and also the combined aggregate totals 
of all activities. 

Note that the new SNAP metric for non-functional requirements is not included.  Integrating 
SNAP into productivity and quality predictions and measurements is still a work in progress.  
Future versions of this paper will discuss SNAP. 

 

Function Points for Normalizing Software Quality 

It is obvious that software bugs or defects originate in a variety of sources including but not 
limited to: 

1. Requirements defects 
2. Architecture defects 
3. Design defects 
4. Coding defects 
5. Document defects 
6. Bad fixes or defects in bug repairs 

The older lines of code metric is worthless for estimating or measuring non-code defects but 
function points can measure every defect source. 

Defect Potentials Based on all Defect Types 

The term “defect potential” originated in IBM circa 1965 and refers to the sum total of defects in 
software projects that originate in requirements, architecture, design, code, documents, and “bad 
fixes” or bugs in defect repairs.  The older LOC metric only measures code defects, and they are 
only a small fraction of total defects.  The current distribution of defects for an application of 
1000 function points in Java is approximately as follows: 

Defect Sources  Defects per function point 
   
Requirements defects  0.75 
Architecture defects  0.15 
Design defects  1.00 
Code defects  1.25 
Document defects  0.20 
Bad fix defects  0.15 
   
Total Defect Potential  3.65 
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There are of course wide variations based on team skills, methodologies, CMMI levels, 
programming languages, and other variable factors. 

 

Defect Removal Efficiency (DRE) Based on All Defect Types 

Since requirements, architecture, and design defects outnumber code defects, it is obvious that 
measures of defect removal efficiency (DRE) need to include all defect sources.  It is also 
obvious to those who measure quality that getting rid of code defects is easier than getting rid of 
other sources.  Following are representative values for defect removal efficiency (DRE) by 
defect source: 

  Defect DRE Delivered 
Defect Sources  Potential Percent Defects 
     
Requirements defects  1.00 85.00% 0.15 
Architecture defects  0.25 75.00% 0.06 
Design defects  1.25 90.00% 0.13 
Code defects  1.50 97.00% 0.05 
Document defects  0.50 95.00% 0.03 
Bad fix defects  0.50 80.00% 0.10 
     
Totals  5.00 89.80% 0.51 

 

As can be seen DRE against code defects is higher than against other defect sources.  But the 
main point is that only function point metrics can measure and include all defect sources.  The 
older LOC metric is worthless for requirements, design, and architecture defects. 

Defect Removal Efficiency Including Inspections and Static Analysis 

Serious study of software quality obviously needs to include pre-test inspections and static 
analysis as well as coding. 

The software industry has concentrated only on code defects and only on testing.  This is short 
sighted and insufficient.  The software industry needs to understand all defect sources and every 
form of defect removal including pre-test inspections and static analysis.  The approximate 
defect removal efficiency levels (DRE) of various defect removal stages are shown below: 
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 Table 3:  Software Defect Potentials and  Defect Removal Efficiency (DRE)   

        

 
Note 1:  The table represents high quality defect removal 
operations.    

 Note 2:  The table illustrates calculations from Software Risk Master ™ (SRM)   

        

 Application type     Embedded  

 Application size in function points             1,000   

 Application language     Java  

 Language level     6.00  

 Source lines per FP     53.33  

 Source lines of code            53,333   

 KLOC of code     53.33  

        

        

   PRE-TEST DEFECT REMOVAL ACTIVITIES  

        

 Pre-Test Defect Architect. Require. Design Code Document TOTALS 

 Removal Methods Defects per 
Defects 

per Defects per 
Defects 

per 
Defects 

per  

  Function Function Function Function Function  

  Point Point Point Point Point  

        

 
Defect Potentials per 
FP 0.35 0.97 1.19 1.47 0.18 4.16 

        

 Defect potentials 
               

355  
              

966  
              

1,189  
         

1,469              184  
        

4,163  

        

1 Requirement inspection 5.00% 87.00% 10.00% 5.00% 8.50% 25.61% 

 Defects discovered 18 840 119 73 16 1,066 

 Bad-fix injection 1 25 4 2 0 32 

 Defects remaining 337 100 1,066 1,394 168 3,065 

        

2 Architecture inspection 85.00% 10.00% 10.00% 2.50% 12.00% 14.93% 

 Defects discovered 286 10 107 35 20 458 

 Bad-fix injection 9 0 3 1 1 14 

 Defects remaining 42 90 956 1,358 147 2,593 

        

3 Design inspection 10.00% 14.00% 87.00% 7.00% 16.00% 37.30% 

 Defects discovered 4 13 832 95 24 967 

 Bad-fix injection 0 0 25 3 1 48 
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 Defects remaining 38 77 99 1,260 123 1,597 

        

4 Code inspection 12.50% 15.00% 20.00% 85.00% 10.00% 70.10% 

 Defects discovered 5 12 20 1,071 12 1,119 

 Bad-fix injection 0 0 1 32 0 34 

 Defects remaining 33 65 79 157 110 444 

        

5 Static Analysis 2.00% 2.00% 7.00% 87.00% 3.00% 33.17% 

 Defects discovered 1 1 6 136 3 147 

 Bad-fix injection 0 0 0 4 0 4 

 Defects remaining 32 64 73 16 107 292 

        

6 IV & V 10.00% 12.00% 23.00% 7.00% 18.00% 16.45% 

 Defects discovered 3 8 17 1 19 48 

 Bad-fix injection 0 0 1 0 1 1 

 Defects remaining 29 56 56 15 87 243 

        

7 SQA review 10.00% 17.00% 17.00% 12.00% 12.50% 28.08% 

 Defects discovered 3 10 9 2 11 35 

 Bad-fix injection 0 0 0 0 0 2 

 Defects remaining 26 46 46 13 76 206 

        

 Pre-test DRE 329 920 1,142 1,456 108 3,956 

 Pre-test DRE % 92.73% 95.23% 96.12% 99.10% 58.79% 95.02% 

 Defects Remaining 
                 

26  
                

46  
                   

46  
              

13                76  
           

207  

        

        

   TEST DEFECT REMOVAL ACTIVITIES  

        

 Test Defect Removal       

 Stages       

  Architect. Require. Design Code Document Total 

1 Unit testing 2.50% 4.00% 7.00% 35.00% 10.00% 8.69% 

 Defects discovered 1 2 3 5 8 18 

 Bad-fix injection 0 0 0 0 0 1 

 Defects remaining 25 44 43 8 68 188 

        

2 Function testing 7.50% 5.00% 22.00% 37.50% 10.00% 12.50% 

 Defects discovered 2 2 9 3 7 23 

 Bad-fix injection 0 0 0 0 0 1 

 Defects remaining 23 42 33 5 61 164 
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3 Regression testing 2.00% 2.00% 5.00% 33.00% 7.50% 5.65% 

 Defects discovered 0 1 2 2 5 9 

 Bad-fix injection 0 0 0 0 0 0 

 Defects remaining 23 41 31 3 56 154 

        

4 Integration testing 6.00% 20.00% 22.00% 33.00% 15.00% 16.90% 

 Defects discovered 1 8 7 1 8 26 

 Bad-fix injection 0 0 0 0 0 1 

 Defects remaining 21 33 24 2 48 127 

        

5 Performance testing 14.00% 2.00% 20.00% 18.00% 2.50% 7.92% 

 Defects discovered 3 1 5 0 1 10 

 Bad-fix injection 0 0 0 0 0 0 

 Defects remaining 18 32 19 2 46 117 

        

6 Security testing 12.00% 15.00% 23.00% 8.00% 2.50% 10.87% 

 Defects discovered 2 5 4 0 1 13 

 Bad-fix injection 0 0 0 0 0 0 

 Defects remaining 16 27 15 2 45 104 

        

7 Usability testing 12.00% 17.00% 15.00% 5.00% 48.00% 29.35% 

 Defects discovered 2 5 2 0 22 30 

 Bad-fix injection 0 0 0 0 1 1 

 Defects remaining 14 22 12 2 23 72 

        

