
1	
	

The Mess of Software Metrics

Version 2.0 September 12, 2014

Capers Jones, Vice President and CTO, Namcook Analytics LLC
Web: www.Namcook.com
Blog: http://namcookanalytics.com
Email: Capers.Jones3@gmail.com

Keywords: cost per defect, economic productivity, function points, lines of code (LOC),
manufacturing economics, software productivity, software metrics, software quality.

Abstract

The software industry is one of the largest, wealthiest, and most important industries in the
modern world. The software industry is also troubled by very poor quality and very high cost
structures due to the expense of software development, maintenance, and endemic problems with
poor quality control.

Accurate measurements of software development and maintenance costs and accurate
measurement of quality would be extremely valuable. But as of 2014 the software industry
labors under a variety of non-standard and highly inaccurate measures compounded by very
sloppy measurement practices. For that matter, there is little empirical data about the efficacy of
software standards themselves.

The industry also lacks effective basic definitions for “software productivity” and “software
quality” and uses a variety of ambiguous definitions that are difficult to predict before software
is released and difficult to measure after the software is released. This paper suggests definitions
for both economic software productivity and software quality that are both predictable and
measureable.

Copyright © 2014 by Capers Jones. All rights reserved.

2	
	

Introduction

The software industry has become one of the largest and most successful industries in history.
However software applications are among the most expensive and error-prone manufactured
objects in history.

Software needs a careful analysis of economic factors and much better quality control than is
normally accomplished. In order to achieve these goals, software also needs accurate and
reliable metrics and good measurement practices. Unfortunately the software industry lacks both
circa 2014.

This short paper deals with some of the most glaring problems of software metrics and suggests a
metrics and measurement suite that can actually explore software economics and software
quality with precision. The suggested metrics can be predicted prior to development and then
measured after release.

Following are descriptions of the more troubling software metrics in alphabetical order:

Backfiring is a term that refers to mathematical conversion between lines of code and function
points. This method was first developed by A.J. Albrecht and colleagues during the original
creation of function point metrics, since the IBM team had LOC data for the projects they used
for function points. IBM used logical code statements for backfiring rather than physical LOC.
There are no ISO standards for backfiring. Backfiring is highly ambiguous and varies by over
500% from language to language and company to company. A sample of “backfiring” is the
ratio of about 106.7 statements in the procedure and data divisions of COBOL for one IFPUG
function point. Consulting companies sell tables of backfire ratios for over 1000 languages, but
the tables are not the same from vendor to vendor. Backfiring is not endorsed by any of the
function point associations. Yet probably as many as 100,000 software projects have used
backfiring because it is quick and inexpensive, even though very inaccurate with huge variances
from language to language and programmer to programmer.

Benchmarks in a software context often refer to the effort and costs for developing an
application. Benchmarks are expressed in a variety of metrics such as “work hours per function
point,” “function points per month,” “lines of code per month,” “work hours per KLOC,” “story
points per month,” and many more. Benchmarks also vary in scope and range from project
values, phase values, activity values, and task values. There are no ISO standards for benchmark
contents. Worse, many benchmarks “leak” and omit over 50% of true software effort. The
popular benchmark of “design, code, and unit test” termed DCUT contains only about 30% of
total software effort. The most common omissions from benchmarks include unpaid overtime,
management, and the work of part-time specialists such as technical writers and software quality
assurance. Thus benchmarks from various sources such as ISBSG, QSM, and others cannot be
directly compared since they do not contain the same information.

3	
	

Cost estimating for software projects is generally inaccurate and usually optimistic. About 85%
of projects circa 2014 use inaccurate manual estimates. The other 15% use parametric
estimating tools of which these are the most common estimating tools in 2014, shown in
alphabetical order: COCOMO, COCOMO clones, CostXpert, ExcelerPlan, KnowledgePlan,
SEER, SLIM, Software Risk Master (SRM), and TruePrice. A study by the author that
compared 50 manual estimates against 50 parametric estimates found that only 4 of the 50
manual estimates were within plus or minus 5% and the average was 34% optimistic for costs
and 27% optimistic for schedules. For manual estimates, the larger the project the more
optimistic the results. By contrast 32 of the 50 parametric estimates were within plus or minus
5% and the deviations for the others averaged about 12% higher for costs and 6% longer for
schedules. Conservatism is the “fail safe” mode for estimates. The author’s SRM tool has a
patent-pending early sizing feature based on pattern matching that allows it to be used 30 to 180
days earlier than the other parametric estimation tools. It also predicts topics not included in the
others such as litigation risks, costs of breach of contract litigation for the plaintiff and
defendant, and document sizes and costs for 20 key document types such as requirements,
design, user manuals, plans, and others. The patent-pending early sizing feature of SRM
produces size in a total of 23 metrics including function points, story points, use case points,
logical code statements, physical lines of code, and many others.

Cost per defect metrics penalize quality and makes the buggiest software look cheapest. There
are no ISO or other standards for calculating cost per defect. Cost per defect does not measure
the economic value of software quality. The urban legend that it costs 100 times as much to fix
post-release defects as early defects is not true and is based on ignoring fixed costs. Due to fixed
costs of writing and running test cases, cost per defect rises steadily because fewer and fewer
defects are found. This is caused by a standard rule of manufacturing economics: “if a process
has a high percentage of fixed costs and there is a reduction in the units produced, the cost per
unit will go up.” This explains why cost per defects seems to go up over time even though actual
defect repair costs are flat and do not change very much. There are of course very troubling
defects that are expensive and time consuming, but these are comparatively rare. Appendix A
explains the problems of cost per defect metrics.

Defect removal efficiency (DRE) was developed by IBM circa 1970. The original IBM version
of DRE measured internal defects found by developers and compared them to external defects
found by clients in the first 90 days following release. If developers found 90 bugs and clients
reported 10 bugs, DRE is 90%. This measure has been in continuous use by hundreds of
companies since about 1975. However there are no ISO standards for DRE. The International
Software Benchmark Standards Group (ISBSG) unilaterally changed the post-release interval to
30 days in spite of the fact that the literature on DRE since the 1970’s was based on a 90 day
time span, such as the author’s 1991 version of Applied Software Measurement and his more
recent book on The Economics of Software Quality with Olivier Bonsignour. Those with
experience in defects and quality tracking can state with certainty that a 30 day time window is

4	
	

too short; major applications sometimes need more than 30 days of preliminary installation and
training before they are actually used. Of course bugs will be found long after 90 days; but
experience indicates that a 90-day interval is sufficient to judge the quality of software
applications. A 30 day interval is not sufficient.

Defect density metrics measure the number of bugs released to clients. There are no ISO or
other standards for calculating defect density. One method counts only code defects released. A
more complete method includes bugs originating in requirements and design as well as code
defects, and also includes “bad fixes” or bugs in defect repairs themselves. There is more than a
300% variation between counting only code bugs and counting bugs from all sources.

Function point metrics were invented by IBM circa 1975 and placed in the public domain circa
1978. Function point metrics do measure economic productivity using both “work hours per
function point” and “function points per month”. They also are useful for normalizing quality
data such as “defects per function point”. However there are numerous function point variations
and they all produce different results: Automatic, backfired, COSMIC, Fast, FISMA, IFPUG,
Mark II, NESMA, Unadjusted, etc. There are ISO standards for COSMIC, FISMA, IFPUG, and
NESMA. However in spite of ISO standards all four produce different counts. Adherents of
each function point variant claim “accuracy” as a virtue but there is no cesium atom or
independent way to ascertain accuracy so these claims are false. For example COSMIC function
points produce higher counts than IFPUG function points for many applications but that does not
indicate “accuracy” since there is no objective way to know accuracy.

ISO/IEC standards are numerous and cover every industry; not just software. However these
standards are issued without any proof of efficacy. After release some standards have proven to
be useful, some are not so useful, and a few are being criticized so severely that some software
consultants and managers are urging a recall such as the proposed ISO/IEC testing standard. ISO
stands for the International Organization for Standards (in French) and IEC stands for
International Electrical Commission. While ISO/IEC standards are the best known, there are
other standards groups such as the Object Management Group (OMG) which recently published
a standard on automatic function points. Here too there is no proof of efficacy prior to release.
There are also national standards such as ANSI or the American National Standards Institute,
and also military standards by the U.S. Department of Defense (DoD) and by similar
organizations elsewhere. The entire topic of standards is in urgent need of due diligence and of
empirical data that demonstrates the value of specific standards after issuance. In total there are
probably several hundred standards groups in the world with a combined issuance of over 1000
standards, of which probably 50 apply to aspects of software. Of these only a few have solid
empirical data that demonstrates value and efficacy.

Lines of code (LOC) metrics penalize high-level languages and make low-level languages look
better than they are. LOC metrics also make requirements and design invisible. There are no
ISO or other standards for counting LOC metrics. About half of the papers and journal articles

5	
	

use physical LOC and half use logical LOC. The difference between counts of physical and
logical LOC can top 500%. LOC metrics make requirements and design invisible and also
ignore requirements and design defects, which outnumber code defects. Although there are
benchmarks based on LOC, the intrinsic errors of LOC metrics make them unreliable. Due to
lack of standards for counting LOC, benchmarks from different vendors for the same
applications can contain widely different results. Appendix B provides a mathematical proof that
LOC metrics do not measure economic productivity by showing 79 programming languages with
function points and LOC in a side-by-side format.

Story point metrics are widely used for agile projects with “user stories.” Story points have no
ISO standard for counting or any other standard. They are highly ambiguous and vary by as
much as 400% from company to company and project to project. There are few useful
benchmarks using story points. Obviously story points can’t be used for projects that don’t
utilize user stories so they are worthless for comparisons against other design methods.

Technical debt is a new metric and rapidly spreading. The concept of “technical debt” is that
topics deferred during development in the interest of schedule speed will cost more after release
than they would have cost initially. However there are no ISO standards for technical debt and
the concept is highly ambiguous. It can vary by over 500% from company to company and
project to project. Worse, technical debt does not include all of the costs associated with poor
quality and development short cuts. Technical debt omits canceled projects, consequential
damages or harm to users, and the costs of litigation for poor quality.

Use case points are used by projects with designs based on “use cases” which often utilize
IBM’s Rational Unified Process (RUP). There are no ISO standards for use cases. Use cases are
ambiguous and vary by over 200% from company to company and project to project. Obviously
use cases are worthless for measuring projects that don’t utilize use cases, so they have very little
benchmark data.

Defining Software Productivity and Software Quality

For more than 200 years the standard economic definition of productivity has been, “Goods or
services produced per unit of labor or expense.” This definition is used in all industries, but has
been hard to use in the software industry. For software there is ambiguity in what constitutes our
“goods or services.”

The oldest unit for software “goods” was a “line of code” or LOC. More recently software goods
have been defined as “function points.” Even more recent definitions of goods include “story
points” and “use case points.” The pros and cons of these units have been discussed and some
will be illustrated in the appendices.

6	
	

Another important topic taken from manufacturing economics has a big impact on software
productivity that is not yet well understood even in 2014: fixed costs.

A basic law of manufacturing economics that is valid for all industries including software is the
following: “When a development process has a high percentage of fixed costs, and there is a
decline in the number of units produced, the cost per unit will go up.”

When a “line of code” is selected as the manufacturing unit and there is a switch from a low-
level language such as assembly to a high level language such as Java, there will be a reduction
in the number of units developed.

But the non-code tasks of requirements and design act like fixed costs. Therefore the cost per
line of code will go up for high-level languages. This means that LOC is not a valid metric for
measuring economic productivity as proven in Appendix B.

For software there are two definitions of productivity that match standard economic concepts:

1. Producing a specific quantity of deliverable units for the lowest number of work hours.
2. Producing the largest number of deliverable units in a standard work period such as an

hour, month, or year.