8 System testing 16.00% 12.00% 18.00% 12.00% 34.00% 20.85% 

 Defects discovered 2 3 2 0 8 15 

 Bad-fix injection 0 0 0 0 0 0 

 Defects remaining 12 20 10 1 15 57 

        

9 Cloud testing 10.00% 5.00% 13.00% 10.00% 20.00% 11.55% 

 Defects discovered 1 1 1 0 3 7 

 Bad-fix injection 0 0 0 0 0 0 

 Defects remaining 10 19 9 1 12 51 

        

10 Independent testing 12.00% 10.00% 11.00% 10.00% 23.00% 13.60% 

 Defects discovered 1 2 1 0 3 7 

 Bad-fix injection 0 0 0 0 0 0 

 Defects remaining 9 17 8 1 9 44 

        

11 Field (Beta) testing 14.00% 12.00% 14.00% 12.00% 34.00% 17.30% 

 Defects discovered 1 2 1 0 3 8 

 Bad-fix injection 0 0 0 0 0 0 
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 Defects remaining 8 15 7 1 6 36 

        

12 Acceptance testing 13.00% 14.00% 15.00% 12.00% 24.00% 17.98% 

 Defects discovered 1 2 1 0 2 6 

 Bad-fix injection 0 0 0 0 0 0 

 Defects remaining 7 13 6 1 3 30 

        

 Test Defects Removed 19 33 40 12 72 177 

 Testing Efficiency % 73.96% 72.26% 87.63% 93.44% 95.45% 85.69% 

 Defects remaining 
                   

7  
                

13  
                     

6  
                

1                  3  
             

30  

        

 Total Defects Removed 348 953 1,183 1,468 181 4,133 

 Total Bad-fix injection 10 29 35 44 5 124 

 
Cumulative Removal 
% 98.11% 98.68% 99.52% 99.94% 98.13% 99.27% 

        

 Remaining Defects 7 13 6 1 3 30 

 High-severity Defects 1 2 1 0 0 5 

 Security Defects 0 0 0 0 0 1 

        

 Remaining Defects 0.0067 0.0128 0.0057 0.0009 0.0035 0.0302 

 per Function Point       

        

 Remaining Defects 6.72 12.80 5.70 0.87 3.45 30.23 

 per K Function Points       

        

 Remaining Defects 0.13 0.24 0.11 0.02 0.06 0.57 

 per KLOC       
 

Since the costs of finding and fixing bugs in software have been the largest single expense 
element for over 60 years, software quality and defect removal need the kind of data shown in 
table 3. 

Defect Removal Efficiency Based on 90 Days after Release 

It is obvious that measuring defect removal efficiency (DRE) based only on 30 days after release 
is insufficient to judge software quality: 

 

Defects found before release 900  
Defects found in 30 days  5 99.45% 
Defects found in 90 days  50 94.74% 
Defects found in 360 days 75 92.31% 
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A 30 day interval after release will find very few defects since full usage may not even have begun due to 
installation and training.  IBM selected a 90 day interval because that allowed normal usage patterns to unfold.  Of 
course bugs continue to be found after 90 days, and also the software may be updated.  A 90-day window is a good 
compromise for measuring defect removal efficiency of the original version before updates begin to accumulate. 

A 30-day window may be sufficient for small projects < 250 function points.  But anyone who has worked on large 
systems in the 10,000 to 100,000 function point size range knows that installation and training normally take about a 
month.  Therefore full production may not even have started in the first 30 days. 

Activity Based Benchmarks for Development 

Today in 2014 software development is one of the most labor-intensive and expensive industrial activities in human 
history.  Building large software applications costs more than the cost of a 50 story office building or the cost of an 
80,000 ton cruise ship. 

Given the fact that large software applications can employ more than 500 personnel in a total of more than 50 
occupations, one might think that the industry would utilize fairly detailed activity-based benchmarks to explore the 
complexity of modern software development. 

But unfortunately the majority of software benchmarks in 2014 are single values such as “work hours per function 
point,” “function points per month,” or “lines of code per month.”  This is not sufficient.  Following are the kinds of 
activity-based benchmarks actually needed by the industry in order to understand the full economic picture of 
modern software development.  Table 4 reflects a system of 10,000 function points and the Java programming 
language combined with an average team and iterative development: 

Table 4:  Example of Activity-based Benchmark    	  

     	  

 Language Java   	  

 Function points 10,000   	  

 Lines of code 533,333   	  

 KLOC 533   	  

     	  

 Development Activities Work FP per Work  LOC per 
  Hours month Hours  Month 

  per FP  
per 

KLOC  
      
      

1 Business analysis 0.02 7,500.00 0.33 
        

400,000  

2 Risk analysis/sizing 0.00 35,000.00 0.07 
     

1,866,666  

3 Risk solution planning 0.01 15,000.00 0.17 
        

800,000  

4 Requirements 0.38 350.00 7.08 
          

18,667  
5 Requirement. Inspection 0.22 600.00 4.13 32,000            
6 Prototyping 0.33 400.00 0.62 213,333          
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7 Architecture 0.05 2,500.00 0.99 
        

133,333  

8 Architecture. Inspection 0.04 3,000.00 0.83 
        

160,000  

9 Project plans/estimates 0.03 5,000.00 0.50 
        

266,667  

10 Initial Design 0.75 175.00 14.15 
            

9,333  

11 Detail Design 0.75 175.00 14.15 
            

9,333  

12 Design inspections 0.53 250.00 9.91 
          

13,333  

13 Coding 4.00 33.00 75.05 
            

1,760  

14 Code inspections 3.30 40.00 61.91 
            

2,133  

15 Reuse acquisition 0.01 10,000.00 0.25 
        

533,333  
16 Static analysis 0.02 7,500.00 0.33 400,000          

17 COTS Package purchase 0.01 10,000.00 0.25 
        

533,333  
18 Open-source acquisition. 0.01 10,000.00 0.25 533,333          

19 Code security audit. 0.04 3,500.00 0.71 
        

186,667  
20 Ind. Verification. & Validation (IV&V). 0.07 2,000.00 1.24  106,667         

21 Configuration control. 0.04 3,500.00 0.71 
        

186,667  

22 Integration 0.04 3,500.00 0.71 
        

186,667  

23 User documentation 0.29 450.00 5.50 
          

24,000  

24 Unit testing 0.88 150.00 16.51 
            

8,000  

25 Function testing 0.75 175.00 14.15 
            

9,333  

26 Regression testing 0.53 250.00 9.91 
          

13,333  

27 Integration testing 0.44 300.00 8.26 
          

16,000  

28 Performance testing 0.33 400.00 6.19 
          

21,333  

29 Security testing 0.26 500.00 4.95 
          

26,667  

30 Usability testing 0.22 600.00 4.13 
          

32,000  

31 System testing 0.88 150.00 16.51 
            

8,000  

32 Cloud testing 0.13 1,000.00 2.48 
          

53,333  

33 Field (Beta) testing 0.18 750.00 3.30 
          

40,000  

34 Acceptance testing 0.05 2,500.00 0.99 
        

133,333  

35 Independent testing 0.07 2,000.00 1.24 
        

106,667  
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36 Quality assurance 0.18 750.00 3.30 
          

40,000  

37 Installation/training 0.04 3,500.00 0.71 
        

186,667  

38 Project measurement 0.01 10,000.00 0.25 
        

533,333  

39 Project office 0.18 750.00 3.30 
          

40,000  

40 Project management 4.40 30.00 82.55 
            

1,600  
      

 Cumulative Results 20.44 6.46 377.97 
              

349  
 

Note that in real life non-code work such as requirements, architecture, and design are not 
measured using LOC metrics.  But it is easy to retrofit LOC since the mathematics are not 
complicated.  Incidentally the author’s Software Risk Master (SRM) tool predicts all four values 
shown in table 4, and can also show story points, use case points, and in fact 23 different metrics. 