In definition 1 deliverable goods are constant and work hours are variable.

In definition 2 deliverable goods are variable and work periods are constant.

The common metric “work hours per function point” is a good example of productivity
definition 1. The metrics “function points per month” and “lines of code per month” are
examples of definition 2.

However for “lines of code” the fixed costs of requirements and design will cause apparent
productivity to be reversed, with low-level languages seeming better than high-level languages,
as shown by the 79 languages listed in Appendix B.

Definition 2 will also encounter the fact that the number of work hours per month varies widely
from country to country. For example India works 190 hours per month while the Netherlands
work only 116 hours per month. This means that productivity definitions 1 and 2 will not be the
same. A given number of work hours would take fewer calendar months in India than in the
Netherlands due to the larger number of monthly work hours.

Table 1 shows the differences between “work hours per function point” and “function points per
month” for 52 countries. The national work hour column is from the Organization of
International Cooperation and Development. Table 1 assumes a constant value of 15 work hours
per function point for an identical application in every country shown.

7	
	

 Table 1: Comparison of Work Hours per FP and FP per Month

 OECD Work Function
 National Hours per Points
 Work Function per
 hours Point Month
 per month

1 India 190.00 15.00 13.47
2 Taiwan 188.00 15.00 13.20
3 Mexico 185.50 15.00 13.17
4 China 186.00 15.00 12.93
5 Peru 184.00 15.00 12.67
6 Colombia 176.00 15.00 12.13
7 Pakistan 176.00 15.00 12.13
8 Hong Kong 190.00 15.00 12.01
9 Thailand 168.00 15.00 11.73

10 Malaysia 192.00 15.00 11.73
11 Greece 169.50 15.00 11.70
12 South Africa 168.00 15.00 11.60
13 Israel 159.17 15.00 11.14
14 Viet Nam 160.00 15.00 11.07
15 Phillipines 160.00 15.00 10.93
16 Singapore 176.00 15.00 10.92
17 Hungary 163.00 15.00 10.87
18 Poland 160.75 15.00 10.85
19 Turkey 156.42 15.00 10.69
20 Brazil 176.00 15.00 10.65
21 Panama 176.00 15.00 10.65
22 Chile 169.08 15.00 10.51
23 Estonia 157.42 15.00 10.49
24 Japan 145.42 15.00 10.49
25 Switzerland 168.00 15.00 10.45
26 Czech Republic 150.00 15.00 10.00
27 Russia 164.42 15.00 9.97
28 Argentina 168.00 15.00 9.91
29 Korea - South 138.00 15.00 9.60
30 United States 149.17 15.00 9.47
31 Saudi Arabia 160.00 15.00 9.44
32 Portugal 140.92 15.00 9.39

33
United
Kingdom 137.83 15.00 9.32

34 Finland 139.33 15.00 9.29

8	
	

35 Ukraine 156.00 15.00 9.20
36 Venezuela 152.00 15.00 9.10
37 Austria 134.08 15.00 8.94
38 Luxembourg 134.08 15.00 8.94
39 Italy 146.00 15.00 8.75
40 Belgium 131.17 15.00 8.74
41 New Zealand 144.92 15.00 8.68
42 Denmark 128.83 15.00 8.59
43 Canada 142.50 15.00 8.54
44 Australia 144.00 15.00 8.50
45 Ireland 127.42 15.00 8.49
46 Spain 140.50 15.00 8.42
47 France 123.25 15.00 8.22
48 Iceland 142.17 15.00 8.00
49 Sweden 135.08 15.00 7.97
50 Norway 118.33 15.00 7.89
51 Germany 116.42 15.00 7.76
52 Netherlands 115.08 15.00 7.67

 Average 155.38 15.00 10.13

Of course differences in experience, methodologies, languages, and other variables also impact
both forms of productivity. The point of table 1 is that the two forms are not identical from
country to country due to variations in local work patterns.

As we all know the topic of “quality” is somewhat ambiguous in every industry. Definitions for
quality can encompass subjective aesthetic quality and also precise quantitative units such as
numbers of defects and their severity levels.

Over the years software has tried a number of alternate definitions for quality that are not
actually useful. For example one definition for software quality has been “conformance to
requirements.”

Requirements themselves are filled with bugs or errors that comprise about 20% of the overall
defects found in software applications. Defining quality as conformance to a major source of
errors is circular reasoning and clearly invalid. We need to include requirements errors in our
definition of quality.

Another definition for quality has been “fitness for use.” But this definition is ambiguous and
cannot be predicted before the software is released, or even measured well after release.

9	
	

It is obvious that a workable definition for software quality must be unambiguous and capable of
being predicted before release and then measured after release and should also be quantified and
not purely subjective.

Another definition for software quality has been a string of words ending in “…ility” such as
reliability and maintainability. However laudable these attributes are, they are all ambiguous and
difficult to measure. Further, they are hard to predict before applications are built.

The quality standard ISO/IEC 9126 includes a list of words such as portability, maintainability,
reliability, and maintainability. It is astonishing that there is no discussion of defects or bugs.
Worse, the ISO/IEC definitions are almost impossible to predict before development and are not
easy to measure after release nor are they quantified. It is obvious that an effective quality
measure needs to be predictable, measurable, and quantifiable.

An effective definition for software quality that can be both predicted before applications are
built and then measured after applications are delivered is: “Software quality is the absence of
defects which would either cause the application to stop working, or cause it to produce
incorrect results.”

This definition has the advantage of being applicable to all software deliverables including
requirements, architecture, design, code, documents, and even test cases.

If software quality focuses on the prevention or elimination of defects, there are some effective
corollary metrics that are quite useful.

The “defect potential” of a software application is defined as the sum total of bugs or defects that
are likely to be found in requirements, architecture, design, source code, documents, and “bad
fixes” or secondary bugs found in bug repairs themselves. The “defect potential” metric
originated in IBM circa 1973 and is fairly widely used among technology companies.

The “defect detection efficiency” (DDE) is the percentage of bugs found prior to release of the
software to customers.

The “defect removal efficiency” (DRE) is the percentage of bugs found and repaired prior to
release of the software to customers.

DDE and DRE were developed in IBM circa 1973 but are widely used by technology companies
in every country. As of 2014 the average DRE for the United States is just over 90%.

(DRE is normally measured by comparing internal bugs against customer reported bugs for the
first 90 days of use. If developers found 90 bugs and users reported 10 bugs, the total is 100
bugs and DRE would be 90%.)

Another corollary metric is that of “defect severity.” This is a very old metric dating back to
IBM in the early 1960’s. IBM uses four severity levels:

10	
	

• Severity 1 Software is inoperable < 1%
• Severity 2 Major feature disabled or incorrect < 15%
• Severity 3 Minor error; software is usable < 40%
• Severity 4 Cosmetic error that does not affect results < 35%

To clarify these various terms, table 2 shows defect potentials, and DRE for an application of
1000 function points coded in the Java language using Agile development. (Table 2 uses even
numbers to simplify the math. The author’s Software Risk Master (SRM) tool predicts the same
kinds of values for actual projects.).

Table 2: Software Quality for 1000 Function Points,
Java, and Agile Development

Defect Potentials Number Defects
 of Bugs Per FP

Requirements defects 750

0.75

Architecture defects 150

0.15

Design defects 1,000

1.00

Code defects 1,350

1.35

Document defects 250

0.25

 Sub Total 3,500

3.50

Bad fixes 150

0.15

 TOTAL 3,650

3.65

Defect removal Efficiency (DRE) 97.00% 97.00%

Defects removed 3,540

3.54

Defects delivered 110

0.11
	 	 	 	 	 	

High-severity delivered 15

0.02

All of the values shown in Table 2 can be predicted before applications are developed and then
measured after the applications are released. Thus software quality can move from an

11	
	

ambiguous and subjective term to a rigorous and quantitative set of measures that can even be
included in software contracts. Note that bugs from requirements and design cannot be
quantified using lines of code or KLOC, which is why function points are the best choice for
quality measurements. It is possible to retrofit LOC after the fact, but in real life LOC is not
used for requirements, architecture, and design bug predictions.

Patterns of Successful Software Measurements and Metrics

Since the majority of software projects are either not measured at all, only partially measured, or
measured with metrics that violate standard economic assumptions, what does work? Following
are discussions of the most successful combinations of software metrics available today in 2014.

Ten Successful Software Measurement and Metric Patterns

1. Function points for normalizing productivity data
2. Function points for normalizing quality data
3. Defect potentials based on all defect types
4. Defect removal efficiency (DRE) based on all defect types
5. Defect removal efficiency (DRE) including inspections and static analysis
6. Defect removal efficiency (DRE) based on a 90-day post release period
7. Activity-based benchmarks for development
8. Activity-based benchmarks for maintenance
9. Cost of quality (COQ) for quality economics
10. Total cost of ownership (TCO) for software economics

Let us consider these 10 patterns of successful metrics.

Function points for normalizing productivity data

It is obvious that software projects are built by a variety of occupations and use a variety of
activities including

1. Requirements
2. Design
3. Coding
4. Testing
5. Integration
6. Documentation
7. Management

12	
	

The older lines of code or LOC metric is worthless for estimating or measuring non-code work.
Function points can measure every activity individually and also the combined aggregate totals
of all activities.

Note that the new SNAP metric for non-functional requirements is not included. Integrating
SNAP into productivity and quality predictions and measurements is still a work in progress.
Future versions of this paper will discuss SNAP.

Function Points for Normalizing Software Quality

It is obvious that software bugs or defects originate in a variety of sources including but not
limited to:

1. Requirements defects
2. Architecture defects
3. Design defects
4. Coding defects
5. Document defects
6. Bad fixes or defects in bug repairs

The older lines of code metric is worthless for estimating or measuring non-code defects but
function points can measure every defect source.

Defect Potentials Based on all Defect Types

The term “defect potential” originated in IBM circa 1965 and refers to the sum total of defects in
software projects that originate in requirements, architecture, design, code, documents, and “bad
fixes” or bugs in defect repairs. The older LOC metric only measures code defects, and they are
only a small fraction of total defects. The current distribution of defects for an application of
1000 function points in Java is approximately as follows:

Defect Sources Defects per function point

Requirements defects 0.75
Architecture defects 0.15
Design defects 1.00
Code defects 1.25
Document defects 0.20
Bad fix defects 0.15

Total Defect Potential 3.65

13	
	

There are of course wide variations based on team skills, methodologies, CMMI levels,
programming languages, and other variable factors.

Defect Removal Efficiency (DRE) Based on All Defect Types

Since requirements, architecture, and design defects outnumber code defects, it is obvious that
measures of defect removal efficiency (DRE) need to include all defect sources. It is also
obvious to those who measure quality that getting rid of code defects is easier than getting rid of
other sources. Following are representative values for defect removal efficiency (DRE) by
defect source:

 Defect DRE Delivered
Defect Sources Potential Percent Defects

Requirements defects 1.00 85.00% 0.15
Architecture defects 0.25 75.00% 0.06
Design defects 1.25 90.00% 0.13
Code defects 1.50 97.00% 0.05
Document defects 0.50 95.00% 0.03
Bad fix defects 0.50 80.00% 0.10

Totals 5.00 89.80% 0.51

As can be seen DRE against code defects is higher than against other defect sources. But the
main point is that only function point metrics can measure and include all defect sources. The
older LOC metric is worthless for requirements, design, and architecture defects.

Defect Removal Efficiency Including Inspections and Static Analysis

Serious study of software quality obviously needs to include pre-test inspections and static
analysis as well as coding.