The “cumulative results” show the most common benchmark form of single values. However 
single values are clearly inadequate to show the complexity of a full set of development 
activities. 

Note that agile projects with multiple sprints would use a different set of activities.  But to 
compare agile projects against other kinds of development methods the agile results are 
converted into a standard chart of accounts shown by table 4. 

Activity Based Benchmarks for Maintenance 

The word “maintenance” is highly ambiguous and can encompass no fewer than 23 different 
kinds of work.  In ordinary benchmarks “maintenance” usually refers to post-release defect 
repairs.  However some companies and benchmarks also include enhancements.  This is not a 
good idea since the funding for defect repairs and enhancements are from different sources, and 
often the work is done by different teams. 

Table 5:  Major Kinds of Work Performed Under the Generic Term “Maintenance” 

1. Major Enhancements (new features of > 20 function points) 
2. Minor Enhancements (new features of < 5 function points) 
3. Maintenance (repairing defects for good will) 
4. Warranty repairs (repairing defects under formal contract) 
5. Customer support (responding to client phone calls or problem reports) 
6. Error-prone module removal (eliminating very troublesome code segments) 
7. Mandatory changes (required or statutory changes) 
8. Complexity or structural analysis (charting control flow plus complexity metrics) 
9. Code restructuring (reducing cyclomatic and essential complexity) 
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10. Optimization (increasing performance or throughput) 
11. Migration (moving software from one platform to another) 
12. Conversion (Changing the interface or file structure) 
13. Reverse engineering (extracting latent design information from code) 
14. Reengineering (transforming legacy application to modern forms) 
15. Dead code removal (removing segments no longer utilized) 
16. Dormant application elimination (archiving unused software) 
17. Nationalization (modifying software for international use) 
18. Mass updates such as Euro or Year 2000 Repairs 
19. Refactoring, or reprogramming applications to improve clarity 
20. Retirement (withdrawing an application from active service) 
21. Field service (sending maintenance members to client locations) 
22. Reporting bugs or defects to software vendors 
23. Installing updates received from software vendors 
 
As with software development, function point metrics provide the most effective normalization 
metric for all forms of maintenance and enhancement work. 
 
The author’s Software Risk Master (SRM) tool predicts maintenance and enhancement for a 
three year period, and can also measure annual maintenance and enhancements.  The entire set of 
metrics is among the most complex.  However Table 6 illustrates a three-year pattern: 
 
Table 6:  Three-Year Maintenance, Enhancement, and Support Data 
       
Enhancements (New Features) Year 1 Year 2 Year 3 3-Year 
   2013 2014 2015 Totals 
       
Annual enhancement % 8.00% 200 216 233 649 
Application Growth in FP 2,500 2,700 2,916 3,149 3,149 
Application Growth in LOC 133,333 144,000 155,520 167,962 167,962 
Cyclomatic complexity growth 10.67 10.70 10.74 10.78 10.78 
Enhan. defects per FP 0.01 0.00 0.00 0.00 0.00 
Enhan. defects delivered 21 1 1 1 23 
       
Enhancement Team Staff 0 2.02 2.21 2.41 2.22 
Enhancement  (months) 0 24.29 26.51 28.94 79.75 
Enhancement (hours) 0 3,206.48 3,499.84 3,820.47 10,526.78 
Enhancement Team Costs 0 $273,279 $298,282 $325,608 $897,169 
       
Function points per month  8.23 8.15 8.06 8.14 
Work hours per function point 16.03 16.20 16.38 16.21 
Enhancement $ per FP  $1,366.40 $1,380.93 $1,395.78 $1,381.79 
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Maintenance (Defect Repairs) Year 1 Year 2 Year 3 3-Year 
   2013 2014 2015 Totals 
       
Number of maintenance sites 1 1 1 1 1 
Clients served per site 74 94 118 149 149 
       
Number of initial client sites 3 4 5 6 6 
Annual rate of increase 15.00% 22.51% 22.51% 22.51% 20.63% 
       
Number of initial clients 100 128 163 207 207 
Annual rate of increase 20.00% 27.51% 27.51% 27.51% 25.63% 
       
Client sites added 0 1 1 1 3 
Client sites lost 0 0 0 0 0 
Net change  0 1 1 1 3 
Year end client sites 0 4 5 6 6 
       
Clients added  0 28 36 46 110 
Clients lost  0 -1 -1 -1 -3 
Net change  0 28 35 45 107 
Year end clients 0 128 163 207 207 
       
       
Customer Defect/Help Requests Year 1 Year 2 Year 3 3-Year 
   2013 2014 2015 Totals 
       
Customer satisfaction 0 95.34% 99.42% 100.16% 98.31% 
       
Customer help requests 0 67 62 60 189 
Customer complaints 0 24 18 15 56 
Enhancement bug reports 0 1 1 1 2 
Original bug reports 0 8 5 3 16 
High severity bug reports 0 1 1 0 2 
Security flaws 0 1 0 0 0 
Bad fixes: bugs in repairs 0 0 0 0 0 
Duplicate bug reports 0 8 7 6 22 
Invalid bug reports 0 2 1 1 4 
Abeyant defects 0 0 0 0 0 
Total Incidents  0 112 96 86 293 
       
Complaints per FP 0 0.01 0.01 0.01 0.02 
Bug reports per FP 0 0.00 0.00 0.00 0.01 
High severity bugs per FP 0 0.00 0.00 0.00 0.00 
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Incidents per FP 0 0.04 0.04 0.03 0.12 
       
       
Maintenance and Support Staff Year 1 Year 2 Year 3 3-Year 
   2013 2014 2015 Totals 
       
Customer support staff 0 0.31 0.33 0.38 0.34 
Customer support  (months) 0 3.72 4.01 4.56 12.29 
Customer support (hours) 0 490.80 529.37 601.88 1,622.05 
Customer support costs 0 $17,568  $18,949  $21,545  $58,062 
Customer support $ per FP 0 $6.51  $6.50  $6.84  $6.62  
       
Maintenance staff 0 1.83 1.80 1.77 1.80 
Maintenance effort (months) 0 21.97 21.56 21.29 64.82 
Maintenance effort (hours) 0 2,899.78 2,846.43 2,810.38 8,556.59 
Maintenance  (tech. debt) 0 $247,140 $242,593 $239,521 $729,255 
Maintenance $ per FP 0 $91.53 $83.19 $76.06 $83.59  
       
Management staff 0 0.22 0.22 0.22 0.22 
Management effort (months) 0 2.69 2.66 2.67 8.02 
Management effort (hours) 0 354.92 351.56 352.39 1,058.87 
Management costs 0 $30,249 $29,963 $30,033 $90,245 
Management $ per FP 0 $11.20 $10.28 $9.54 $10.34  
       
TOTAL MAINTENANCE 
STAFF 0 2.36 2.35 2.38 2.36 
TOTAL EFFORT (MONTHS) 0 28.37 28.24 28.52 85.13 
TOTAL EFFORT (HOURS) 0 3,745.50 3,727.36 3,764.66 11,237.51 
TOTAL MAINTENANCE $ 0 $294,957  $291,505  $291,099  $877,561  
       
Maintenance $ per FP 0 $117.98 $116.60 $116.44 $117.01  
Maintenance hours per FP 0 1.39 1.28 1.20 1.29 
Maintenance$ per defect 0 $32,865 $50,957 $82,650 $55,490.43  
Maintenance $ per KLOC 0 $2,212 $2,186 $2,183 $6,582 
Maintenance $ per incident 0 $2,637.01 $3,049.51 $3,375.50 $3,020.67 
Incidents per support staff 0 360.99 286.03 226.96 873.98 
Bug reports per staff member 0 11.57 8.52 6.42 26.51 
Incidents per staff month 0 30.08 23.84 18.91 24.28 
Bug reports per staff month 0 0.96 0.71 0.54 0.74 
       