The software industry has concentrated only on code defects and only on testing. This is short
sighted and insufficient. The software industry needs to understand all defect sources and every
form of defect removal including pre-test inspections and static analysis. The approximate
defect removal efficiency levels (DRE) of various defect removal stages are shown below:

14	
	

 Table 3: Software Defect Potentials and Defect Removal Efficiency (DRE)

Note 1: The table represents high quality defect removal
operations.

 Note 2: The table illustrates calculations from Software Risk Master ™ (SRM)

 Application type Embedded

 Application size in function points 1,000

 Application language Java

 Language level 6.00

 Source lines per FP 53.33

 Source lines of code 53,333

 KLOC of code 53.33

 PRE-TEST DEFECT REMOVAL ACTIVITIES

 Pre-Test Defect Architect. Require. Design Code Document TOTALS

 Removal Methods Defects per
Defects

per Defects per
Defects

per
Defects

per

 Function Function Function Function Function

 Point Point Point Point Point

Defect Potentials per
FP 0.35 0.97 1.19 1.47 0.18 4.16

 Defect potentials

355

966

1,189

1,469 184

4,163

1 Requirement inspection 5.00% 87.00% 10.00% 5.00% 8.50% 25.61%

 Defects discovered 18 840 119 73 16 1,066

 Bad-fix injection 1 25 4 2 0 32

 Defects remaining 337 100 1,066 1,394 168 3,065

2 Architecture inspection 85.00% 10.00% 10.00% 2.50% 12.00% 14.93%

 Defects discovered 286 10 107 35 20 458

 Bad-fix injection 9 0 3 1 1 14

 Defects remaining 42 90 956 1,358 147 2,593

3 Design inspection 10.00% 14.00% 87.00% 7.00% 16.00% 37.30%

 Defects discovered 4 13 832 95 24 967

 Bad-fix injection 0 0 25 3 1 48

15	
	

 Defects remaining 38 77 99 1,260 123 1,597

4 Code inspection 12.50% 15.00% 20.00% 85.00% 10.00% 70.10%

 Defects discovered 5 12 20 1,071 12 1,119

 Bad-fix injection 0 0 1 32 0 34

 Defects remaining 33 65 79 157 110 444

5 Static Analysis 2.00% 2.00% 7.00% 87.00% 3.00% 33.17%

 Defects discovered 1 1 6 136 3 147

 Bad-fix injection 0 0 0 4 0 4

 Defects remaining 32 64 73 16 107 292

6 IV & V 10.00% 12.00% 23.00% 7.00% 18.00% 16.45%

 Defects discovered 3 8 17 1 19 48

 Bad-fix injection 0 0 1 0 1 1

 Defects remaining 29 56 56 15 87 243

7 SQA review 10.00% 17.00% 17.00% 12.00% 12.50% 28.08%

 Defects discovered 3 10 9 2 11 35

 Bad-fix injection 0 0 0 0 0 2

 Defects remaining 26 46 46 13 76 206

 Pre-test DRE 329 920 1,142 1,456 108 3,956

 Pre-test DRE % 92.73% 95.23% 96.12% 99.10% 58.79% 95.02%

 Defects Remaining

26

46

46

13 76

207

 TEST DEFECT REMOVAL ACTIVITIES

 Test Defect Removal

 Stages

 Architect. Require. Design Code Document Total

1 Unit testing 2.50% 4.00% 7.00% 35.00% 10.00% 8.69%

 Defects discovered 1 2 3 5 8 18

 Bad-fix injection 0 0 0 0 0 1

 Defects remaining 25 44 43 8 68 188

2 Function testing 7.50% 5.00% 22.00% 37.50% 10.00% 12.50%

 Defects discovered 2 2 9 3 7 23

 Bad-fix injection 0 0 0 0 0 1

 Defects remaining 23 42 33 5 61 164

16	
	

3 Regression testing 2.00% 2.00% 5.00% 33.00% 7.50% 5.65%

 Defects discovered 0 1 2 2 5 9

 Bad-fix injection 0 0 0 0 0 0

 Defects remaining 23 41 31 3 56 154

4 Integration testing 6.00% 20.00% 22.00% 33.00% 15.00% 16.90%

 Defects discovered 1 8 7 1 8 26

 Bad-fix injection 0 0 0 0 0 1

 Defects remaining 21 33 24 2 48 127

5 Performance testing 14.00% 2.00% 20.00% 18.00% 2.50% 7.92%

 Defects discovered 3 1 5 0 1 10

 Bad-fix injection 0 0 0 0 0 0

 Defects remaining 18 32 19 2 46 117

6 Security testing 12.00% 15.00% 23.00% 8.00% 2.50% 10.87%

 Defects discovered 2 5 4 0 1 13

 Bad-fix injection 0 0 0 0 0 0

 Defects remaining 16 27 15 2 45 104

7 Usability testing 12.00% 17.00% 15.00% 5.00% 48.00% 29.35%

 Defects discovered 2 5 2 0 22 30

 Bad-fix injection 0 0 0 0 1 1

 Defects remaining 14 22 12 2 23 72

8 System testing 16.00% 12.00% 18.00% 12.00% 34.00% 20.85%

 Defects discovered 2 3 2 0 8 15

 Bad-fix injection 0 0 0 0 0 0

 Defects remaining 12 20 10 1 15 57

9 Cloud testing 10.00% 5.00% 13.00% 10.00% 20.00% 11.55%

 Defects discovered 1 1 1 0 3 7

 Bad-fix injection 0 0 0 0 0 0

 Defects remaining 10 19 9 1 12 51

10 Independent testing 12.00% 10.00% 11.00% 10.00% 23.00% 13.60%

 Defects discovered 1 2 1 0 3 7

 Bad-fix injection 0 0 0 0 0 0

 Defects remaining 9 17 8 1 9 44

11 Field (Beta) testing 14.00% 12.00% 14.00% 12.00% 34.00% 17.30%

 Defects discovered 1 2 1 0 3 8

 Bad-fix injection 0 0 0 0 0 0

17	
	

 Defects remaining 8 15 7 1 6 36

12 Acceptance testing 13.00% 14.00% 15.00% 12.00% 24.00% 17.98%

 Defects discovered 1 2 1 0 2 6

 Bad-fix injection 0 0 0 0 0 0

 Defects remaining 7 13 6 1 3 30

 Test Defects Removed 19 33 40 12 72 177

 Testing Efficiency % 73.96% 72.26% 87.63% 93.44% 95.45% 85.69%

 Defects remaining

7

13

6

1 3

30

 Total Defects Removed 348 953 1,183 1,468 181 4,133

 Total Bad-fix injection 10 29 35 44 5 124

Cumulative Removal
% 98.11% 98.68% 99.52% 99.94% 98.13% 99.27%

 Remaining Defects 7 13 6 1 3 30

 High-severity Defects 1 2 1 0 0 5

 Security Defects 0 0 0 0 0 1

 Remaining Defects 0.0067 0.0128 0.0057 0.0009 0.0035 0.0302

 per Function Point

 Remaining Defects 6.72 12.80 5.70 0.87 3.45 30.23

 per K Function Points

 Remaining Defects 0.13 0.24 0.11 0.02 0.06 0.57

 per KLOC

Since the costs of finding and fixing bugs in software have been the largest single expense
element for over 60 years, software quality and defect removal need the kind of data shown in
table 3.

Defect Removal Efficiency Based on 90 Days after Release

It is obvious that measuring defect removal efficiency (DRE) based only on 30 days after release
is insufficient to judge software quality:

Defects found before release 900
Defects found in 30 days 5 99.45%
Defects found in 90 days 50 94.74%
Defects found in 360 days 75 92.31%

18	
	

A 30 day interval after release will find very few defects since full usage may not even have begun due to
installation and training. IBM selected a 90 day interval because that allowed normal usage patterns to unfold. Of
course bugs continue to be found after 90 days, and also the software may be updated. A 90-day window is a good
compromise for measuring defect removal efficiency of the original version before updates begin to accumulate.

A 30-day window may be sufficient for small projects < 250 function points. But anyone who has worked on large
systems in the 10,000 to 100,000 function point size range knows that installation and training normally take about a
month. Therefore full production may not even have started in the first 30 days.

Activity Based Benchmarks for Development

Today in 2014 software development is one of the most labor-intensive and expensive industrial activities in human
history. Building large software applications costs more than the cost of a 50 story office building or the cost of an
80,000 ton cruise ship.

Given the fact that large software applications can employ more than 500 personnel in a total of more than 50
occupations, one might think that the industry would utilize fairly detailed activity-based benchmarks to explore the
complexity of modern software development.

But unfortunately the majority of software benchmarks in 2014 are single values such as “work hours per function
point,” “function points per month,” or “lines of code per month.” This is not sufficient. Following are the kinds of
activity-based benchmarks actually needed by the industry in order to understand the full economic picture of
modern software development. Table 4 reflects a system of 10,000 function points and the Java programming
language combined with an average team and iterative development:

Table 4: Example of Activity-based Benchmark 	

 	

 Language Java 	

 Function points 10,000 	

 Lines of code 533,333 	

 KLOC 533 	

 	

 Development Activities Work FP per Work LOC per
 Hours month Hours Month

 per FP
per

KLOC

1 Business analysis 0.02 7,500.00 0.33

400,000

2 Risk analysis/sizing 0.00 35,000.00 0.07

1,866,666

3 Risk solution planning 0.01 15,000.00 0.17

800,000

4 Requirements 0.38 350.00 7.08

18,667
5 Requirement. Inspection 0.22 600.00 4.13 32,000
6 Prototyping 0.33 400.00 0.62 213,333

19	
	

7 Architecture 0.05 2,500.00 0.99

133,333

8 Architecture. Inspection 0.04 3,000.00 0.83

160,000

9 Project plans/estimates 0.03 5,000.00 0.50

266,667

10 Initial Design 0.75 175.00 14.15

9,333

11 Detail Design 0.75 175.00 14.15

9,333

12 Design inspections 0.53 250.00 9.91

13,333

13 Coding 4.00 33.00 75.05

1,760

14 Code inspections 3.30 40.00 61.91

2,133

15 Reuse acquisition 0.01 10,000.00 0.25

533,333
16 Static analysis 0.02 7,500.00 0.33 400,000

17 COTS Package purchase 0.01 10,000.00 0.25

533,333
18 Open-source acquisition. 0.01 10,000.00 0.25 533,333

19 Code security audit. 0.04 3,500.00 0.71

186,667
20 Ind. Verification. & Validation (IV&V). 0.07 2,000.00 1.24 106,667

21 Configuration control. 0.04 3,500.00 0.71

186,667

22 Integration 0.04 3,500.00 0.71

186,667

23 User documentation 0.29 450.00 5.50

24,000

24 Unit testing 0.88 150.00 16.51

8,000

25 Function testing 0.75 175.00 14.15

9,333

26 Regression testing 0.53 250.00 9.91

13,333

27 Integration testing 0.44 300.00 8.26

16,000

28 Performance testing 0.33 400.00 6.19

21,333

29 Security testing 0.26 500.00 4.95

26,667

30 Usability testing 0.22 600.00 4.13

32,000

31 System testing 0.88 150.00 16.51

8,000

32 Cloud testing 0.13 1,000.00 2.48

53,333

33 Field (Beta) testing 0.18 750.00 3.30

40,000

34 Acceptance testing 0.05 2,500.00 0.99

133,333

35 Independent testing 0.07 2,000.00 1.24

106,667

20	
	

36 Quality assurance 0.18 750.00 3.30

40,000

37 Installation/training 0.04 3,500.00 0.71

186,667

38 Project measurement 0.01 10,000.00 0.25

533,333

39 Project office 0.18 750.00 3.30

40,000

40 Project management 4.40 30.00 82.55

1,600

 Cumulative Results 20.44 6.46 377.97

349

Note that in real life non-code work such as requirements, architecture, and design are not
measured using LOC metrics. But it is easy to retrofit LOC since the mathematics are not
complicated. Incidentally the author’s Software Risk Master (SRM) tool predicts all four values
shown in table 4, and can also show story points, use case points, and in fact 23 different metrics.

The “cumulative results” show the most common benchmark form of single values. However
single values are clearly inadequate to show the complexity of a full set of development
activities.

Note that agile projects with multiple sprints would use a different set of activities. But to
compare agile projects against other kinds of development methods the agile results are
converted into a standard chart of accounts shown by table 4.

Activity Based Benchmarks for Maintenance

The word “maintenance” is highly ambiguous and can encompass no fewer than 23 different
kinds of work. In ordinary benchmarks “maintenance” usually refers to post-release defect
repairs. However some companies and benchmarks also include enhancements. This is not a
good idea since the funding for defect repairs and enhancements are from different sources, and
often the work is done by different teams.

Table 5: Major Kinds of Work Performed Under the Generic Term “Maintenance”

1. Major Enhancements (new features of > 20 function points)
2. Minor Enhancements (new features of < 5 function points)
3. Maintenance (repairing defects for good will)
4. Warranty repairs (repairing defects under formal contract)
5. Customer support (responding to client phone calls or problem reports)
6. Error-prone module removal (eliminating very troublesome code segments)
7. Mandatory changes (required or statutory changes)
8. Complexity or structural analysis (charting control flow plus complexity metrics)
9. Code restructuring (reducing cyclomatic and essential complexity)

21	
	

10. Optimization (increasing performance or throughput)
11. Migration (moving software from one platform to another)
12. Conversion (Changing the interface or file structure)
13. Reverse engineering (extracting latent design information from code)
14. Reengineering (transforming legacy application to modern forms)
15. Dead code removal (removing segments no longer utilized)
16. Dormant application elimination (archiving unused software)
17. Nationalization (modifying software for international use)
18. Mass updates such as Euro or Year 2000 Repairs
19. Refactoring, or reprogramming applications to improve clarity
20. Retirement (withdrawing an application from active service)
21. Field service (sending maintenance members to client locations)
22. Reporting bugs or defects to software vendors
23. Installing updates received from software vendors

As with software development, function point metrics provide the most effective normalization
metric for all forms of maintenance and enhancement work.

The author’s Software Risk Master (SRM) tool predicts maintenance and enhancement for a
three year period, and can also measure annual maintenance and enhancements. The entire set of
metrics is among the most complex. However Table 6 illustrates a three-year pattern:

Table 6: Three-Year Maintenance, Enhancement, and Support Data

Enhancements (New Features) Year 1 Year 2 Year 3 3-Year
 2013 2014 2015 Totals

Annual enhancement % 8.00% 200 216 233 649
Application Growth in FP 2,500 2,700 2,916 3,149 3,149
Application Growth in LOC 133,333 144,000 155,520 167,962 167,962
Cyclomatic complexity growth 10.67 10.70 10.74 10.78 10.78
Enhan. defects per FP 0.01 0.00 0.00 0.00 0.00
Enhan. defects delivered 21 1 1 1 23

Enhancement Team Staff 0 2.02 2.21 2.41 2.22
Enhancement (months) 0 24.29 26.51 28.94 79.75
Enhancement (hours) 0 3,206.48 3,499.84 3,820.47 10,526.78
Enhancement Team Costs 0 $273,279 $298,282 $325,608 $897,169

Function points per month 8.23 8.15 8.06 8.14
Work hours per function point 16.03 16.20 16.38 16.21
Enhancement $ per FP $1,366.40 $1,380.93 $1,395.78 $1,381.79

22	
	

Maintenance (Defect Repairs) Year 1 Year 2 Year 3 3-Year
 2013 2014 2015 Totals

Number of maintenance sites 1 1 1 1 1
Clients served per site 74 94 118 149 149

Number of initial client sites 3 4 5 6 6
Annual rate of increase 15.00% 22.51% 22.51% 22.51% 20.63%

Number of initial clients 100 128 163 207 207
Annual rate of increase 20.00% 27.51% 27.51% 27.51% 25.63%

Client sites added 0 1 1 1 3
Client sites lost 0 0 0 0 0
Net change 0 1 1 1 3
Year end client sites 0 4 5 6 6

Clients added 0 28 36 46 110
Clients lost 0 -1 -1 -1 -3
Net change 0 28 35 45 107
Year end clients 0 128 163 207 207

Customer Defect/Help Requests Year 1 Year 2 Year 3 3-Year
 2013 2014 2015 Totals

Customer satisfaction 0 95.34% 99.42% 100.16% 98.31%

Customer help requests 0 67 62 60 189
Customer complaints 0 24 18 15 56
Enhancement bug reports 0 1 1 1 2
Original bug reports 0 8 5 3 16
High severity bug reports 0 1 1 0 2
Security flaws 0 1 0 0 0
Bad fixes: bugs in repairs 0 0 0 0 0
Duplicate bug reports 0 8 7 6 22
Invalid bug reports 0 2 1 1 4
Abeyant defects 0 0 0 0 0
Total Incidents 0 112 96 86 293

Complaints per FP 0 0.01 0.01 0.01 0.02
Bug reports per FP 0 0.00 0.00 0.00 0.01
High severity bugs per FP 0 0.00 0.00 0.00 0.00

23	
	

Incidents per FP 0 0.04 0.04 0.03 0.12

Maintenance and Support Staff Year 1 Year 2 Year 3 3-Year
 2013 2014 2015 Totals

Customer support staff 0 0.31 0.33 0.38 0.34
Customer support (months) 0 3.72 4.01 4.56 12.29
Customer support (hours) 0 490.80 529.37 601.88 1,622.05
Customer support costs 0 $17,568 $18,949 $21,545 $58,062
Customer support $ per FP 0 $6.51 $6.50 $6.84 $6.62

Maintenance staff 0 1.83 1.80 1.77 1.80
Maintenance effort (months) 0 21.97 21.56 21.29 64.82
Maintenance effort (hours) 0 2,899.78 2,846.43 2,810.38 8,556.59
Maintenance (tech. debt) 0 $247,140 $242,593 $239,521 $729,255
Maintenance $ per FP 0 $91.53 $83.19 $76.06 $83.59

Management staff 0 0.22 0.22 0.22 0.22
Management effort (months) 0 2.69 2.66 2.67 8.02
Management effort (hours) 0 354.92 351.56 352.39 1,058.87
Management costs 0 $30,249 $29,963 $30,033 $90,245
Management $ per FP 0 $11.20 $10.28 $9.54 $10.34

TOTAL MAINTENANCE
STAFF 0 2.36 2.35 2.38 2.36
TOTAL EFFORT (MONTHS) 0 28.37 28.24 28.52 85.13
TOTAL EFFORT (HOURS) 0 3,745.50 3,727.36 3,764.66 11,237.51
TOTAL MAINTENANCE $ 0 $294,957 $291,505 $291,099 $877,561

Maintenance $ per FP 0 $117.98 $116.60 $116.44 $117.01
Maintenance hours per FP 0 1.39 1.28 1.20 1.29
Maintenance$ per defect 0 $32,865 $50,957 $82,650 $55,490.43
Maintenance $ per KLOC 0 $2,212 $2,186 $2,183 $6,582
Maintenance $ per incident 0 $2,637.01 $3,049.51 $3,375.50 $3,020.67
Incidents per support staff 0 360.99 286.03 226.96 873.98
Bug reports per staff member 0 11.57 8.52 6.42 26.51
Incidents per staff month 0 30.08 23.84 18.91 24.28
Bug reports per staff month 0 0.96 0.71 0.54 0.74

(MAINTENANCE + ENHANCMENT)
 Year 1 Year 2 Year 3 3-Year

24	
	

 2013 2014 2015 Totals

Enhancement staff 0 2.02 2.21 2.41 2.22
Maintenance staff 0 2.36 2.35 2.38 2.36
Total staff 0 4.39 4.56 4.79 4.58

Enhancement effort (months) 0 24.29 26.51 28.94 79.75
Maintenance effort (months) 0 28.37 28.24 28.52 85.13
Total effort (months) 0 52.67 54.75 57.46 164.88
Total effort (hours) 0 6,951.97 7,227.19 7,585.12 21,764.29

Enhancement Effort % 0 46.12% 48.43% 50.37% 48.37%
Maintenance Effort % 0 53.88% 51.57% 49.63% 51.63%
Total Effort % 0 100.00% 100.00% 100.00% 100.00%

Enhancement cost 0 $273,279 $298,282 $325,608 $897,169
Maintenance cost 0 $294,957 $291,505 $291,099 $877,561
Total cost 0 $568,237 $589,786 $616,707 $1,774,730

Enhancement cost % 0 48.09% 50.57% 52.80% 50.55%
Maintenance cost % 0 51.91% 49.43% 47.20% 49.45%
Total Cost 0 100.00% 100.00% 100.00% 100.00%

Maintenance + Enhancement $ per FP $210.46 $202.26 $195.82 $202.85
Maintenance + Enhancement hours per FP 2.57 2.48 2.41 2.49

The mathematical algorithms for predicting maintenance and enhancements can work for 10 year
periods, but there is little value in going past three years since business changes or changes in
government laws and mandates degrade long-range predictions.

Cost of Quality (COQ) for Quality Economics

The cost of quality (COQ) metric is roughly the same age as the software industry, having originated in 1956 by
Edward Feigenbaum. It was later expanded by Joseph Juran and then made very famous by Phil Crosby in his
seminal book “Quality is Free.” Quality was also dealt with fictionally in Robert M. Pirsig’s famous book Zen and
the Art of Motorcycle Maintenance. This book has become one of the best-selling books ever published and has
been translated into many natural languages. It has sold over 5,000,000 copies. (By interesting coincidence Pirsig’s
regular work was as a software technical writer.)

Because COQ originated for manufacturing rather than for software, it needs to be modified slightly to be effective
in a software context.

The original concepts of COQ include:

• Prevention costs
• Appraisal costs

25	
	

• Internal failure costs
• External failure costs
• Total costs

For software a slightly modified set of topics for COQ include:

• Defect prevention costs (JAD, QFD, Kaizan, prototypes, etc.)
• Pre-Test defect removal costs (inspections, static analysis, pair programming, etc.)
• Test defect removal costs (unit, function, regression, performance, system, etc.)
• Post-release defect repairs costs (direct costs of defect repairs)
• Warranty and damage costs due to poor quality (fines, litigation, indirect costs)

Using round numbers and even values to simplify the concepts, the COQ results for a 20,000 function point
application with average quality and Java might be:

Defect prevention $1,500,000

Pre-test defect removal $3,000,000

Test defect removal $11,000,000

Post release repairs $5,500,000

Damages and warranty costs $3,000,000

Total Cost of Quality (COQ) $24,000,000

COQ per function point $1,200

COQ per KLOC $24,000

If technical debt were included, but it not, the technical debt costs would probably be an additional $2,500,000.
Among the issues with technical debt is that it focuses attention on a small subset of quality economic topics and of
course does not deal with pre-release quality at all.

Total Cost of Ownership (TCO) for Software Economic Understanding

Because total cost of ownership cannot be measured or known until at least three years after release, it is seldom
included in standard development benchmarks. The literature of TCO is sparse and there is very little reliable
information. This is unfortunate because software TCO is much larger than the TCO of normal manufactured
projects. This is due in part to poor quality control and in part to the continuous stream of enhancements which
average about 8% per calendar year after the initial release, and sometimes runs for periods of more than 30 calendar
years.