       
(MAINTENANCE + ENHANCMENT)     
   Year 1 Year 2 Year 3 3-Year 
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   2013 2014 2015 Totals 
       
Enhancement staff 0 2.02 2.21 2.41 2.22 
Maintenance staff 0 2.36 2.35 2.38 2.36 
Total staff  0 4.39 4.56 4.79 4.58 
       
Enhancement effort (months) 0 24.29 26.51 28.94 79.75 
Maintenance effort (months) 0 28.37 28.24 28.52 85.13 
Total effort (months) 0 52.67 54.75 57.46 164.88 
Total effort (hours) 0 6,951.97 7,227.19 7,585.12 21,764.29 
       
Enhancement Effort % 0 46.12% 48.43% 50.37% 48.37% 
Maintenance Effort % 0 53.88% 51.57% 49.63% 51.63% 
Total Effort % 0 100.00% 100.00% 100.00% 100.00% 
       
Enhancement cost 0 $273,279 $298,282 $325,608 $897,169 
Maintenance cost 0 $294,957 $291,505 $291,099 $877,561 
Total cost  0 $568,237 $589,786 $616,707 $1,774,730 
       
Enhancement cost % 0 48.09% 50.57% 52.80% 50.55% 
Maintenance cost % 0 51.91% 49.43% 47.20% 49.45% 
Total Cost  0 100.00% 100.00% 100.00% 100.00% 
       
Maintenance + Enhancement $ per FP $210.46 $202.26 $195.82 $202.85 
Maintenance + Enhancement hours per FP 2.57 2.48 2.41 2.49 

 
The mathematical algorithms for predicting maintenance and enhancements can work for 10 year 
periods, but there is little value in going past three years since business changes or changes in 
government laws and mandates degrade long-range predictions. 
 
Cost of Quality (COQ) for Quality Economics 
 
The cost of quality (COQ) metric is roughly the same age as the software industry, having originated in 1956 by 
Edward Feigenbaum.  It was later expanded by Joseph Juran and then made very famous by Phil Crosby in his 
seminal book “Quality is Free.”   Quality was also dealt with fictionally in Robert M. Pirsig’s famous book Zen and 
the Art of Motorcycle Maintenance.  This book has become one of the best-selling books ever published and has 
been translated into many natural languages.  It has sold over 5,000,000 copies.  (By interesting coincidence Pirsig’s 
regular work was as a software technical writer.) 

Because COQ originated for manufacturing rather than for software, it needs to be modified slightly to be effective 
in a software context. 

The original concepts of COQ include: 

• Prevention costs 
• Appraisal costs 
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• Internal failure costs 
• External failure costs 
• Total costs 

For software a slightly modified set of topics for COQ include: 

• Defect prevention costs (JAD, QFD, Kaizan, prototypes, etc.) 
• Pre-Test defect removal costs (inspections, static analysis, pair programming, etc.) 
• Test defect removal costs (unit, function, regression, performance, system, etc.) 
• Post-release defect repairs costs (direct costs of defect repairs) 
• Warranty and damage costs due to poor quality (fines, litigation, indirect costs) 

Using round numbers and even values to simplify the concepts, the COQ results for a 20,000 function point 
application with average quality and Java might be: 

Defect prevention      $1,500,000 

Pre-test defect removal     $3,000,000 

Test defect removal   $11,000,000 

Post release repairs     $5,500,000 

Damages and warranty costs    $3,000,000 

Total Cost of Quality (COQ)  $24,000,000 

COQ per function point            $1,200 

COQ per KLOC           $24,000  

If technical debt were included, but it not, the technical debt costs would probably be an additional $2,500,000.  
Among the issues with technical debt is that it focuses attention on a small subset of quality economic topics and of 
course does not deal with pre-release quality at all. 

Total Cost of Ownership (TCO) for Software Economic Understanding 

Because total cost of ownership cannot be measured or known until at least three years after release, it is seldom 
included in standard development benchmarks.  The literature of TCO is sparse and there is very little reliable 
information.  This is unfortunate because software TCO is much larger than the TCO of normal manufactured 
projects.  This is due in part to poor quality control and in part to the continuous stream of enhancements which 
average about 8% per calendar year after the initial release, and sometimes runs for periods of more than 30 calendar 
years. 

Another issue with TCO is that since applications continue to grow, after several years the size will have increased 
so much that the data needs to be renormalized with the current size.  Table 5 illustrates a typical TCO estimate for 
an application that was 2,500 function points at delivery but grew to more than 3,000 function points after a three-
year period: 
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Table 7:  Namcook SRM Total Cost of Ownership (TCO) Estimates 
       
  Staffing Effort Costs $ per FP % of TCO 
     at release  
       
Development 7.48 260.95 $3,914,201 $1,565.68 46.17% 
Enhancement 2.22 79.75 $897,169 $358.87 10.58% 
Maintenance 2.36 85.13 $877,561 $351.02 10.35% 
Support  0.34 12.29 $58,062 $23.22 0.68% 
User costs  4.20 196.69 $2,722,773 $1,089.11 32.12% 
Additional costs   $7,500 $3.00 0.09% 

Total TCO  16.60 634.81 $8,477,266 $3,390.91 100.00% 
       

Function points at release              2,500     
Function points after 3 years             3,149     
Lines of code after 3 years          167,936     
KLOC after 3 years            167.94     
TCO function points/staff month 4.96    
TCO work hours per function point 26.61    
TCO cost per function point $2,692    
TCO cost per KLOC  $50,479    

 

Note that the TCO costs include normal development, enhancement, maintenance, and customer 
support but also user costs.  For internal project users participate in requirements, reviews, 
inspections, and other tasks so their costs and contributions should be shown as part of total cost 
of ownership (TCO). 

Note that customer support costs are low because this particular application had only 100 users at 
delivery.  Eventually users grew to more than 200 but initial defects declined so number of 
customer support personnel was only one person part time.  Had this been a high-volume 
commercial application with 500,000 users that grew to over 1,000,000 users customer support 
would have included dozens of support personnel and grown constantly. 

Because applications grow at about 8% per year after release, the author suggests renormalizing 
application size at the end of every calendar year or every fiscal year.  Table 8 shows a total 
growth pattern for 10 years.  It is obvious that renormalization needs to occur fairly often due to 
the fact that all software applications grow over time as shown by table 8: 
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 Table 8: Software Risk Master™ Multi-Year Sizing 
    
 Copyright © 2011-2014 by Capers Jones. 
    
 Patent application 61434091.  February 2011.  
    
 Nominal application size   
 in IFPUG function points 10,000  
    
  Function  
  Points  
    

1 Size at end of requirements 10,000  
2 Size of requirement creep 2,000  
3 Size of planned delivery 12,000  
4 Size of deferred functions -4,800  
5 Size of actual delivery 7,200  
6 Year 1 12,000  
7 Year 2 13,000  
8 Year 3 14,000  
9 Year 4 17,000  

10 Year 5 18,000  
11 Year 6 19,000  
12 Year 7 20,000  
13 Year 8 23,000  
14 Year 9 24,000  
15 Year 10 25,000  

 

During development applications grow due to requirements creep at rates that range from below 
1% per calendar month to more than 10% per calendar month.  After release applications grow at 
rates that range from below 5% per year to more than 15% per year.  Note that for commercial 
software “mid-life kickers” tend to occur about every four years.  These are rich collections of 
new features intended to enhance competiveness. 

Needs for Future Metrics 

There is little research in the future metrics needs for the software industry.  Neither universities 
nor corporations have devoted funds or effort into evaluating the accuracy of current metrics or 
creating important future metrics. 

Some obvious needs for future metrics include: 
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1. Since companies own more data than software, there is an urgent need for a “data point” 
metric based on the logic of function point metrics.  Currently neither data quality nor the 
costs of data acquisition can be estimated or measured due to the lack of a size metric for 
data. 