Another issue with TCO is that since applications continue to grow, after several years the size will have increased
so much that the data needs to be renormalized with the current size. Table 5 illustrates a typical TCO estimate for
an application that was 2,500 function points at delivery but grew to more than 3,000 function points after a three-
year period:

26	
	

Table 7: Namcook SRM Total Cost of Ownership (TCO) Estimates

 Staffing Effort Costs $ per FP % of TCO
 at release

Development 7.48 260.95 $3,914,201 $1,565.68 46.17%
Enhancement 2.22 79.75 $897,169 $358.87 10.58%
Maintenance 2.36 85.13 $877,561 $351.02 10.35%
Support 0.34 12.29 $58,062 $23.22 0.68%
User costs 4.20 196.69 $2,722,773 $1,089.11 32.12%
Additional costs $7,500 $3.00 0.09%

Total TCO 16.60 634.81 $8,477,266 $3,390.91 100.00%

Function points at release 2,500
Function points after 3 years 3,149
Lines of code after 3 years 167,936
KLOC after 3 years 167.94
TCO function points/staff month 4.96
TCO work hours per function point 26.61
TCO cost per function point $2,692
TCO cost per KLOC $50,479

Note that the TCO costs include normal development, enhancement, maintenance, and customer
support but also user costs. For internal project users participate in requirements, reviews,
inspections, and other tasks so their costs and contributions should be shown as part of total cost
of ownership (TCO).

Note that customer support costs are low because this particular application had only 100 users at
delivery. Eventually users grew to more than 200 but initial defects declined so number of
customer support personnel was only one person part time. Had this been a high-volume
commercial application with 500,000 users that grew to over 1,000,000 users customer support
would have included dozens of support personnel and grown constantly.

Because applications grow at about 8% per year after release, the author suggests renormalizing
application size at the end of every calendar year or every fiscal year. Table 8 shows a total
growth pattern for 10 years. It is obvious that renormalization needs to occur fairly often due to
the fact that all software applications grow over time as shown by table 8:

27	
	

 Table 8: Software Risk Master™ Multi-Year Sizing

 Copyright © 2011-2014 by Capers Jones.

 Patent application 61434091. February 2011.

 Nominal application size
 in IFPUG function points 10,000

 Function
 Points

1 Size at end of requirements 10,000
2 Size of requirement creep 2,000
3 Size of planned delivery 12,000
4 Size of deferred functions -4,800
5 Size of actual delivery 7,200
6 Year 1 12,000
7 Year 2 13,000
8 Year 3 14,000
9 Year 4 17,000

10 Year 5 18,000
11 Year 6 19,000
12 Year 7 20,000
13 Year 8 23,000
14 Year 9 24,000
15 Year 10 25,000

During development applications grow due to requirements creep at rates that range from below
1% per calendar month to more than 10% per calendar month. After release applications grow at
rates that range from below 5% per year to more than 15% per year. Note that for commercial
software “mid-life kickers” tend to occur about every four years. These are rich collections of
new features intended to enhance competiveness.

Needs for Future Metrics

There is little research in the future metrics needs for the software industry. Neither universities
nor corporations have devoted funds or effort into evaluating the accuracy of current metrics or
creating important future metrics.

Some obvious needs for future metrics include:

28	
	

1. Since companies own more data than software, there is an urgent need for a “data point”
metric based on the logic of function point metrics. Currently neither data quality nor the
costs of data acquisition can be estimated or measured due to the lack of a size metric for
data.

2. Since many applications such as embedded software operate in specific devices, there is a
need for a “hardware function point” metric based on the logic of function points.

3. Since web sites are now universal, there is a need for a “web site point” metric based on
the logic of function points. This would measure web site contents.

4. Since risks are increasing for software projects, there is a need for a “risk point” metric
based on the logic of function points.

5. Since cyber attacks are increasing in number and severity, there is a need for a “security
point” metric based on the logic of function points.

6. Since software value includes both tangible financial value and also intangible value,
there is a need for a “value point” metric based on the logic of function points.

7. Since software now has millions of human users in every country, there is a need for a
“software usage point” metric based on the logic of function points.

The goal would be to generate integrated estimates

Every major university and every major corporation should devote some funds and effort to the
related topics of metrics validation and metrics expansion. It is professionally embarrassing for
one of the largest industries in human history to have the least accurate and most ambiguous
metrics of any industry for measuring the critical topics of productivity and quality.

Table 8 shows a hypothetical table of what integrated data might look like from a suite of related
metrics that include software function points, hardware function points, data points, risk points,
security points, and value points:

Table 9: Example of Multi-Metric Economic Analysis

Development Metrics Number Cost Total

Function points 1,000 $1,000 $1,000,000

Data points 1,500 $500 $750,000

Hardware function points 750 $2,500 $1,875,000

Subtotal 3,250 $1,115 $3,625,000

29	
	

Annual Maintenance metrics

Enhancements (micro function points) 150 $750 $112,500

Defects (micro function points) 750 $500 $375,000

Service points 5,000 $125 $625,000

Data maintenance 125 $250 $31,250

Hardware maintenance 200 $750 $150,000

Annual Subtotal 6,225 $179 $1,112,500

TOTAL COST OF OWNERSHIP
(TCO)

(Development + 5 years of usage)

Development 3,250 $1,115 $3,625,000

Maintenance, enhancement, service 29,500 $189 $5,562,500

Data maintenance 625 $250 $156,250

Hardware maintenance 1,000 $750 $750,000

Application Total TCO 34,375 $294 $10,093,750

Risk and Value Metrics

Risk points 2,000 $1,250 $2,500,000

Security points 1,000 $2,000 $2,000,000

Subtotal 3,000 $3,250 $4,500,000

Value points 45,000 $2,000 $90,000,000

NET VALUE 10,625 $7,521 $79,906,250

RETURN ON INVESTMENT (ROI) $8.92

30	
	

Summary and Conclusions

The current state of software metrics and measurement practices in 2014 is a professional
embarrassment. The software industry continues to use metrics proven mathematically to be
invalid and which violate standard economic assumptions.

Universities do not carry out research studies on metrics validity but merely teach common
metrics whether they work or not.

Until the software industry has a workable set of productivity and quality metrics that are
standardized and widely used, progress will resemble a drunkard’s walk. There are dozens of
important topics that the software industry should know, but does not have effective data on circa
2014. Following are 20 samples where solid data would be valuable to the software industry:

Table 10: Twenty Problems that Lack Effective Metrics and Data Circa 2014

1. How does agile quality and productivity compare to other methods?
2. Does agile work well for projects > 10,000 function points?
3. How effective is pair programming compared to inspections and static analysis?
4. Do ISO/IEC quality standards have any tangible results in lowering defect levels?
5. How effective is the new SEMAT method of software engineering?
6. What are best productivity rates for 100, 1000, 10,000, and 100,000 function points?
7. What are best quality results for 100, 1000, 10,000, and 100,000 function points?
8. What are the best quality results for CMMI levels 1, 2, 3, 4, and 5 for large systems?
9. What industries have the best software quality results?
10. What countries have the best software quality results?
11. How expensive are requirements and design compared to programming?
12. Do paper documents cost more than source code for defense software?
13. What is the optimal team size and composition for different kinds of software?
14. How does data quality compare to software quality?
15. How many delivered high-severity defects might indicate professional malpractice?
16. How often should software size be renormalized because of continuous growth?
17. How expensive is software governance?
18. What are the measured impacts of software reuse on productivity and quality?
19. What are the measured impacts of unpaid overtime on productivity and schedules?
20. What are the measured impacts of adding people to late software projects?

These 20 issues are only the tip of the iceberg and dozens of other important topics are in urgent
need of accurate predictions and accurate measurements. The software industry needs an
effective suite of accurate and reliable metrics that can be used to predict and measure economic

31	
	

productivity and application quality. Until we have such a suite of effective metrics, software
engineering should not be considered to be a true profession.

References and Readings

Books and monographs by Capers Jones.

1 Jones, Capers; The Technical and Social History of Software Engineering; Addison Wesley 2014
2 Jones, Capers & Bonsignour, Olivier; The Economics of Software Quality; Addison Wesley, 2012
3 Jones, Capers; Software Engineering Best Practices; 1st edition; McGraw Hill 2010
4 Jones, Capers: Applied Software Measurement; 3rd edition; McGraw Hill 2008
5 Jones, Capers: Estimating Software Costs, 2nd edition; McGraw Hill 2007
6 Jones, Capers: Software Assessments, Benchmarks, and Best Practices; Addison Wesley, 2000
7 Jones, Capers: Software Quality - Analysis and Guidelines for Success, International Thomson 1997
8 Jones, Capers; Patterns of Software Systems Failure and Success; International Thomson 1995
9 Jones, Capers; Assessment and Control of Software Risks; Prentice Hall 1993

10 Jones, Capers: Critical Problems in Software Measurement; IS Mgt Group 1993

 Monographs by Capers Jones 2012-2014 available from Namcook Analytics LLC

1 Comparing Software Development Methodologies
2 Corporate Software Risk Reduction
3 Defenses Against Breach of Contract Litigation
4 Dynamic Visualization of Software Development
5 Evaluation of Common Software Metrics
6 Function Points as a Universal Software Metric
7 Hazards of "cost per defect" metrics
8 Hazards of "lines of code" metrics
9 Hazards of "technical debt" metrics

10 History of Software Estimation Tools
11 How Software Engineers Learn New Skills
12 Software Benchmark Technologies
13 Software Defect Origins and Removal Methods
14 Software Defect Removal Efficiency (DRE)
15 Software Project Management Tools

32	
	

Books by other authors:

Albrecht, Allan; AD/M Productivity Measurement and Estimate Validation; IBM Corporation, Purchase, NY; May
1984.

Barrow, Dean, Nilson, Susan, and Timberlake, Dawn; Software Estimation Technology Report; Air Force Software
Technology Support Center; Hill Air Force Base, Utah; 1993.

Boehm, Barry Dr.; Software Engineering Economics; Prentice Hall, Englewood Cliffs, NJ; 1981; 900 pages.

Brooks, Fred; The Mythical Man Month; Addison-Wesley, Reading, MA; 1995; 295 pages.

Bundschuh, Manfred and Dekkers, Carol; The IT Measurement Compendium; Springer-Verlag, Berlin; 2008; 643
pages.

Brown, Norm (Editor); The Program Manager’s Guide to Software Acquisition Best Practices; Version 1.0; July
1995; U.S. Department of Defense, Washington, DC; 142 pages.

Chidamber, S.R. and Kemerer, C.F.: “A Metrics Suite for Object Oriented Design”; IEEE Transactions on Software
Engineering; Vol. 20, 1994; pp. 476-493.

Chidamber, S.R., Darcy, D.P., and Kemerer, C.F.: “Managerial Use of Object Oriented Software Metrics”; Joseph
M. Katz Graduate School of Business, University of Pittsburgh, Pittsburgh, PA; Working Paper # 750;
November 1996; 26 pages.

Cohn, Mike; Agile Estimating and Planning; Prentice Hall PTR, Englewood Cliffs, NJ; 2005; ISBN 0131479415.

Conte, S.D., Dunsmore, H.E., and Shen, V.Y.; Software Engineering Models and Metrics; The Benjamin Cummings
Publishing Company, Menlo Park, CA; ISBN 0-8053-2162-4; 1986; 396 pages.

DeMarco, Tom; Controlling Software Projects; Yourdon Press, New York; 1982; ISBN 0-917072-32-4; 284 pages.

DeMarco, Tom and Lister, Tim; Peopleware; Dorset House Press, New York, NY; 1987; ISBN 0-932633-05-6; 188
pages.

DeMarco, Tom; Why Does Software Cost So Much?; Dorset House Press, New York, NY; ISBN 0-932633-34-X;
1995; 237 pages.

DeMarco, Tom; Deadline; Dorset House Press, New York, NY; 1997.

Department of the Air Force; Guidelines for Successful Acquisition and Management of Software Intensive
Systems; Volumes 1 and 2; Software Technology Support Center, Hill Air Force Base, UT; 1994.

Dreger, Brian; Function Point Analysis; Prentice Hall, Englewood Cliffs, NJ; 1989; ISBN 0-13-332321-8; 185
pages.

Gack, Gary; Managing the Black Hole – The Executives Guide to Project Risk; The Business Expert Publisher;
Thomson, GA; 2010; ISBSG10: 1-935602-01-2.

Galea, R.B.; The Boeing Company: 3D Function Point Extensions, V2.0, Release 1.0; Boeing Information Support
Services, Seattle, WA; June 1995.

33	
	

Galorath, Daniel D. and Evans, Michael W.; Software Sizing, Estimation, and Risk Management; Auerbach
Publications, New York, 2006.

Garmus, David & Herron, David; Measuring the Software Process: A Practical Guide to Functional Measurement;
Prentice Hall, Englewood Cliffs, NJ; 1995.

Garmus, David & Herron, David; Function Point Analysis; Addison Wesley Longman, Boston, MA; 1996.

Garmus, David; Accurate Estimation; Software Development; July 1996; pp 57-65.

Grady, Robert B.; Practical Software Metrics for Project Management and Process Improvement; Prentice Hall,
Englewood Cliffs, NJ; ISBN 0-13-720384-5; 1992; 270 pages.

Grady, Robert B. & Caswell, Deborah L.; Software Metrics: Establishing a Company-Wide Program; Prentice
Hall, Englewood Cliffs, NJ; ISBN 0-13-821844-7; 1987; 288 pages.

Gulledge, Thomas R., Hutzler, William P.; and Lovelace, Joan S.(Editors); Cost Estimating and Analysis -
Balancing Technology with Declining Budgets; Springer-Verlag; New York; ISBN 0-387-97838-0; 1992; 297
pages.

Harris, Michael D.S., Herron, David, and Iwanacki, Stasia; The Business Value of IT; CRC Press, Auerbach
Publications; 2009.

Hill, Peter R. Practical Software Project Estimation; McGraw Hill, 2010

Howard, Alan (Ed.); Software Metrics and Project Management Tools; Applied Computer Research (ACR; Phoenix,
AZ; 1997; 30 pages.

Humphrey, Watts S.; Managing the Software Process; Addison Wesley Longman, Reading, MA; 1989.

Humphrey, Watts; Personal Software Process; Addison Wesley Longman, Reading, MA; 1997.

Kan, Stephen H.; Metrics and Models in Software Quality Engineering, 2nd edition; Addison Wesley Longman,
Boston, MA; ISBN 0-201-72915-6; 2003; 528 pages.

Kemerer, Chris F.; “An Empirical Validation of Software Cost Estimation Models; Communications of the ACM;
30; May 1987; pp. 416-429.

Kemerer, C.F.; “Reliability of Function Point Measurement - A Field Experiment”; Communications of the ACM;
Vol. 36; pp 85-97; 1993.

Keys, Jessica; Software Engineering Productivity Handbook; McGraw Hill, New York, NY; ISBN 0-07-911366-4;
1993; 651 pages.

Laird, Linda M and Brennan, Carol M; Software Measurement and Estimation: A Practical Approach; John Wiley &
Sons, Hoboken, NJ; 2006; ISBN 0-471-67622-5; 255 pages.

Love, Tom; Object Lessons; SIGS Books, New York; ISBN 0-9627477 3-4; 1993; 266 pages.

Marciniak, John J. (Editor); Encyclopedia of Software Engineering; John Wiley & Sons, New York; 1994; ISBN 0-
471-54002; in two volumes.

34	
	

McCabe, Thomas J.; “A Complexity Measure”; IEEE Transactions on Software Engineering; December 1976; pp.
308-320.

McConnell; Software Estimating: Demystifying the Black Art; Microsoft Press, Redmund, WA; 2006.

Melton, Austin; Software Measurement; International Thomson Press, London, UK; ISBN 1-85032-7178-7; 1995.

Mertes, Karen R.; Calibration of the CHECKPOINT Model to the Space and Missile Systems Center (SMC)
Software Database (SWDB); Thesis AFIT/GCA/LAS/96S-11, Air Force Institute of Technology (AFIT),
Wright Patterson AFB, Ohio; September 1996; 119 pages.

Mills, Harlan; Software Productivity; Dorset House Press, New York, NY; ISBN 0-932633-10-2; 1988; 288 pages.

Muller, Monika & Abram, Alain (editors); Metrics in Software Evolution; R. Oldenbourg Vertag GmbH, Munich;
ISBN 3-486-23589-3; 1995.

Multiple authors; Rethinking the Software Process; (CD-ROM); Miller Freeman, Lawrence, KS; 1996. (This is a
new CD ROM book collection jointly produced by the book publisher, Prentice Hall, and the journal publisher,
Miller Freeman. This CD ROM disk contains the full text and illustrations of five Prentice Hall books:
Assessment and Control of Software Risks by Capers Jones; Controlling Software Projects by Tom DeMarco;
Function Point Analysis by Brian Dreger; Measures for Excellence by Larry Putnam and Ware Myers; and
Object-Oriented Software Metrics by Mark Lorenz and Jeff Kidd.)

Park, Robert E. et al; Software Cost and Schedule Estimating - A Process Improvement Initiative; Technical Report
CMU/SEI 94-SR-03; Software Engineering Institute, Pittsburgh, PA; May 1994.

Park, Robert E. et al; Checklists and Criteria for Evaluating the Costs and Schedule Estimating Capabilities of
Software Organizations; Technical Report CMU/SEI 95-SR-005; Software Engineering Institute, Pittsburgh,
PA; January 1995.

Paulk Mark et al; The Capability Maturity Model; Guidelines for Improving the Software Process; Addison Wesley,
Reading, MA; ISBN 0-201-54664-7; 1995; 439 pages.

Perlis, Alan J., Sayward, Frederick G., and Shaw, Mary (Editors); Software Metrics; The MIT Press, Cambridge,
MA; ISBN 0-262-16083-8; 1981; 404 pages.

Perry, William E.; Data Processing Budgets - How to Develop and Use Budgets Effectively; Prentice Hall,
Englewood Cliffs, NJ; ISBN 0-13-196874-2; 1985; 224 pages.

Perry, William E.; Handbook of Diagnosing and Solving Computer Problems; TAB Books, Inc.; Blue Ridge
Summit, PA; 1989; ISBN 0-8306-9233-9; 255 pages.

Pressman, Roger; Software Engineering - A Practitioner’s Approach; McGraw Hill, New York, NY; 1982.

Putnam, Lawrence H.; Measures for Excellence -- Reliable Software On Time, Within Budget; Yourdon Press -
Prentice Hall, Englewood Cliffs, NJ; ISBN 0-13-567694-0; 1992; 336 pages.

Putnam, Lawrence H and Myers, Ware.; Industrial Strength Software - Effective Management Using Measurement;
IEEE Press, Los Alamitos, CA; ISBN 0-8186-7532-2; 1997; 320 pages.

Reifer, Donald (editor); Software Management (4th edition); IEEE Press, Los Alamitos, CA; ISBN 0 8186-3342-6;
1993; 664 pages.

35	
	

Roetzheim, William H. and Beasley, Reyna A.; Best Practices in Software Cost and Schedule Estimation; Prentice
Hall PTR, Saddle River, NJ; 1998.

Royce, W.E.; Software Project Management: A Unified Framework; Addison Wesley, Reading, MA; 1999

Rubin, Howard; Software Benchmark Studies For 1997; Howard Rubin Associates, Pound Ridge, NY; 1997.

Shepperd, M.: “A Critique of Cyclomatic Complexity as a Software Metric”; Software Engineering Journal, Vol. 3,
1988; pp. 30-36.

Software Productivity Consortium; The Software Measurement Guidebook; International Thomson Computer Press;
Boston, MA; ISBN 1-850-32195-7; 1995; 308 pages.

St-Pierre, Denis; Maya, Marcela; Abran, Alain, and Desharnais, Jean-Marc; Full Function Points: Function Point
Extensions for Real-Time Software, Concepts and Definitions; University of Quebec. Software Engineering
Laboratory in Applied Metrics (SELAM); TR 1997-03; March 1997; 18 pages.

Strassmann, Paul; The Squandered Computer; The Information Economics Press, New Canaan, CT; ISBN 0-
9620413-1-9; 1997; 426 pages.

Stukes, Sherry, Deshoretz, Jason, Apgar, Henry and Macias, Ilona; Air Force Cost Analysis Agency Software
Estimating Model Analysis ; TR-9545/008-2; Contract F04701-95-D-0003, Task 008; Management
Consulting & Research, Inc.; Thousand Oaks, CA 91362; September 30 1996.

Stutzke, Richard D.; Estimating Software Intensive Systems; Addison Wesley, Boston, MA; 2005.

Symons, Charles R.; Software Sizing and Estimating – Mk II FPA (Function Point Analysis); John Wiley & Sons,
Chichester; ISBN 0 471-92985-9; 1991; 200 pages.

Thayer, Richard H. (editor); Software Engineering and Project Management; IEEE Press, Los Alamitos, CA; ISBN
0 8186-075107; 1988; 512 pages.

Umbaugh, Robert E. (Editor); Handbook of IS Management; (Fourth Edition); Auerbach Publications, Boston, MA;
ISBN 0-7913-2159-2; 1995; 703 pages.

Whitmire, S.A.; “3-D Function Points: Scientific and Real-Time Extensions to Function Points”; Proceedings of the
1992 Pacific Northwest Software Quality Conference, June 1, 1992.

Yourdon, Ed; Death March - The Complete Software Developer’s Guide to Surviving “Mission Impossible”
Projects; Prentice Hall PTR, Upper Saddle River, NJ; ISBN 0-13-748310-4; 1997; 218 pages.

Zells, Lois; Managing Software Projects - Selecting and Using PC-Based Project Management Systems; QED
Information Sciences, Wellesley, MA; ISBN 0-89435-275-X; 1990; 487 pages.

Zuse, Horst; Software Complexity - Measures and Methods; Walter de Gruyter, Berlin; 1990; ISBN 3-11-012226-X;
603 pages.

Zuse, Horst; A Framework of Software Measurement; Walter de Gruyter, Berlin; 1997.

36	
	

 Software Benchmark Providers (listed in alphabetic order)
1 4SUM Partners www.4sumpartners.com
2 Bureau of Labor Statistics, Department of Commerce www.bls.gov
3 Capers Jones (Namcook Analytics LLC) www.namcook.com
4 CAST Software www.castsoftware.com
5 Congressional Cyber Security Caucus cybercaucus.langevin.house.gov
6 Construx www.construx.com
7 COSMIC function points www.cosmicon.com
8 Cyber Security and Information Systems https://s2cpat.thecsiac.com/s2cpat/

9 David Consulting Group www.davidconsultinggroup.com
10 Forrester Research www.forrester.com
11 Galorath Incorporated www.galorath.com
12 Gartner Group www.gartner.com
13 German Computer Society http://metrics.cs.uni-magdeburg.de/
14 Hoovers Guides to Business www.hoovers.com
15 IDC www.IDC.com
16 ISBSG Limited www.isbsg.org
17 ITMPI www.itmpi.org
18 Jerry Luftman (Stevens Institute) http://howe.stevens.edu/index.php?id=14
19 Level 4 Ventures www.level4ventures.com
20 Namcook Analytics LLC www.namcook.com
21 Price Systems www.pricesystems.com
22 Process Fusion www.process-fusion.net
23 QuantiMetrics www.quantimetrics.net
24 Quantitative Software Management (QSM) www.qsm.com
25 Q/P Management Group www.qpmg.com
26 RBCS, Inc. www.rbcs-us.com
27 Reifer Consultants LLC www.reifer.com
28 Howard Rubin www.rubinworldwide.com
29 SANS Institute www.sabs,org
30 Software Benchmarking Organization (SBO) www.sw-benchmark.org
31 Software Engineering Institute (SEI) www.sei.cmu.edu
32 Software Improvement Group (SIG) www.sig,eu
33 Software Productivity Research www.SPR.com
34 Standish Group www.standishgroup.com
35 Strassmann, Paul www.strassmann.com
36 System Verification Associates LLC http://sysverif.com
37 Test Maturity Model Integrated www.experimentus.com

37	
	

Appendix A: Problems with Cost per Defect Metrics

The cost-per-defect metric has been in continuous use since the 1960’s for examining the
economic value of software quality. Hundreds of journal articles and scores of books include
stock phrases, such as “it costs 100 times as much to fix a defect after release as during early
development.”