2. Since many applications such as embedded software operate in specific devices, there is a 
need for a “hardware function point” metric based on the logic of function points. 

3. Since web sites are now universal, there is a need for a “web site point” metric based on 
the logic of function points.  This would measure web site contents. 

4. Since risks are increasing for software projects, there is a need for a “risk point” metric 
based on the logic of function points. 

5. Since cyber attacks are increasing in number and severity, there is a need for a “security 
point” metric based on the logic of function points. 

6. Since software value includes both tangible financial value and also intangible value, 
there is a need for a “value point” metric based on the logic of function points. 

7. Since software now has millions of human users in every country, there is a need for a 
“software usage point” metric based on the logic of function points. 

The goal would be to generate integrated estimates 

Every major university and every major corporation should devote some funds and effort to the 
related topics of metrics validation and metrics expansion.  It is professionally embarrassing for 
one of the largest industries in human history to have the least accurate and most ambiguous 
metrics of any industry for measuring the critical topics of productivity and quality. 

Table 8 shows a hypothetical table of what integrated data might look like from a suite of related 
metrics that include software function points, hardware function points, data points, risk points, 
security points, and value points: 

Table 9: Example of Multi-Metric Economic Analysis   

       

       

Development Metrics  Number Cost Total 

Function points   1,000 $1,000 $1,000,000 

Data points   1,500 $500 $750,000 

Hardware function points  750 $2,500 $1,875,000 

Subtotal    3,250 $1,115 $3,625,000 
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Annual Maintenance metrics     

Enhancements (micro function points) 150 $750 $112,500 

Defects (micro function points)  750 $500 $375,000 

Service points   5,000 $125 $625,000 

Data maintenance   125 $250 $31,250 

Hardware maintenance  200 $750 $150,000 

Annual Subtotal   6,225 $179 $1,112,500 

       

TOTAL COST OF OWNERSHIP 
(TCO)    

(Development + 5 years of usage)    

Development   3,250 $1,115 $3,625,000 

Maintenance, enhancement, service 29,500 $189 $5,562,500 

Data maintenance   625 $250 $156,250 

Hardware maintenance  1,000 $750 $750,000 

Application Total TCO  34,375 $294 $10,093,750 

       

Risk and Value Metrics     

Risk points   2,000 $1,250 $2,500,000 

Security points   1,000 $2,000 $2,000,000 

Subtotal    3,000 $3,250 $4,500,000 

       

Value points   45,000 $2,000 $90,000,000 

       

NET VALUE   10,625 $7,521 $79,906,250 

       

RETURN ON INVESTMENT (ROI)   $8.92 
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Summary and Conclusions 

The current state of software metrics and measurement practices in 2014 is a professional 
embarrassment.  The software industry continues to use metrics proven mathematically to be 
invalid and which violate standard economic assumptions.   

Universities do not carry out research studies on metrics validity but merely teach common 
metrics whether they work or not. 

Until the software industry has a workable set of productivity and quality metrics that are 
standardized and widely used, progress will resemble a drunkard’s walk. There are dozens of 
important topics that the software industry should know, but does not have effective data on circa 
2014.  Following are 20 samples where solid data would be valuable to the software industry: 

Table 10: Twenty Problems that Lack Effective Metrics and Data Circa 2014 

1. How does agile quality and productivity compare to other methods? 
2. Does agile work well for projects > 10,000 function points? 
3. How effective is pair programming compared to inspections and static analysis? 
4. Do ISO/IEC quality standards have any tangible results in lowering defect levels? 
5. How effective is the new SEMAT method of software engineering? 
6. What are best productivity rates for 100, 1000, 10,000, and 100,000 function points? 
7. What are best quality results for 100, 1000, 10,000, and 100,000 function points? 
8. What are the best quality results for CMMI levels 1, 2, 3, 4, and 5 for large systems? 
9. What industries have the best software quality results? 
10. What countries have the best software quality results? 
11. How expensive are requirements and design compared to programming? 
12. Do paper documents cost more than source code for defense software? 
13. What is the optimal team size and composition for different kinds of software?  
14. How does data quality compare to software quality? 
15. How many delivered high-severity defects might indicate professional malpractice? 
16. How often should software size be renormalized because of continuous growth? 
17. How expensive is software governance? 
18. What are the measured impacts of software reuse on productivity and quality? 
19. What are the measured impacts of unpaid overtime on productivity and schedules? 
20. What are the measured impacts of adding people to late software projects? 

These 20 issues are only the tip of the iceberg and dozens of other important topics are in urgent 
need of accurate predictions and accurate measurements.  The software industry needs an 
effective suite of accurate and reliable metrics that can be used to predict and measure economic 
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productivity and application quality.  Until we have such a suite of effective metrics, software 
engineering should not be considered to be a true profession. 
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Appendix A: Problems with Cost per Defect Metrics 

The cost-per-defect metric has been in continuous use since the 1960’s for examining the 
economic value of software quality.  Hundreds of journal articles and scores of books include 
stock phrases, such as “it costs 100 times as much to fix a defect after release as during early 
development.”   

Typical data for cost per defect varies from study to study but resembles the following pattern 
circa 2014: 

Defects found during requirements =      $250 

Defects found during design =      $500 

Defects found during coding and testing =  $1,250 

Defects found after release =    $5,000 

While such claims are often true mathematically, there are three hidden problems with cost per 
defect that are usually not discussed in the software literature: 

1. Cost per defect penalizes quality and is always cheapest where the greatest numbers of 
bugs are found. 

2. Because more bugs are found at the beginning of development than at the end, the 
increase in cost per defect is artificial.  Actual time and motion studies of defect repairs 
show little variance from end to end. 

3. Even if calculated correctly, cost per defect does not measure the true economic value of 
improved software quality.  Over and above the costs of finding and fixing bugs, high 
quality leads to shorter development schedules and overall reductions in development 
costs.  These savings are not included in cost per defect calculations, so the metric 
understates the true value of quality by several hundred percent. 

The cost per defect metric has such serious shortcomings for economic studies of software 
quality that a case might be made for considering this metric to be a form of professional 
malpractice for economic analysis of software quality. 

Let us consider the cost per defect problem areas using examples that illustrate the main points. 
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Why Cost per Defect Penalizes Quality 

The well-known and widely cited “cost per defect” measure unfortunately violates the canons of 
standard economics.  Although this metric is often used to make quality economic claims, its 
main failing is that it penalizes quality and achieves the best results for the buggiest applications!    

Furthermore, when zero-defect applications are reached there are still substantial appraisal and 
testing activities that need to be accounted for.  Obviously the “cost per defect” metric is useless 
for zero-defect applications. 

As with KLOC metrics discussed in Appendix B, the main source of error is that of ignoring 
fixed costs.  Three examples will illustrate how “cost per defect” behaves as quality improves. 

In all three cases, A, B, and C, we can assume that test personnel work 40 hours per week and 
are compensated at a rate of $2,500 per week or $75.75 per hour using fully burdened costs.  
Assume that all three software features that are being tested are 100 function points in size and 
5000 lines of code in size (5 KLOC). 

Case A: Poor Quality 

Assume that a tester spent 15 hours writing test cases, 10 hours running them, and 15 hours 
fixing 10 bugs.  The total hours spent was 40 and the total cost was $2,500.  Since 10 bugs were 
found, the cost per defect was $250.  The cost per function point for the week of testing would be 
$25.00.   The cost per KLOC for the week of testing would be $500. 

Case B: Good Quality 

In this second case assume that a tester spent 15 hours writing test cases, 10 hours running them, 
and 5 hours fixing one bug, which was the only bug discovered.  

However since no other assignments were waiting and the tester worked a full week 40 hours 
were charged to the project.  The total cost for the week was still $2,500 so the cost per defect 
has jumped to $2,500.   

If the 10 hours of slack time are backed out, leaving 30 hours for actual testing and bug repairs, 
the cost per defect would be $2,273.50 for the single bug.   This is equal to $22.74 per function 
point or $454.70 per KLOC. 