Typical data for cost per defect varies from study to study but resembles the following pattern
circa 2014:

Defects found during requirements = $250

Defects found during design = $500

Defects found during coding and testing = $1,250

Defects found after release = $5,000

While such claims are often true mathematically, there are three hidden problems with cost per
defect that are usually not discussed in the software literature:

1. Cost per defect penalizes quality and is always cheapest where the greatest numbers of
bugs are found.

2. Because more bugs are found at the beginning of development than at the end, the
increase in cost per defect is artificial. Actual time and motion studies of defect repairs
show little variance from end to end.

3. Even if calculated correctly, cost per defect does not measure the true economic value of
improved software quality. Over and above the costs of finding and fixing bugs, high
quality leads to shorter development schedules and overall reductions in development
costs. These savings are not included in cost per defect calculations, so the metric
understates the true value of quality by several hundred percent.

The cost per defect metric has such serious shortcomings for economic studies of software
quality that a case might be made for considering this metric to be a form of professional
malpractice for economic analysis of software quality.

Let us consider the cost per defect problem areas using examples that illustrate the main points.

38	
	

Why Cost per Defect Penalizes Quality

The well-known and widely cited “cost per defect” measure unfortunately violates the canons of
standard economics. Although this metric is often used to make quality economic claims, its
main failing is that it penalizes quality and achieves the best results for the buggiest applications!

Furthermore, when zero-defect applications are reached there are still substantial appraisal and
testing activities that need to be accounted for. Obviously the “cost per defect” metric is useless
for zero-defect applications.

As with KLOC metrics discussed in Appendix B, the main source of error is that of ignoring
fixed costs. Three examples will illustrate how “cost per defect” behaves as quality improves.

In all three cases, A, B, and C, we can assume that test personnel work 40 hours per week and
are compensated at a rate of $2,500 per week or $75.75 per hour using fully burdened costs.
Assume that all three software features that are being tested are 100 function points in size and
5000 lines of code in size (5 KLOC).

Case A: Poor Quality

Assume that a tester spent 15 hours writing test cases, 10 hours running them, and 15 hours
fixing 10 bugs. The total hours spent was 40 and the total cost was $2,500. Since 10 bugs were
found, the cost per defect was $250. The cost per function point for the week of testing would be
$25.00. The cost per KLOC for the week of testing would be $500.

Case B: Good Quality

In this second case assume that a tester spent 15 hours writing test cases, 10 hours running them,
and 5 hours fixing one bug, which was the only bug discovered.

However since no other assignments were waiting and the tester worked a full week 40 hours
were charged to the project. The total cost for the week was still $2,500 so the cost per defect
has jumped to $2,500.

If the 10 hours of slack time are backed out, leaving 30 hours for actual testing and bug repairs,
the cost per defect would be $2,273.50 for the single bug. This is equal to $22.74 per function
point or $454.70 per KLOC.

As quality improves, “cost per defect” rises sharply. The reason for this is that writing test cases
and running them act like fixed costs. It is a well-known law of manufacturing economics that:

“If a manufacturing cycle includes a high proportion of fixed costs and there is a reduction in
the number of units produced, the cost per unit will go up.”

39	
	

As an application moves through a full test cycle that includes unit test, function test, regression
test, performance test, system test, and acceptance test the time required to write test cases and
the time required to run test cases stays almost constant; but the number of defects found steadily
decreases.

Table 11 shows the approximate costs for the three cost elements of preparation, execution, and
repair for the test cycles just cited using the same rate of $:75.75 per hour for all activities:

Table 11: Cost per Defect for Six Forms of Testing
(Assumes $75.75 per staff hour for costs)

 Writing Running Repairing TOTAL
Number

of $ per

Test

Cases
Test

Cases Defects COSTS Defects Defect

Unit test $1,250.00 $750.00 $18,937.50 $20,937.50 50 $418.75

Function test $1,250.00 $750.00 $7,575.00 $9,575.00 20 $478.75

Regression test $1,250.00 $750.00 $3,787.50 $5,787.50 10 $578.75

Performance test $1,250.00 $750.00 $1,893.75 $3,893.75 5 $778.75

System test $1,250.00 $750.00 $1,136.25 $3,136.25 3 $1,045.42

Acceptance test $1,250.00 $750.00 $378.75 $2,378.75 1 $2,378.75

What is most interesting about table 1 is that cost per defect rises steadily as defect volumes
come down, even though table 1 uses a constant value of 5 hours to repair defects for every
single test stage! In other words every defect identified throughout table 1 had a constant cost of
$378.25 when only repairs are considered.

In fact all three columns use constant values and the only true variable in the example is the
number of defects found. In real life, of course, preparation, execution, and repairs would all be
variables. But by making them constant, it is easier to illustrate the main point: cost per defect
rises as numbers of defects decline.

Since the main reason that cost per defect goes up as defects decline is due to the fixed costs
associated with preparation and execution, it might be thought that those costs could be backed
out and leave only defect repairs. Doing this would change the apparent results and minimize
the errors, but it would introduce three new problems:

40	
	

1. Removing quality cost elements that may total more than 50% of total quality costs
would make it impossible to study quality economics with precision and accuracy.

2. Removing preparation and execution costs would make it impossible to calculate cost of
quality (COQ) because the calculations for COQ demand all quality cost elements.

3. Removing preparation and execution costs would make it impossible to compare testing
against formal inspections, because inspections do record preparation and execution as
well as defect repairs.

Backing out or removing preparation and execution costs would be like going on a low-carb diet
and not counting the carbs in pasta and bread, but only counting the carbs in meats and
vegetables. The numbers might look good, but the results in real life would not be good.

Let us now consider cost per function point as an alternative metric for measuring the costs of
defect removal. With the slack removed the cost per function point would be $18.75. As can
easily be seen cost per defect goes up as quality improves, thus violating the assumptions of
standard economic measures.

However, as can also be seen, testing cost per function point declines as quality improves. This
matches the assumptions of standard economics. The 10 hours of slack time illustrate another
issue: when quality improves defects can decline faster than personnel can be reassigned.

Case C: Zero Defects

In this third case assume that a tester spent 15 hours writing test cases and 10 hours running
them. No bugs or defects were discovered.

Because no defects were found, the “cost per defect” metric cannot be used at all. But 25 hours
of actual effort were expended writing and running test cases. If the tester had no other
assignments, he or she would still have worked a 40 hour week and the costs would have been
$2,500.

If the 15 hours of slack time are backed out, leaving 25 hours for actual testing, the costs would
have been $1,893.75. With slack time removed, the cost per function point would be $18.38. As
can be seen again, testing cost per function point declines as quality improves. Here too, the
decline in cost per function point matches the assumptions of standard economics.

Time and motion studies of defect repairs do not support the aphorism that “it costs 100 times as
much to fix a bug after release as before.” Bugs typically require between 15 minutes and 6
hours to repair regardless of where they are found.

(There are some bugs that are expensive and may takes several days to repair, or even longer.
These are called “abeyant defects” by IBM. Abeyant defects are customer-reported defects

41	
	

which the repair center cannot recreate, due to some special combination of hardware and
software at the client site. Abeyant defects comprise less than 5% of customer-reported defects.)

Considering that cost per defect has been among the most widely used quality metrics for more
than 50 years, the literature is surprisingly ambiguous about what activities go into “cost per
defect.” More than 75% of the articles and books that use cost per defect metrics do not state
explicitly whether preparation and executions costs are included or excluded. In fact a majority
of articles do not explain anything at all, but merely show numbers without discussing what
activities are included.

Another major gap is that the literature is silent on variations in cost per defect by severity level.
A study done by the author at IBM showed these variations in defect repair intervals associated
with severity levels.

 Table 12 shows the results of the study. Since these are customer-reported defects, “preparation
and execution” would have been carried out by customers and the amounts were not reported to
IBM. Peak effort for each severity level is highlighted in blue.

Table 12: Defect Repair Hours by Severity Levels for Field Defects

 Severity 1 Severity 2 Severity 3 Severity 4 Invalid Average

> 40 hours 1.00% 3.00% 0.00% 0.00% 0.00% 0.80%

30 - 39 hours 3.00% 12.00% 1.00% 0.00% 1.00% 3.40%

20 - 29 hours 12.00% 20.00% 8.00% 0.00% 4.00% 8.80%

10 - 19 hours 22.00% 32.00% 10.00% 0.00% 12.00% 15.20%

1 - 9 hours 48.00% 22.00% 56.00% 40.00% 25.00% 38.20%

> 1 hour 14.00% 11.00% 25.00% 60.00% 58.00% 33.60%

TOTAL 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

As can be seen, the overall average would be close to perhaps 5 hours, although the range is
quite wide.

In table 12, severity 1 defects mean that the software has stopped working. Severity 2 means
that major features are disabled. Severity 3 refers to minor defects. Severity 4 defects are
cosmetic in nature and do not affect operations. Invalid defects are hardware problems or
customer errors inadvertently reported as software defects. A surprisingly large amount of time
and effort goes into dealing with invalid defects although this topic is seldom discussed in the
quality literature.

42	
	

Using Function Point Metrics for Defect Removal Economics

Because of the fixed or inelastic costs associated with defect removal operations, cost per defect
always increases as numbers of defects decline. Because more defects are found at the beginning
of a testing cycle than after release, this explains why cost per defect always goes up later in the
cycle.

An alternate way of showing the economics of defect removal is to switch from “cost per defect”
and use “defect removal cost per function point”. Table 13 uses the same basic information as
Table 11, but expresses all costs in terms of cost per function point:

Table 13 Cost per Function Point for Six Forms of Testing
(Assumes $75.75 per staff hour for costs)
(Assumes 100 function points in the application)

 Writing Running Repairing TOTAL Number of

 Test Cases Test Cases Defects
 $ PER

F.P. Defects

Unit test $12.50 $7.50 $189.38 $209.38 50

Function test $12.50 $7.50 $75.75 $95.75 20

Regression test $12.50 $7.50 $37.88 $57.88 10

Performance test $12.50 $7.50 $18.94 $38.94 5

System test $12.50 $7.50 $11.36 $31.36 3

Acceptance test $12.50 $7.50 $3.79 $23.79 1

The advantage of defect removal cost per function point over cost per defect is that it actually
matches the assumptions of standard economics. In other words, as quality improves and defect
volumes decline, cost per function point tracks these benefits and also declines. High quality is
shown to be cheaper than poor quality, while with cost per defect high quality is incorrectly
shown as being more expensive.

However, quality has more benefits to software applications than just those associated with
defect removal activities. The most significant benefit of high quality is that it leads to shorter
development schedules and cheaper overall costs for both development and maintenance. The
total savings from high quality are much greater than the improvements in defect removal
expenses.

Let us consider the value of high quality for a large system in the 10,000 function point size
range.

43	
	

The Value of Quality for Large Applications of 10,000 Function Points

When software applications reach 10,000 function points in size, they are very significant
systems that require close attention to quality control, change control, and corporate governance.
In fact without careful quality and change control, the odds of failure or cancellation top 35% for
this size range.

Note that as application size increases, defect potentials increase rapidly and defect removal
efficiency levels decline, even with sophisticated quality control steps in place. This is due to the
exponential increase in the volume of paperwork for requirements and design, which often leads
to partial inspections rather than 100% inspections. For large systems, test coverage declines and
the number of test cases mounts rapidly but cannot usually keep pace with complexity.

Table 14: Quality Value for 10,000 Function Point Applications
(Note: 10,000 function points = 1,250,000 C statements)

 Average Excellent Difference
 Quality Quality

Defects per Function Point 6.00 3.50 -2.50

Defect Potential 60,000 35,000 -25,000

Defect Removal Efficiency 84.00% 96.00% 12.00%

Defects Removed 50,400 33,600 -16,800

Defects Delivered 9,600 1,400 -8,200

Cost per Defect $341 $417 $76
Pre-Release

Cost per Defect $833 $1,061 $227
Post Release

Development Schedule 40 28 -12
(Calendar Months)

Development Staffing 67 67 0.00

Development Effort 2,654 1,836 -818
(Staff Months)

Development Costs $26,540,478 $18,361,525 -$8,178,953

Function Points 3.77 5.45 1.68
per Staff Month

LOC per Staff Month 471 681 209.79

44	
	

Maintenance Staff 17 17 0

Maintenance Effort 800 117 -683.33
(Staff Months)

Maintenance Costs $8,000,000 $1,166,667 -$6,833,333
(Year 1)

TOTAL EFFORT 3,454 1,953 -1501
(STAFF MONTHS)

TOTAL COST $34,540,478 $19,528,191 -$15,012,287

TOTAL COST $414,486 $234,338 -$180,147
PER STAFF MEMBER

TOTAL COST $3,454.05 $1,952.82 -$1,501.23
PER FUNCTION POINT

TOTAL COST PER LOC $27.63 $15.62 -$12.01

AVERAGE COST $587 $739 $152
PER DEFECT

The glaring problem of cost per defect is shown in table 14. Note that even though high quality
reduced total costs by almost 50%, cost per defect is higher for the high-quality version than it is
for the low-quality version! Note that cost per function point matches the true economic value of
high quality, while “cost per defect” conceals the true economic value.

Cost savings from better quality increase as application sizes increase. The general rule is that
the larger the software application the more valuable quality becomes. The same principle is true
for change control, because the volume of creeping requirements goes up with application size.

45	
	

Appendix B: Side by Side Comparisons of 79 Languages using LOC and Function Points

This appendix provides side-by-side comparisons of 79 programming languages using both
function point metrics and lines of code metrics. Productivity is expressed using both hourly and
monthly rates. The table assumes a constant value of 1000 function points for all 79 languages.
However the number of lines of code varies widely based on the specific language.

Also held constant is the assumption for every language that the amount of non-code work for
requirements, architecture, design, documentation, and management is an even 3000 hours.

As can be seen, Appendix A provides a mathematical proof that lines of code do not measure
economic productivity. In Appendix A and in real life, economic productivity is defined as
“producing a specific quantity of goods for the lowest number of work hours.”

Function points match this definition of economic productivity, but LOC metrics reverse true
economic productivity and make the languages with the largest number of work hours seem
more productive than the languages with the lowest number of work hours. This is why LOC
metrics are considered by the author to be professional malpractice as economic metrics when
comparing results across multiple languages. Of course comparing results for a single language
do not have the problems shown in Appendix A.

In the following table economic productivity is shown in green, and is the lowest number of
work hours to deliver 1000 function points.

Appendix A: Side-by-Side Comparison of function points and lines of code metrics
 	 	 	 	 	

 Languages Size in Total
Work
hours FP per Work

Work
hours

LOC
per

 KLOC
Work
hours per FP Month Months

per
KLOC Month

1
Machine
language

640.00 119,364

119.36

1.11

904.27

186.51 708

2 Basic Assembly

320.00 61,182

61.18

2.16

463.50

191.19 690

3 JCL

220.69 43,125

43.13

3.06

326.71

195.41 675

4
Macro
Assembly

213.33 41,788

41.79

3.16

316.57

195.88 674

5 HTML

160.00 32,091

32.09

4.11

243.11

200.57 658

6 C

128.00 26,273

26.27

5.02

199.04

205.26 643

46	
	

7 XML

128.00 26,273

26.27

5.02

199.04

205.26 643

8 Algol

106.67 22,394

22.39

5.89

169.65

209.94 629

9 Bliss

106.67 22,394

22.39

5.89

169.65

209.94 629

10 Chill

106.67 22,394

22.39

5.89

169.65

209.94 629

11 COBOL

106.67 22,394

22.39

5.89

169.65

209.94 629

12 Coral

106.67 22,394

22.39

5.89

169.65

209.94 629
13 Fortran 106.67 22,394 22.39 5.89 169.65 209.94 629

14 Jovial

106.67 22,394

22.39

5.89

169.65

209.94 629

15 GW Basic

98.46 20,902

20.90

6.32

158.35

212.29 622

16 Pascal

91.43 19,623

19.62

6.73

148.66

214.63 615

17 PL/S

91.43 19,623

19.62

6.73

148.66

214.63 615

18 ABAP

80.00 17,545

17.55

7.52

132.92

219.32 602

19 Modula

80.00 17,545

17.55

7.52

132.92

219.32 602

20 PL/I

80.00 17,545

17.55

7.52

132.92

219.32 602

21 ESPL/I

71.11 15,929

15.93

8.29

120.68

224.01 589

22 Javascript

71.11 15,929

15.93

8.29

120.68

224.01 589

23
Basic
(interpreted)

64.00 14,636

14.64

9.02

110.88

228.69 577

24 Forth

64.00 14,636

14.64

9.02

110.88

228.69 577

25 haXe

64.00 14,636

14.64

9.02

110.88

228.69 577

26 Lisp

64.00 14,636

14.64

9.02

110.88

228.69 577

27 Prolog

64.00 14,636

14.64

9.02

110.88

228.69 577

28
SH (shell
scripts)

64.00 14,636

14.64

9.02

110.88

228.69 577

29 Quick Basic

60.95 14,082

14.08

9.37

106.68

231.04 571

30 Zimbu

58.18 13,579

13.58

9.72

102.87

233.38 566

31 C++

53.33 12,697

12.70

10.40

96.19

238.07 554

32 Go

53.33 12,697

12.70

10.40

96.19

238.07 554

33 Java

53.33 12,697

12.70

10.40

96.19

238.07 554

34 PHP

53.33 12,697

12.70

10.40

96.19

238.07 554

47	
	

35 Python

53.33 12,697

12.70

10.40

96.19

238.07 554

36 C#

51.20 12,309

12.31

10.72

93.25

240.41 549

37 X10

51.20 12,309

12.31

10.72

93.25

240.41 549

38 Ada 95

49.23 11,951

11.95

11.05

90.54

242.76 544

39 Ceylon

49.23 11,951

11.95

11.05

90.54

242.76 544

40 Fantom

49.23 11,951

11.95

11.05

90.54

242.76 544

41 Dart

47.41 11,620

11.62

11.36

88.03

245.10 539

42 RPG III

47.41 11,620

11.62

11.36

88.03

245.10 539

43 CICS

45.71 11,312

11.31

11.67

85.69

247.44 533

44 DTABL

45.71 11,312

11.31

11.67

85.69

247.44 533

45 F#

45.71 11,312

11.31

11.67

85.69

247.44 533

46 Ruby

45.71 11,312

11.31

11.67

85.69

247.44 533

47 Simula

45.71 11,312

11.31

11.67

85.69

247.44 533

48 Erlang

42.67 10,758

10.76

12.27

81.50

252.13 524

49 DB2

40.00 10,273

10.27

12.85

77.82

256.82 514

50 LiveScript

40.00 10,273

10.27

12.85

77.82

256.82 514

51 Oracle

40.00 10,273

10.27

12.85

77.82

256.82 514

52 Elixir

37.65 9,845

9.84

13.41

74.58

261.51 505

53 Haskell

37.65 9,845

9.84

13.41

74.58

261.51 505

54
Mixed
Languages

37.65 9,845

9.84

13.41

74.58

261.51 505

55 Julia

35.56 9,465

9.46

13.95

71.70

266.19 496

56 M

35.56 9,465

9.46

13.95

71.70

266.19 496

57 OPA

35.56 9,465

9.46

13.95

71.70

266.19 496

58 Perl

35.56 9,465

9.46

13.95

71.70

266.19 496

59 APL

32.00 8,818

8.82

14.97

66.80

275.57 479

60 Delphi

29.09 8,289

8.29

15.92

62.80

284.94 463

61 Objective C

26.67 7,848

7.85

16.82

59.46

294.32 448

62 Visual Basic

26.67 7,848

7.85

16.82

59.46

294.32 448

48	
	

63 ASP NET

24.62 7,476

7.48

17.66

56.63

303.69 435

64 Eiffel

22.86 7,156

7.16

18.45

54.21

313.07 422

65 Smalltalk

21.33 6,879

6.88

19.19

52.11

322.44 409

66 IBM ADF

20.00 6,636

6.64

19.89

50.28

331.82 398

67 MUMPS

18.82 6,422

6.42

20.55

48.65

341.19 387

68 Forte

17.78 6,232

6.23

21.18

47.21

350.57 377

69 APS

16.84 6,062

6.06

21.77

45.93

359.94 367

70 TELON

16.00 5,909

5.91

22.34

44.77

369.32 357

71 Mathematica9

12.80 5,327

5.33

24.78

40.36

416.19 317

72 TranscriptSQL

12.80 5,327

5.33

24.78

40.36

416.19 317

73 QBE

12.80 5,327

5.33

24.78

40.36

416.19 317

74 X

12.80 5,327

5.33

24.78

40.36

416.19 317

75 Mathematica10

9.14 4,662

4.66

28.31

35.32

509.94 259

76 BPM

7.11 4,293

4.29

30.75

32.52

603.69 219

77 Generators

7.11 4,293

4.29

30.75

32.52

603.69 219

78 Excel

6.40 4,164

4.16

31.70

31.54

650.57 203

79 IntegraNova

5.33 3,970

3.97

33.25

30.07

744.32 177

 Average

67.60 15,291 15.29 12.80 115.84 279.12 515

It is obvious that in real life no one would produce 1000 function points in machine language,
JCL, or some of the other languages in the table. The table is merely illustrative of the fact that
while function points may be constant and non-code hours are fixed costs, coding effort is
variable and proportional to the amount of source code produced.

In Appendix A the exact number of KLOC can vary from team to team and company to
company. But that is irrelevant to the basic mathematics of the case. There are three aspects to
the math:

Point 1: When a manufacturing process includes a high proportion of fixed costs and there is a
reduction in the units produced, the cost per unit will go up. This is true for all industries and all
manufactured products without exception.

49	
	

Point 2: When switching from a low-level programming language to a high-level programming
language, the number of “units” produced will be reduced.

Point 3: The reduction in LOC metrics for high-level languages in the presence of the fixed
costs for requirements and design will cause cost per LOC to go up and will also cause LOC per
month to come down for high-level languages.

These three points are nothing more than the standard rules of manufacturing economics applied
to software and programming languages.