As quality improves, “cost per defect” rises sharply. The reason for this is that writing test cases 
and running them act like fixed costs.   It is a well-known law of manufacturing economics that: 

“If a manufacturing cycle includes a high proportion of fixed costs and there is a reduction in 
the number of units produced, the cost per unit will go up.” 
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As an application moves through a full test cycle that includes unit test, function test, regression 
test, performance test, system test, and acceptance test the time required to write test cases and 
the time required to run test cases stays almost constant; but the number of defects found steadily 
decreases.  

Table 11 shows the approximate costs for the three cost elements of preparation, execution, and 
repair for the test cycles just cited using the same rate of $:75.75 per hour for all activities: 

Table 11:  Cost per Defect for Six Forms of Testing   
(Assumes $75.75 per staff hour for costs)    
       

 Writing Running Repairing TOTAL 
Number 

of $ per 

 
Test 

Cases 
Test 

Cases Defects COSTS Defects Defect 
       
Unit test $1,250.00 $750.00 $18,937.50 $20,937.50 50 $418.75 
       
Function test $1,250.00 $750.00 $7,575.00 $9,575.00 20 $478.75 
       
Regression test $1,250.00 $750.00 $3,787.50 $5,787.50 10 $578.75 
       
Performance test $1,250.00 $750.00 $1,893.75 $3,893.75 5 $778.75 
       
System test $1,250.00 $750.00 $1,136.25 $3,136.25 3 $1,045.42 
       
Acceptance test $1,250.00 $750.00 $378.75 $2,378.75 1 $2,378.75 

 

What is most interesting about table 1 is that cost per defect rises steadily as defect volumes 
come down, even though table 1 uses a constant value of 5 hours to repair defects for every 
single test stage!  In other words every defect identified throughout table 1 had a constant cost of 
$378.25 when only repairs are considered.   

In fact all three columns use constant values and the only true variable in the example is the 
number of defects found.  In real life, of course, preparation, execution, and repairs would all be 
variables.  But by making them constant, it is easier to illustrate the main point:  cost per defect 
rises as numbers of defects decline. 

Since the main reason that cost per defect goes up as defects decline is due to the fixed costs 
associated with preparation and execution, it might be thought that those costs could be backed 
out and leave only defect repairs.  Doing this would change the apparent results and minimize 
the errors, but it would introduce three new problems: 
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1. Removing quality cost elements that may total more than 50% of total quality costs 
would make it impossible to study quality economics with precision and accuracy. 

2. Removing preparation and execution costs would make it impossible to calculate cost of 
quality (COQ) because the calculations for COQ demand all quality cost elements. 

3. Removing preparation and execution costs would make it impossible to compare testing 
against formal inspections, because inspections do record preparation and execution as 
well as defect repairs. 

Backing out or removing preparation and execution costs would be like going on a low-carb diet 
and not counting the carbs in pasta and bread, but only counting the carbs in meats and 
vegetables.  The numbers might look good, but the results in real life would not be good. 

Let us now consider cost per function point as an alternative metric for measuring the costs of 
defect removal.  With the slack removed the cost per function point would be $18.75.  As can 
easily be seen cost per defect goes up as quality improves, thus violating the assumptions of 
standard economic measures.   

However, as can also be seen, testing cost per function point declines as quality improves.  This 
matches the assumptions of standard economics.  The 10 hours of slack time illustrate another 
issue:  when quality improves defects can decline faster than personnel can be reassigned. 

Case C: Zero Defects 

In this third case assume that a tester spent 15 hours writing test cases and 10 hours running 
them.  No bugs or defects were discovered.   

Because no defects were found, the “cost per defect” metric cannot be used at all.  But 25 hours 
of actual effort were expended writing and running test cases.  If the tester had no other 
assignments, he or she would still have worked a 40 hour week and the costs would have been 
$2,500.  

If the 15 hours of slack time are backed out, leaving 25 hours for actual testing, the costs would 
have been $1,893.75. With slack time removed, the cost per function point would be $18.38.  As 
can be seen again, testing cost per function point declines as quality improves.  Here too, the 
decline in cost per function point matches the assumptions of standard economics. 

Time and motion studies of defect repairs do not support the aphorism that “it costs 100 times as 
much to fix a bug after release as before.”  Bugs typically require between 15 minutes and 6 
hours to repair regardless of where they are found.   

(There are some bugs that are expensive and may takes several days to repair, or even longer.  
These are called “abeyant defects” by IBM.  Abeyant defects are customer-reported defects 
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which the repair center cannot recreate, due to some special combination of hardware and 
software at the client site.  Abeyant defects comprise less than 5% of customer-reported defects.)  

Considering that cost per defect has been among the most widely used quality metrics for more 
than 50 years, the literature is surprisingly ambiguous about what activities go into “cost per 
defect.”  More than 75% of the articles and books that use cost per defect metrics do not state 
explicitly whether preparation and executions costs are included or excluded.  In fact a majority 
of articles do not explain anything at all, but merely show numbers without discussing what 
activities are included. 

Another major gap is that the literature is silent on variations in cost per defect by severity level.  
A study done by the author at IBM showed these variations in defect repair intervals associated 
with severity levels. 

 Table 12 shows the results of the study.  Since these are customer-reported defects, “preparation 
and execution” would have been carried out by customers and the amounts were not reported to 
IBM.  Peak effort for each severity level is highlighted in blue. 

Table 12: Defect Repair Hours by Severity Levels for Field Defects  
       
 Severity 1 Severity 2 Severity 3 Severity 4 Invalid Average 
       
> 40 hours 1.00% 3.00% 0.00% 0.00% 0.00% 0.80% 
       
30 - 39 hours 3.00% 12.00% 1.00% 0.00% 1.00% 3.40% 
       
20 - 29 hours 12.00% 20.00% 8.00% 0.00% 4.00% 8.80% 
       
10 - 19 hours 22.00% 32.00% 10.00% 0.00% 12.00% 15.20% 
       
1 - 9 hours 48.00% 22.00% 56.00% 40.00% 25.00% 38.20% 
       
> 1 hour 14.00% 11.00% 25.00% 60.00% 58.00% 33.60% 
       
TOTAL 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

As can be seen, the overall average would be close to perhaps 5 hours, although the range is 
quite wide. 

In table 12, severity 1 defects mean that the software has stopped working.  Severity 2 means 
that major features are disabled.  Severity 3 refers to minor defects.  Severity 4 defects are 
cosmetic in nature and do not affect operations.  Invalid defects are hardware problems or 
customer errors inadvertently reported as software defects.  A surprisingly large amount of time 
and effort goes into dealing with invalid defects although this topic is seldom discussed in the 
quality literature. 
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Using Function Point Metrics for Defect Removal Economics 

Because of the fixed or inelastic costs associated with defect removal operations, cost per defect 
always increases as numbers of defects decline.  Because more defects are found at the beginning 
of a testing cycle than after release, this explains why cost per defect always goes up later in the 
cycle.   

An alternate way of showing the economics of defect removal is to switch from “cost per defect” 
and use “defect removal cost per function point”.  Table 13 uses the same basic information as 
Table 11, but expresses all costs in terms of cost per function point: 

Table 13  Cost per Function Point for Six Forms of Testing  
(Assumes $75.75 per staff hour for costs)    
(Assumes 100 function points in the application)   
      
 Writing Running Repairing TOTAL  Number of 

 Test Cases Test Cases Defects 
 $ PER 

F.P. Defects 
      
      
Unit test $12.50 $7.50 $189.38 $209.38 50 
      
Function test $12.50 $7.50 $75.75 $95.75 20 
      
Regression test $12.50 $7.50 $37.88 $57.88 10 
      
Performance test $12.50 $7.50 $18.94 $38.94 5 
      
System test $12.50 $7.50 $11.36 $31.36 3 
      
Acceptance test $12.50 $7.50 $3.79 $23.79 1 

 

The advantage of defect removal cost per function point over cost per defect is that it actually 
matches the assumptions of standard economics.  In other words, as quality improves and defect 
volumes decline, cost per function point tracks these benefits and also declines.  High quality is 
shown to be cheaper than poor quality, while with cost per defect high quality is incorrectly 
shown as being more expensive. 

However, quality has more benefits to software applications than just those associated with 
defect removal activities.  The most significant benefit of high quality is that it leads to shorter 
development schedules and cheaper overall costs for both development and maintenance.  The 
total savings from high quality are much greater than the improvements in defect removal 
expenses. 

Let us consider the value of high quality for a large system in the 10,000 function point size 
range. 
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The Value of Quality for Large Applications of 10,000 Function Points 
 
When software applications reach 10,000 function points in size, they are very significant 
systems that require close attention to quality control, change control, and corporate governance.  
In fact without careful quality and change control, the odds of failure or cancellation top 35% for 
this size range. 
 
Note that as application size increases, defect potentials increase rapidly and defect removal 
efficiency levels decline, even with sophisticated quality control steps in place.  This is due to the 
exponential increase in the volume of paperwork for requirements and design, which often leads 
to partial inspections rather than 100% inspections.  For large systems, test coverage declines and 
the number of test cases mounts rapidly but cannot usually keep pace with complexity. 
 
Table 14:  Quality Value for 10,000 Function Point Applications 
(Note: 10,000 function points = 1,250,000 C statements)  
    
 Average Excellent Difference 
 Quality Quality  
    
Defects per Function Point 6.00 3.50 -2.50 
    
Defect Potential 60,000 35,000 -25,000 
    
Defect Removal Efficiency 84.00% 96.00% 12.00% 
    
Defects Removed 50,400 33,600 -16,800 
    
Defects Delivered 9,600 1,400 -8,200 
    
Cost per Defect $341 $417 $76 
Pre-Release    
    
Cost per Defect $833 $1,061 $227 
Post Release    
    
Development Schedule 40 28 -12 
(Calendar Months)    
    
Development Staffing 67 67 0.00 
    
Development Effort 2,654 1,836 -818 
(Staff Months)    
    
Development Costs $26,540,478 $18,361,525 -$8,178,953 
    
Function Points 3.77 5.45 1.68 
per Staff Month    
    
LOC per Staff Month 471 681 209.79 
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Maintenance Staff 17 17 0 
    
Maintenance Effort 800 117 -683.33 
(Staff Months)    
    
Maintenance Costs $8,000,000 $1,166,667 -$6,833,333 
(Year 1)    
    
TOTAL EFFORT 3,454 1,953 -1501 
(STAFF MONTHS)    
    
TOTAL COST $34,540,478 $19,528,191 -$15,012,287 
    
TOTAL COST $414,486 $234,338 -$180,147 
PER STAFF MEMBER    
    
TOTAL COST  $3,454.05 $1,952.82 -$1,501.23 
PER FUNCTION POINT    
    
TOTAL COST PER LOC $27.63 $15.62 -$12.01 
    
AVERAGE COST $587 $739 $152 
PER DEFECT    

 
The glaring problem of cost per defect is shown in table 14.  Note that even though high quality 
reduced total costs by almost 50%, cost per defect is higher for the high-quality version than it is 
for the low-quality version!  Note that cost per function point matches the true economic value of 
high quality, while “cost per defect” conceals the true economic value.   
 
Cost savings from better quality increase as application sizes increase.  The general rule is that 
the larger the software application the more valuable quality becomes.  The same principle is true 
for change control, because the volume of creeping requirements goes up with application size. 
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Appendix B: Side by Side Comparisons of 79 Languages using LOC and Function Points 

This appendix provides side-by-side comparisons of 79 programming languages using both 
function point metrics and lines of code metrics.  Productivity is expressed using both hourly and 
monthly rates.  The table assumes a constant value of 1000 function points for all 79 languages.  
However the number of lines of code varies widely based on the specific language. 

Also held constant is the assumption for every language that the amount of non-code work for 
requirements, architecture, design, documentation, and management is an even 3000 hours.   

As can be seen, Appendix A provides a mathematical proof that lines of code do not measure 
economic productivity.  In Appendix A and in real life, economic productivity is defined as 
“producing a specific quantity of goods for the lowest number of work hours.” 

Function points match this definition of economic productivity, but LOC metrics reverse true 
economic productivity and make the languages with the largest number of work hours seem 
more productive than the languages with the lowest number of work hours.  This is why LOC 
metrics are considered by the author to be professional malpractice as economic metrics when 
comparing results across multiple languages.  Of course comparing results for a single language 
do not have the problems shown in Appendix A. 

In the following table economic productivity is shown in green, and is the lowest number of 
work hours to deliver 1000 function points. 

Appendix A:  Side-by-Side Comparison of function points and lines of code metrics 
    	   	   	   	   	  

         

 Languages Size in Total 
Work 
hours FP per Work 

Work 
hours 

LOC 
per 

  KLOC 
Work 
hours per FP Month Months 

per 
KLOC Month 

         

1 
Machine 
language 

       
640.00       119,364  

      
119.36  

          
1.11  

       
904.27  

      
186.51  708 

2 Basic Assembly 
       

320.00         61,182  
        

61.18  
          

2.16  
       

463.50  
      

191.19  690 

3 JCL 
       

220.69         43,125  
        

43.13  
          

3.06  
       

326.71  
      

195.41  675 

4 
Macro 
Assembly 

       
213.33         41,788  

        
41.79  

          
3.16  

       
316.57  

      
195.88  674 

5 HTML 
       

160.00         32,091  
        

32.09  
          

4.11  
       

243.11  
      

200.57  658 

6 C 
       

128.00         26,273  
        

26.27  
          

5.02  
       

199.04  
      

205.26  643 
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7 XML 
       

128.00         26,273  
        

26.27  
          

5.02  
       

199.04  
      

205.26  643 

8 Algol 
       

106.67         22,394  
        

22.39  
          

5.89  
       

169.65  
      

209.94  629 

9 Bliss 
       

106.67         22,394  
        

22.39  
          

5.89  
       

169.65  
      

209.94  629 

10 Chill 
       

106.67         22,394  
        

22.39  
          

5.89  
       

169.65  
      

209.94  629 

11 COBOL 
       

106.67         22,394  
        

22.39  
          

5.89  
       

169.65  
      

209.94  629 

12 Coral 
       

106.67         22,394  
        

22.39  
          

5.89  
       

169.65  
      

209.94  629 
13 Fortran    106.67             22,394   22.39           5.89            169.65       209.94     629 

14 Jovial 
       

106.67         22,394  
        

22.39  
          

5.89  
       

169.65  
      

209.94  629 

15 GW Basic 
         

98.46         20,902  
        

20.90  
          

6.32  
       

158.35  
      

212.29  622 

16 Pascal 
         

91.43         19,623  
        

19.62  
          

6.73  
       

148.66  
      

214.63  615 

17 PL/S 
         

91.43         19,623  
        

19.62  
          

6.73  
       

148.66  
      

214.63  615 

18 ABAP 
         

80.00         17,545  
        

17.55  
          

7.52  
       

132.92  
      

219.32  602 

19 Modula 
         

80.00         17,545  
        

17.55  
          

7.52  
       

132.92  
      

219.32  602 

20 PL/I 
         

80.00         17,545  
        

17.55  
          

7.52  
       

132.92  
      

219.32  602 

21 ESPL/I 
         

71.11         15,929  
        

15.93  
          

8.29  
       

120.68  
      

224.01  589 

22 Javascript 
         

71.11         15,929  
        

15.93  
          

8.29  
       

120.68  
      

224.01  589 

23 
Basic 
(interpreted) 

         
64.00         14,636  

        
14.64  

          
9.02  

       
110.88  

      
228.69  577 

24 Forth 
         

64.00         14,636  
        

14.64  
          

9.02  
       

110.88  
      

228.69  577 

25 haXe 
         

64.00         14,636  
        

14.64  
          

9.02  
       

110.88  
      

228.69  577 

26 Lisp 
         

64.00         14,636  
        

14.64  
          

9.02  
       

110.88  
      

228.69  577 

27 Prolog 
         

64.00         14,636  
        

14.64  
          

9.02  
       

110.88  
      

228.69  577 

28 
SH (shell 
scripts) 

         
64.00         14,636  

        
14.64  

          
9.02  

       
110.88  

      
228.69  577 

29 Quick Basic 
         

60.95         14,082  
        

14.08  
          

9.37  
       

106.68  
      

231.04  571 

30 Zimbu 
         

58.18         13,579  
        

13.58  
          

9.72  
       

102.87  
      

233.38  566 

31 C++ 
         

53.33         12,697  
        

12.70  
        

10.40  
         

96.19  
      

238.07  554 

32 Go 
         

53.33         12,697  
        

12.70  
        

10.40  
         

96.19  
      

238.07  554 

33 Java 
         

53.33         12,697  
        

12.70  
        

10.40  
         

96.19  
      

238.07  554 

34 PHP 
         

53.33         12,697  
        

12.70  
        

10.40  
         

96.19  
      

238.07  554 
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35 Python 
         

53.33         12,697  
        

12.70  
        

10.40  
         

96.19  
      

238.07  554 

36 C# 
         

51.20         12,309  
        

12.31  
        

10.72  
         

93.25  
      

240.41  549 

37 X10 
         

51.20         12,309  
        

12.31  
        

10.72  
         

93.25  
      

240.41  549 

38 Ada 95 
         

49.23         11,951  
        

11.95  
        

11.05  
         

90.54  
      

242.76  544 

39 Ceylon 
         

49.23         11,951  
        

11.95  
        

11.05  
         

90.54  
      

242.76  544 

40 Fantom 
         

49.23         11,951  
        

11.95  
        

11.05  
         

90.54  
      

242.76  544 

41 Dart 
         

47.41         11,620  
        

11.62  
        

11.36  
         

88.03  
      

245.10  539 

42 RPG III 
         

47.41         11,620  
        

11.62  
        

11.36  
         

88.03  
      

245.10  539 

43 CICS 
         

45.71         11,312  
        

11.31  
        

11.67  
         

85.69  
      

247.44  533 

44 DTABL 
         

45.71         11,312  
        

11.31  
        

11.67  
         

85.69  
      

247.44  533 

45 F# 
         

45.71         11,312  
        

11.31  
        

11.67  
         

85.69  
      

247.44  533 

46 Ruby 
         

45.71         11,312  
        

11.31  
        

11.67  
         

85.69  
      

247.44  533 

47 Simula 
         

45.71         11,312  
        

11.31  
        

11.67  
         

85.69  
      

247.44  533 

48 Erlang 
         

42.67         10,758  
        

10.76  
        

12.27  
         

81.50  
      

252.13  524 

49 DB2 
         

40.00         10,273  
        

10.27  
        

12.85  
         

77.82  
      

256.82  514 

50 LiveScript 
         

40.00         10,273  
        

10.27  
        

12.85  
         

77.82  
      

256.82  514 

51 Oracle 
         

40.00         10,273  
        

10.27  
        

12.85  
         

77.82  
      

256.82  514 

52 Elixir 
         

37.65           9,845  
          

9.84  
        

13.41  
         

74.58  
      

261.51  505 

53 Haskell 
         

37.65           9,845  
          

9.84  
        

13.41  
         

74.58  
      

261.51  505 

54 
Mixed 
Languages 

         
37.65           9,845  

          
9.84  

        
13.41  

         
74.58  

      
261.51  505 

55 Julia 
         

35.56           9,465  
          

9.46  
        

13.95  
         

71.70  
      

266.19  496 

56 M 
         

35.56           9,465  
          

9.46  
        

13.95  
         

71.70  
      

266.19  496 

57 OPA 
         

35.56           9,465  
          

9.46  
        

13.95  
         

71.70  
      

266.19  496 

58 Perl 
         

35.56           9,465  
          

9.46  
        

13.95  
         

71.70  
      

266.19  496 

59 APL 
         

32.00           8,818  
          

8.82  
        

14.97  
         

66.80  
      

275.57  479 

60 Delphi 
         

29.09           8,289  
          

8.29  
        

15.92  
         

62.80  
      

284.94  463 

61 Objective C 
         

26.67           7,848  
          

7.85  
        

16.82  
         

59.46  
      

294.32  448 

62 Visual Basic 
         

26.67           7,848  
          

7.85  
        

16.82  
         

59.46  
      

294.32  448 
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63 ASP NET 
         

24.62           7,476  
          

7.48  
        

17.66  
         

56.63  
      

303.69  435 

64 Eiffel 
         

22.86           7,156  
          

7.16  
        

18.45  
         

54.21  
      

313.07  422 

65 Smalltalk 
         

21.33           6,879  
          

6.88  
        

19.19  
         

52.11  
      

322.44  409 

66 IBM ADF 
         

20.00           6,636  
          

6.64  
        

19.89  
         

50.28  
      

331.82  398 

67 MUMPS 
         

18.82           6,422  
          

6.42  
        

20.55  
         

48.65  
      

341.19  387 

68 Forte 
         

17.78           6,232  
          

6.23  
        

21.18  
         

47.21  
      

350.57  377 

69 APS 
         

16.84           6,062  
          

6.06  
        

21.77  
         

45.93  
      

359.94  367 

70 TELON 
         

16.00           5,909  
          

5.91  
        

22.34  
         

44.77  
      

369.32  357 

71 Mathematica9 
         

12.80           5,327  
          

5.33  
        

24.78  
         

40.36  
      

416.19  317 

72 TranscriptSQL 
         

12.80           5,327  
          

5.33  
        

24.78  
         

40.36  
      

416.19  317 

73 QBE 
         

12.80           5,327  
          

5.33  
        

24.78  
         

40.36  
      

416.19  317 

74 X 
         

12.80           5,327  
          

5.33  
        

24.78  
         

40.36  
      

416.19  317 

75 Mathematica10 
           

9.14           4,662  
          

4.66  
        

28.31  
         

35.32  
      

509.94  259 

76 BPM 
           

7.11           4,293  
          

4.29  
        

30.75  
         

32.52  
      

603.69  219 

77 Generators 
           

7.11           4,293  
          

4.29  
        

30.75  
         

32.52  
      

603.69  219 

78 Excel 
           

6.40           4,164  
          

4.16  
        

31.70  
         

31.54  
      

650.57  203 

79 IntegraNova 
           

5.33           3,970  
          

3.97  
        

33.25  
         

30.07  
      

744.32  177 
         

 Average 
        

67.60         15,291  15.29 12.80 115.84 279.12 515 
 

It is obvious that in real life no one would produce 1000 function points in machine language, 
JCL, or some of the other languages in the table.  The table is merely illustrative of the fact that 
while function points may be constant and non-code hours are fixed costs, coding effort is 
variable and proportional to the amount of source code produced.  

In Appendix A the exact number of KLOC can vary from team to team and company to 
company.  But that is irrelevant to the basic mathematics of the case.  There are three aspects to 
the math: 

Point 1:  When a manufacturing process includes a high proportion of fixed costs and there is a 
reduction in the units produced, the cost per unit will go up.  This is true for all industries and all 
manufactured products without exception. 
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Point 2:  When switching from a low-level programming language to a high-level programming 
language, the number of “units” produced will be reduced. 

Point 3:  The reduction in LOC metrics for high-level languages in the presence of the fixed 
costs for requirements and design will cause cost per LOC to go up and will also cause LOC per 
month to come down for high-level languages. 

These three points are nothing more than the standard rules of manufacturing economics applied 
to software and programming languages. 

 

 

 


